
Using genetic algorithms to autonomically tune the
kernel

Jake Moilanen
IBM

moilanen@austin.ibm.com

Peter Williams
Aurema Pty Ltd.

pwil3058@bigpond.net.au

Abstract

One of the next obstacles in autonomic comput-
ing is having a system self-tune for any work-
load. Workloads vary greatly between applica-
tions and even during an application’s life cy-
cle. It is a daunting task for a system admin-
istrator to manually keep up with a constantly
changing workload. To remedy this shortcom-
ing, intelligence needs to be put into a system to
autonomically handle this process. One method
is to take an algorithm commonly used in arti-
ficial intelligence and apply it to the LinuxR©
kernel.

This paper covers the use of genetic-algorithms
to autonomically tune the kernel through the
development of the genetic-library. It will dis-
cuss the overall designed of the genetic-library
along with the hooked schedulers, current sta-
tus, and future work. Finally, early perfor-
mance numbers are covered to give an idea as
towards the viability of the concept.

1 What is a Genetic Algorithm

A genetic algorithm, or GA, is a method of
searching a large space for a solution to a prob-
lem by making a series of educated guesses.

This search is done by using the mathemat-
ical equivalent of biology’s natural selection
process. The values of the parameters to
the solution are analogous to biology’s genes.
The genes/values that perform well will sur-
vive, while the ones that under perform are
pruned from the gene pool. Over time these
genes/values evolve towards an optimal solu-
tion for the current environment.

1.1 Genetic Algorithm terms

The termgenerefers to a variable in the prob-
lem that is being solved. These variables can
be for anything as long as changing their value
causes a measurable outcome. A gene is a piece
of the solution.

All of the different genes comprise achild.
Each child normally has different values for
their genes, which makes each child unique.
These different value and combinations allow
some children to perform better than others in
a given environment. A single child is a single
possible solution to the given problem.

All of the children make up apopulation. A
population is a set of solutions to the given
problem.

When a set of children are put together, they
create ageneration. A generation is the time

• 327 •



328 • Using genetic algorithms to autonomically tune the kernel

that all children perform before the natural se-
lection process prunes some children. The re-
maining children becomeparentsand create
children for the next generation.

The measure of how well a child is perform-
ing is afitnessmeasure. This is the numerical
value assigned to each child at the end of a gen-
eration.

A phenotypeis the end result of the genes in-
teraction. In biology, an example would be eye
color. There are a number of genes that affect
eye color, but only one color as an end result.
In a genetic algorithms specific genes impact
specific fitness outcomes.

Much how evolution works in the wild, a ge-
netic algorithm takes advantage ofmutationsto
introduce new genes into the gene pool. This
is to combat a limited set of genes that may
have worked well in the old environment, but
does not have the optimal result in a changing
environment. Mutations also aid in premature
convergence on less-than-optimal solutions.

2 Genetic-Library

As the name implies, the genetic-library is a
library where components in the kernel can
plug into to take advantage of a genetic algo-
rithm. The advantage of the genetic-library is
that components do not have to create their own
method of self-tuning. The genetic-library cre-
ates a unified path that is flexible enough to
handle almost any tuning that a component has
need for.

2.1 Registering

Before the genetic-library is used, components
first must register with it. When registering,

state must be given to the genetic-library. For
instance, the plugins need to givegenetic_
ops , which are implementation specific call-
back functions that the genetic-library uses.
The child lifetime, the number of genes, and
the number of children must also be included
for each phenotype.

2.2 Genetic library life-cycle

An implementation of a genetic algorithm can
vary, but the genetic-library uses the following
one:

Figure 1: Life Cycle



2005 Linux Symposium • 329

2.2.1 Create the initial population

The first step in a genetic algorithm is to create
an initial population of children with their own
set of genes. Usually, the children’s genes are
given values that spread across the entire search
space. This helps facilitate the survival of the
fittest.

The genetic-library makes calls into the compo-
nents through the registeredgenetic_ops .
For each phenotype, all of the children are cre-
ated through thecreate_child() callback.
This callback can initialize genes in a number
of ways. The most common is by spreading the
gene values across the entire search space.

2.2.2 Run generation

In a genetic algorithm, all the children in the
current generation are run in serial. The chil-
dren plug their genes into the system and run
for a slice of time. Once all of the children
in the generation have completed their run, the
generation is over.

In the genetic-library, the first child in every
phenotype callsgenetic_run_child() to
kick off the generation. This function sets
the genes to be used with theset_child_
genes() callback. Next, it takes a snapshot
of performance counters for the fitness mea-
surement to determine how well this child per-
formed. Finally, a timeout is set that will con-
clude the child’s lifetime. That timer func-
tion is used to switch to the next child through
genetic_switch_child() .

2.2.3 Assign fitness to children

One of the most difficult pieces of a genetic al-
gorithm is assigning an accurate fitness number

to a child. This fitness value is used to rank
the children against each other. Depending on
implementation, the fitness calculation is either
done at the completion of a generation, or at the
end of a child’s lifetime.

For the genetic-library, the fitness calcula-
tion is done at the conclusion of a child’s
lifetime through thecalc_fitness() call-
back. This function looks at the snapshot of
the performance counters from the beginning
of the child’s lifetime, and takes the delta of the
counters at the end of the lifetime. Since these
number are usually normalized between all the
children, the delta is usually all that is needed.

There are certain other phenotypes where the
fitness calculation must be done at the end of a
generation. This is usually when the phenotype
contains general tunables that affect other phe-
notype’s outcome. In this casecalc_post_
fitness() is used. This routine normalizes
all the different fitness values by taking the av-
erage ranking of all the children in the affected
phenotypes. The average ranking is used as a
fitness measure.

2.2.4 Rank children

Using the fitness value assigned, children are
then ranked in order of their performance. Chil-
dren with well-performing genes get a higher
ranking.

In the genetic-library’sgenetic_split_
performers() , a bubble sort is used to or-
der the children according to their fitness.

2.2.5 Natural selection operation

The same way Darwin’s natural-selection pro-
cess works in the wild, it works in the genetic
algorithm. Those genes that perform well in



330 • Using genetic algorithms to autonomically tune the kernel

the given environment, will survive, and those
that perform poorly will not. This enables the
strongest genes to carry on to the next genera-
tion.

In the genetic-library, the bottom half of the
population that under performs is removed.
This replacing of part of the population is
known as a steady-state type of algorithm.
There is also a generational type of algorithm
where the entire population is replaced. For in-
stance, in implementations that make use of a
roulette wheel algorithm, the whole population
is replaced, but the children that have higher
fitness have a proportionally higher chance of
their genes being passed on.

2.2.6 Crossover Operation

This operation is the main distinguishing fac-
tor between a genetic algorithm and other opti-
mization algorithms. The children that survived
the natural selection process now become par-
ents. The parents mate and create new children
to repopulate the depleted population.

There are a number of methods for crossover,
but the most common one in the genetic-library
is similar to the blending method. For all
of the phenotypes that have genes to combine
(some phenotypes are just placeholders for fit-
ness measures and their child’s rankings are
used to determine fitness for another pheno-
type), each gene receives X% of parent A’s
gene value and add in 100-X% of parent B’s
gene value. X is a random percentage between
0 and 100. The end result is that the child has
a gene value that is somewhere randomly in the
middle of parent A’s, and parent B’s genes.

2.2.7 Mutation Operation

To combat premature convergence on a solu-
tion, a small number of mutations are intro-
duced into the population. These mutations
also aid in changing environments where the
current gene pool performs less-than-optimal.

After the new population is created, genes
are picked randomly and randomly modified.
These mutations keep the population diverse.
Staying diverse makes the algorithm perform a
global search.

In the genetic-library, mutation is done on some
percentage of all the genes. Mutations are ran-
domly done on both new children, and par-
ents. Once the individual from the population
is picked, a gene is randomly selected to be mu-
tated. The gene either has a new value picked at
random, or else is iteratively modified by hav-
ing a random percentage increase or decrease
in the gene’s value.

On a system, workloads are always changing.
So the population needs to always be chang-
ing to cover the current solution search space.
To counteract this moving target, the genetic-
library varies the rate of mutation depending
on how well the current population is perform-
ing. If the average fitness for the population de-
creases past some threshold, then it appears as
if the workload is changing and the current pop-
ulation is not performing as well. To counteract
this new problem/workload, the mutation rate
is increased to widen the search space and find
the new optimal solution. There is a limit on the
mutation rate, so not to have the algorithm go
spiraling out of control with mutations bringing
the population further and further away from
the solution. Conversely, if the fitness is in-
creasing, then it appears that the population is
converging on an optimal solution, so the mu-
tation rate decreases to not introduce excessive
bad genes.



2005 Linux Symposium • 331

Figure 2: Structure Layout

2.3 Framework

The struct genetic_s is the main struct
that contains the state for each component
plugged into the genetic-lib.

This general structure contains all of the pheno-
types in thestruct phenotype_s . A phe-
notype is created for each specific measurable
outcome.

Within each phenotype, is an array ofstruct
genetic_child_s or children. Each child
will contain an array of genes that are specific
to that phenotype. Since some genes may af-
fect multiple fitness measures, those genes are
usually put into a phenotype that encapsulates
other phenotypes. This will be discussed fur-
ther in the next section.

Each gene has astruct gene_param as-
sociated with it. In this structure, the gene’s
properties are given. The minimum and the
maximum value for a gene, along with its de-
fault value are given. If a gene has a specific
function to mutate it, that can also be provided.

2.4 Phenotypes

Some other genetic algorithms refer to phe-
notypes as something comparable to what the

genetic-library calls a child. However in the
genetic library context, it refers to a popula-
tion of children that affect a specific fitness
measure. Phenotypes were introduced into the
genetic library to increase granularity of what
could be tuned in a component. Before pheno-
types there was one fitness routine per compo-
nent. This fitness function could look at mul-
tiple performance metrics, but all the genes for
the component would be affected regardless if
they had nothing to do with some of the per-
formance metrics. For example, some of the
genes that impact real-time process schedul-
ing were being judged by fitness metrics that
looked at throughput. With the introduction
of phenotypes, the fitness measure of real-time
performance would only affect the genes that
impacted real-time.

The next problem that came about with pheno-
types was what to do with the genes that af-
fect a number of fitness metrics. For example,
time-slice affects fitness measures like number
of context switches, and total delay. The solu-
tion lies with adding a hierarchy of phenotypes
that affect other phenotypes. This is done by
assigning a unique ID’s, oruid, to each pheno-
type. A uid is really a bitmask of phenotypes
that affect it.

3 Hooked components

The genetic-library can be hooked into pretty
much any component that can be tuned. For the
initial implementation, the Zaphod CPU sched-
uler and the Anticipatory I/O scheduler were
picked.

The Zaphod CPU scheduler was attractive to
use because of its heavy integration with sched
stats. Having extensive scheduler statistics
made it much easier to create good fitness rou-
tines.



332 • Using genetic algorithms to autonomically tune the kernel

The Anticipatory I/O scheduler was also desir-
able because modifying the tunables could af-
fect the schedulers performance greatly.

3.1 Zaphod CPU scheduler

The Zaphod CPU scheduler emerged from the
CPU scheduler evaluation work. It is a sin-
gle priority array O(1) with interactive response
bonuses, throughput bonuses, soft and hard
CPU rate caps and a choice of priority based
or entitlement based interpretation of “nice.”

3.1.1 Configurable Parameters

The behavior of this scheduler is controlled
by a number of parameters and since there
was noa priori best value for these parame-
ters they were designed to be runtime config-
urable (within limits) so that experiments could
be conducted to determine their best values.

time_slice One of the principal advan-
tages of using a single priority array is
that a task’s time slice is no longer tied
up controlling its movement between the
active and expired arrays. Therefore all
tasks are given a new time slice every
time they wake and when they finish their
current time slice. This parameter deter-
mines the size of the time slice given to
SCHED_NORMALtasks.

sched_rr_time_slice This parameter
determines the size of the time slice given
to SCHED_RRtasks.

base_prom_interval The single priority
array introduces the possibility of starva-
tion and to handle this Zaphod includes
an O(1) promotion mechanism. When the
number of runnable tasks on a run queue is

greater than 1, Zaphod periodically moves
all runnableSCHED_NORMALtasks with
a prio value greater thanMAX_RT_
PRIO towards the head of the queue.
This variable controls the interval between
promotions and its ratio to the value of
time_slice can be thought of as con-
trolling the severity of “nice.”

bgnd_time_slice_multiplier Tasks
with a soft CPU rate cap are essentially
background tasks and generally only run
when there are no other runnable tasks on
their run queue. These tasks are usually
batch tasks that benefit from longer time
slices and Zaphod has a mechanism to give
them time slices that are an integer multi-
ple of time_slice and this variable de-
termines that multiple.

max_ia_bonus In order to enhance inter-
active responsiveness, Zaphod attempts to
identify interactive tasks and give them
priority bonuses. This attribute determines
the largest bonus that Zaphod awards. Set-
ting this attribute to zero is recommended
for servers.

initial_ia_bonus When interactive
tasks are forked on very busy systems
it can take some time for Zaphod to
recognize them as interactive. Giving
all tasks a small bonus when they fork
can help speed up this process and this
attribute determines the initial interactive
bonus that all tasks receive.

ia_threshold When Zaphod needs to de-
termine a dynamic priority (i.e., aprio
value) it calculates the recent average
sleepiness(i.e., the ratio of the time spends
sleeping to the sum of the time spent on
the CPU or sleeping) and if this is greater
than the value ofia_threshold it in-
creases the proportion (interactive_



2005 Linux Symposium • 333

bonus ) of max_ia_bonus that it will
award this task asymptotically towards 1.

cpu_hog_threshold At the same time it
calculates the tasksCPU usage rate(i.e.
the ratio of the time spent on the CPU
to the sum of the time spent on a run
queue waiting for CPU access or sleep-
ing) and if this is greater than the value of
cpu_hog_threshold it decreases the
task’sinteractive_bonus asymptot-
ically towards zero. From this it can be
seen that the size of the interactive bonus
is relatively permanent.

max_tpt_bonus Zaphod also has a mech-
anism for awarding throughput bonuses
whose purpose is (as the name implies)
to increase system throughput by reduc-
ing the total amount of time that tasks
spend on run queues waiting for CPU ac-
cess. These bonuses are ephemeral and
once granted are only in force for one task
scheduling cycle. The size of the through-
put bonus awarded to a task each schedul-
ing cycle is decided by comparing the re-
cent averagedelay timethat the task has
been suffering to the expected delay time
based on how busy the system is, the task’s
usage patterns and static priority. It will be
a proportion of the value ofmax_tpt_
bonus . This bonus is generally only ef-
fective when the system is less than fully
loaded as once the system is fully loaded
it is not possible to reduce the total delay
time of the tasks on the system.

current_zaphod_mode As previously
mentioned, Zaphod offers the choice of a
priority based or an entitlement based in-
terpretation of “nice.” This attribute deter-
mines which of those interpretations is in
use.

3.1.2 Scheduling Statistics

As can be seen from the above description
of Zaphod’s control attributes, Zaphod needs
data on the amount of time tasks spend on run
queues waiting for CPU access in order to com-
pute task bonuses. The kernel does not cur-
rently provide this data so Zaphod maintains
its own scheduling statistics (in nanoseconds)
for both tasks and run queues. The schedul-
ing statistics of interest to this paper are the
run queue statistics as they are an indication of
the overall system performance. The following
statistics are kept for each run queue in addition
to those already provided in the vanilla kernel:

total_idle The total amount of time
(since boot) that the CPU associated with
the run queue was idle. This is actually de-
rived from the total CPU time for the run
queue’s idle thread.

total_busy The total amount of time
(since boot) that the CPU associated with
the run queue was busy. This is actually
derived from the total time that the run
queue’s idle thread spent off the CPU.

total_delay The total amount of time
(since boot) that tasks have spent on this
run queue waiting for access to its CPU.

total_rt_delay The total amount of time
(since boot) that real time tasks have spent
on this run queue waiting for access to its
CPU.

total_intr_delay The total amount of
time (since boot) that tasks awoken to ser-
vice an interrupt have spent on this run
queue waiting for access to its CPU.

total_rt_intr_delay The total amount
of time (since boot) that real time tasks
awoken to service an interrupt have spent



334 • Using genetic algorithms to autonomically tune the kernel

on this run queue waiting for access to its
CPU.

total_fork_delay The total amount of
time (since boot) that tasks have spent on
this run queue waiting for access to its
CPU immediately after forking.

total_sinbin The total amount of time
(since boot) that tasks associated with this
run queue have spent cooling their heels in
thesin binas a consequence of exceeding
their CPU usage rate hard cap.

Figure 3: Zaphod Phenotypes

3.1.3 Phenotypes

In Figure 3, there are six phenotypes listed
along with the genes that exist within them.
All of the phenotypes have their own fitness
measures. For example,real-time ’s fit-
ness measures takes the delta oftotal_rt_
delay for each child. The fitness measure not
only affects sched_rr_time_slice , but
also affects all of the genes in thegeneral
phenotype.

Phenotypes might not always have genes in
their children. This is done in when the phe-
notypes are just being used for their fitness
measures. The children that perform well are
ranked accordingly. Thegeneral phenotype
looks at the average ranking of the children of
all the phenotypes under it.

The general phenotype also has a weights
associated with each of its subsidiary pheno-
types. The phenotypes that have a greater
impact on the general phenotype gets higher
weights associated with them. For instance, the
total-delay phenotype is three times more
important than thereal-time phenotype.

To actually calculate the fitness for the
general phenotype’s children, the first child
looks at what place it ranked in each pheno-
type, between1-NUM_CHILDREN, and then
multiply its place by the weight associated with
that phenotype to get a final fitness number
for that child. A quick example would be
if a child was ranked as the worst perform-
ing in real-time , it would receive 1 point
(top rank gets the most points, lowest gets the
least) times thereal-time weight, which is
1. However, in thetotal-delay phenotype,
it was the second best performer, and receives
NUM_CHILDREN-1points. Assume that there
are 8 children. The child would receive 7 points
(ranked second best), timestotal-delay ’s
weight, which is 3.

The final fitness number would be:

real-time: 1 * 1
total-delay: + 7 * 3

------
final fitness: 22

3.2 Anticipatory IO scheduler

The anticipatory I/O scheduler, or AS attempts
to reduce the disk seek time by using a heuris-



2005 Linux Symposium • 335

tic to anticipate getting another read request in
close proximity. This is done by delaying pend-
ing I/O with the expectation that the delay of
servicing a request will be made up for by re-
ducing the number of times the disk has to seek.

The anticipatory I/O scheduler was developed
on one large assumption, that there was only
one outstanding I/O on the bus, and only one
head to seek. In other words, it assumed that
the disk was an IDE drive. This works very
well on most desktops, however, in most server
environments, they have SCSI disks, which can
handle many outstanding I/Os, and many times
these disks are setup in a RAID environment
and have many disk heads.

Figure 4: Anticipatory I/O Scheduler Pheno-
types

3.2.1 Phenotypes

Figure 4 shows how three of the four pheno-
types are just placeholders for fitness measures.
Only thegeneral phenotype contains genes.

The three phenotypes that are just fitness mea-
sures are in place to make sure all workloads
are considered, and not favor one type of work-
load over another. They are agnostic towards
the type of I/O, whether it is a read or write.

The num_ops phenotype only exists for fit-
ness measurements. The fitness routine looks

at the delta of number of I/O operations com-
pleted during a child’s lifetime. This fitness
routine helps balance out the idea of pure
throughput. This gives a small fitness bonus to
a large number small I/O’s.

In the throughput phenotype, the fitness
simply looks at the number of sectors read or
written in during a child’s lifetime. This phe-
notype makes sure data is actually moving, and
not just servicing a lot a small requests.

Thelatency phenotype measures the time all
requests sit in the queue. This should help com-
bat I/O starvation.

4 Performance numbers

The main goal of the genetic-library is to in-
crease performance through autonomically tun-
ing components of the kernel. The performance
gain offered by the genetic-library must out-
weigh the cost of adding more code into the
kernel. While there is no hard-and-fast rule to-
wards what percentage increase is worth adding
X number lines of code, gains should be mea-
surable.

In the performance evaluation, an OpenPower
710 system, with 2 CPUs, and 1.848 giga-
bytes of RAM was used. The benchmarks were
conducted on a SLES 9 SP1 base install with
a 2.6.11 kernel. More system details can be
found in Appendix A.

The base benchmarks were conducted on a
stock 2.6.11 kernel, with the PPC64 default
config. On the benchmarking of each com-
ponent utilizing the genetic-library, only the
genetic-library patches for the component be-
ing exercised at that time were in the kernel.



336 • Using genetic algorithms to autonomically tune the kernel

4.1 Zaphod CPU scheduler

To benchmark the Zaphod CPU Scheduler,
SPECjbb2000R© was used. This benchmark
is a good indicator of scheduler performance.
Due to these runs being unofficial, their formal
numbers cannot be published. However, a per-
centage difference should be sufficient for what
this paper intends to look at.

Sheet2

Page 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

Warehouse

Figure 5: SPECjbb results—GA plugin to Za-
phod

The performance improvement ranged from
1.09% to 5.11% in all of the warehouses tested.
There is a trend towards a larger improvement
as the number of warehouses increase. This
indicates that the genetic-library helped Za-
phod scale as the load increased on the sys-
tem. The warehouses averaged an improve-
ment of 3.04%, however the SPECjbb peak per-
formance throughput only showed a 1.52% im-
provement. The peak performance throughput
difference may not be valid due to the perfor-
mance peaking in different warehouses. That
difference makes the two throughput numbers
unable to be measured directly against one an-
other.

4.2 Anticipatory I/O scheduler

The Anticipatory I/O scheduler is tuned to do
sequential reads very well[1]; however, it has

problems with the other types of I/O operations
such as sequential writes and random reads.
These other I/O types of operations can do bet-
ter when the AS is tuned for them. If the
genetic-library did its tuning correctly, there
should be a performance increase across all
types of workloads.

To generate these workloads, the flexible file
system benchmark, or FFSB was used. The
FFSB is a versatile benchmark that gives the
ability to simulate any type of workload[2].

For the benchmarking the AS genetic-library
plugin, FFSB sequentially went through a
series of workload simulations and returned
the number of transactions-per-second and the
throughput. This experiment was conducted on
a single disk ext3 file system.

Sheet3

Page 5

random 
read 256k

random 
read 4k

random 
write 
256k

random 
write 4k

sequential 
read

sequential 
read dio

sequential 
write

0

50

100

150

200

250

300

350

400

450

500

550

base genetic

Figure 6: FFSB transactions per second—
Anticipatory Plugin

With the exception of one workload, there were
performance improvements across the board.
The largest increase was in the 256K random
write workload. The genetic-library version
had a 23.22% improvement over a stock AS.
The average improvement of all tested work-
loads was 8.72%.

The one workload where the genetic-library de-
graded performance was the sequential read
workload at –0.74%. This is not surprising
because the AS is optimized specifically for
this workload, and the genetic-library’s tunings
might not get any better than the default set-
tings. The performance loss can be attributed



2005 Linux Symposium • 337

to the genetic library’s attempts at finding bet-
ter tunings. When the new tuning solution is
attempted it will probably be less-than-optimal.

5 Conclusion & Future work

5.1 Kernel Inclusion viability

At the present time, the Anticipatory I/O
Scheduler sees large enough improvements,
that a strong argument can be made to add the
extra complexity into the kernel. The GA plu-
gin to Zaphod also sees substantial gains in per-
formance, especially when the system is under
a high load. If only throughput was a concern
on the CPU scheduler, then inclusion into the
kernel should be considered. However, there
are number of other factors that must be looked
at. The biggest one is, how well the system also
maintains interactiveness, which is very subjec-
tive.

In the near-term, the GA plugin to Zaphod
should only be used in a server environment.
This is because a desktop environment is partic-
ularly malicious for the genetic-library. There
are numerous CPU usage spikes that can skew
performance results. On top of the CPU usage,
there are the interactiveness concerns. A user
expects to see instant reaction in their interac-
tive applications. If the genetic library goes off
on a tangent to try finding a new optimal tun-
ing, a time-slice may go much longer than is
acceptable by a desktop user. New features are
planned for the genetic-library to help converge
quicker on changing workloads.

5.2 Future work

There are other areas of the kernel that are
being investigated for their viability of being

tuned with the genetic-library. Some of them
include scheduler domain reconfiguration, full
I/O scheduler swapping, plugsched CPU sched-
uler swapping, packet scheduling, and SMT
scheduling.

The next major feature of the genetic-library
will be workload fingerprinting. The idea is to
bring back the top-performing genes for certain
workloads. By being able to identify a partic-
ular workload, the history of optimal tunings
for that workload can be saved. These optimal
genes will be reintroduced into the population
when the current workload matches a finger-
printed workload. This will enable faster con-
vergence when workloads change.

5.3 Conclusion

The genetic-library has the ability to put intel-
ligence into the kernel, and gracefully handle
even the most malevolent of workloads. Hope-
fully, it will pave the way towards a fully auto-
nomic system and the elimination of the system
admin dependency.

Legal Statement

Copyright 2005 IBM.

This work represents the view of the author and does
not necessarily represent the view of IBM nor Au-
rema Pty Ltd.

IBM, the IBM logo, and POWER are trademarks or
registered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

SPEC and the benchmark name SPECjbb2000 are
registered trademarks of the Standard Performance
Evaluation Corporation.



338 • Using genetic algorithms to autonomically tune the kernel

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

All the benchmarking was conducted for research
purposes only, under laboratory conditions. Results
will not be realized in all computing environments.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM op-
erates. This document is provided “AS IS,” with no
express or implied warranties. Use the information
in this document at your own risk.

References

[1] Pratt, S., Heger, D.,Workload Dependent
Performance Evaluation of the Linux 2.6
I/O Schedulers, 2004 Linux Symposium

[2] http://sourceforge.net/
projects/ffsb/

Appendix A. Performance System

IBM OpenPower 710 System
2-way 1.66 Ghz Power5 Processors
1.848 GB of memory
2 15,000 RPM SCSI drives
SLES 9 SP1
2.6.11 Kernel



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


