
hanoidb

«gen_server»

nursery

hanoidb_level #8

«plain_fsm»

A-8.data [random,read]

top

hanoidb_level #9

hanoidb_level #10

next

next

B-8.data [random,read]

C-8.data [random,read]API

get: Looks up a given key in the nursery (recently added), if not found send a one-way message that flows down the levels, inspecting files
in the order C, B, A (newest to oldest). When found, the level replies directly using gen_server:reply/2. Thus, there can be multiple get requests
flowing down the levels concurrently (but only one being considered at each level at any one point in time). Doing a file-level lookup first
uses a bloom filter to avoid unnecessary tree walks.
Data files at level #n contain at most 2n key/value pairs.

process

data structure

file

Legend

hanoidb

«gen_server»

nursery

hanoidb_level #8

«plain_fsm»

A-8.data [random,read]

hanoidb_merger

«plain_fsm»

merge_pidtop

hanoidb_level #9 hanoidb_mergermerge_pid

hanoidb_level #10 hanoidb_mergermerge_pid

next

next

B-8.data [random,read]

C-8.data [random,read]

X-8.data [seq,write]

B-8.data [seq,read]

A-8.data [seq,read]API

nursery.data [append]

nursery.log [append]

put: Normal insertion just adds data to in-memory nursery gb_tree, and appends {K,V} to nursery.log. When nursery is full (256 entries)
the data is written to the (b-tree) nursery.data. This file is then closed and "passed" into the top level (the level will rename it to A, B, or C).
Finally, an "incremental merge" is issued, which will flow down through the levels, and instruct the merge processes to each do 256 "steps".
Independently, when a merge process completes, the corresponding level N will "pass" the resulting X-N.data file to the level N+1, A and B files are
deleted, and C is renamed A. The 256 "steps" guarantees that when an inject happens, the target level does not have a C file, i.e. there is room.

same A+B files opened twice!

hanoidb

«gen_server»

nursery

hanoidb_level #8

«plain_fsm»

A-8.data [random,read]

hanoidb_folder

top

hanoidb_level #9

next

B-8.data [random,read]

C-8.data [random,read]
CF-8.data [seq,read]

API

hanoidb_folder

BF-8.data [seq,read]

hanoidb_folder

AF-8.data [seq,read]

folding

hanoidb_fold_merger

snapshot fold: all data files are hard-linked; i.e. A-8.data becomes AF-8.data, and are scanned concurrently (one process per data file).
When all folder processes have been started, the fold_merger is told the source order in which to consider the individual fold results, after
which it does selective receive when running out of values from a given folder. The fold_merger merges such data from all levels.
The current implementation only allows one concurrent snapshot fold to avoid unlimited number of open files. Further snapshot folds will be
enqueued and concurrent put/gets will be services all along.

{source_order, [pid()]}

{fold_result, Key, Value}
[back pressure]

{level_results, pid(), [{Key,Value}*100]}
[back pressure]

hard link

hanoidb

«gen_server»

nursery

hanoidb_level #8

«plain_fsm»

A-8.data [random,read]

top

hanoidb_level #9

next

B-8.data [random,read]

C-8.data [random,read]API

hanoidb_fold_merger

blocking fold: [only when limit < 10] All data files [A,B,C]-N.data are scanned sequentially for up to limit matching entries.
The fold_merger is told the order in which to consider the individual fold results, after which it does
selective receive to grab fold results. The fold_merger merges such data from all levels. Thus, all potential results are in
the fold_merger's inbox before merge commences. Currently only used in riak's list buckets.

{source_order, [reference()]}

{fold_result, Key, Value}
[back pressure]

{level_result, reference(), Key, Value}
[no back pressure]

block block block trailer...

blocklen:4 level:2

KVcompress:1 0xff:1 KV KV KV

KEYVAL keylen:4 keybytes valuebytes

POSLEN blockpos:8 keybytesblocklen:4

length:4 crc:4

length:4 crc:4 DELETED keylen:4 keybytes

length:4 crc:4

HanoiDB File Format

0xff:1

0xff:1

0xff:1

tree node data : length bytes

compressed data

serialized ebloom (gzip'ed) root_pos:8bloom_len:4

inner nodes have sequences
of these as child node (block) references
key is first key of referenced block

"HAN1"

tree structure via
POSLEN block members

level=0 is a leaf node

uncompressed: 0
snappy: 1

gzip: 2

blocklen bytes

length bytes (subject to CRC32 check)

points to a block

length:4 crc:4 0xff:10xff:1 data : length bytes repair/recovery can scan for sequences
like this to find all KV's in a data file

length bytes (subject to CRC32 check)

