hanoidb/test/hanoidb_tests.erl

427 lines
14 KiB
Erlang

%% ----------------------------------------------------------------------------
%%
%% hanoidb: LSM-trees (Log-Structured Merge Trees) Indexed Storage
%%
%% Copyright 2011-2012 (c) Trifork A/S. All Rights Reserved.
%% http://trifork.com/ info@trifork.com
%%
%% Copyright 2012 (c) Basho Technologies, Inc. All Rights Reserved.
%% http://basho.com/ info@basho.com
%%
%% This file is provided to you under the Apache License, Version 2.0 (the
%% "License"); you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
%% WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
%% License for the specific language governing permissions and limitations
%% under the License.
%%
%% ----------------------------------------------------------------------------
-module(hanoidb_tests).
-include("include/hanoidb.hrl").
-include("src/hanoidb.hrl").
-ifdef(TEST).
-ifdef(TRIQ).
-include_lib("triq/include/triq.hrl").
-include_lib("triq/include/triq_statem.hrl").
-else.
-include_lib("proper/include/proper.hrl").
-endif.
-include_lib("eunit/include/eunit.hrl").
-endif.
-ifdef(PROPER).
-behaviour(proper_statem).
-endif.
-compile(export_all).
-export([command/1, initial_state/0,
next_state/3, postcondition/3,
precondition/2]).
-record(tree, { elements = dict:new() }).
-record(state, { open = dict:new(),
closed = dict:new() }).
-define(SERVER, hanoidb_drv).
full_test_() ->
{setup, spawn, fun () -> ok end, fun (_) -> ok end,
[
?_test(test_tree_simple_1()),
?_test(test_tree_simple_2()),
?_test(test_tree_simple_4()),
?_test(test_tree_simple_5())
]}.
longer_test_() ->
{setup,
spawn,
fun () -> ok end,
fun (_) -> ok end,
[
{timeout, 300, ?_test(test_tree())},
{timeout, 120, ?_test(test_qc())}
]}.
-ifdef(TRIQ).
test_qc() ->
[?assertEqual(true, triq:module(?MODULE))].
-else.
qc_opts() -> [{numtests, 800}].
test_qc() ->
[?assertEqual([], proper:module(?MODULE, qc_opts()))].
-endif.
%% Generators
%% ----------------------------------------------------------------------
-define(NUM_TREES, 10).
%% Generate a name for a btree
g_btree_name() ->
?LET(I, choose(1,?NUM_TREES),
btree_name(I)).
%% Generate a key for the Tree
g_key() ->
binary().
%% Generate a value for the Tree
g_value() ->
binary().
g_fail_key() ->
?LET(T, choose(1,999999999999),
term_to_binary(T)).
g_open_tree(Open) ->
oneof(dict:fetch_keys(Open)).
%% Pick a name of a non-empty Btree
g_non_empty_btree(Open) ->
?LET(TreesWithKeys, dict:filter(fun(_K, #tree { elements = D}) ->
dict:size(D) > 0
end,
Open),
oneof(dict:fetch_keys(TreesWithKeys))).
g_existing_key(Name, Open) ->
#tree { elements = Elems } = dict:fetch(Name, Open),
oneof(dict:fetch_keys(Elems)).
g_non_existing_key(Name, Open) ->
?SUCHTHAT(Key, g_fail_key(),
begin
#tree { elements = D } = dict:fetch(Name, Open),
not dict:is_key(Key, D)
end).
g_fold_operation() ->
oneof([{fun (K, V, Acc) -> [{K, V} | Acc] end, []}]).
btree_name(I) ->
"Btree_" ++ integer_to_list(I).
%% Statem test
%% ----------------------------------------------------------------------
initial_state() ->
ClosedBTrees = lists:foldl(fun(N, Closed) ->
dict:store(btree_name(N),
#tree { },
Closed)
end,
dict:new(),
lists:seq(1,?NUM_TREES)),
#state { closed=ClosedBTrees }.
command(#state { open = Open, closed = Closed } = S) ->
frequency(
[ {20, {call, ?SERVER, open, [oneof(dict:fetch_keys(Closed))]}}
|| closed_dicts(S)]
++ [ {20, {call, ?SERVER, close, [oneof(dict:fetch_keys(Open))]}}
|| open_dicts(S)]
++ [ {2000, {call, ?SERVER, put, cmd_put_args(S)}}
|| open_dicts(S)]
++ [ {1500, {call, ?SERVER, get_fail, cmd_get_fail_args(S)}}
|| open_dicts(S)]
++ [ {1500, {call, ?SERVER, get_exist, cmd_get_args(S)}}
|| open_dicts(S), open_dicts_with_keys(S)]
++ [ {500, {call, ?SERVER, delete_exist, cmd_delete_args(S)}}
|| open_dicts(S), open_dicts_with_keys(S)]
++ [ {125, {call, ?SERVER, fold_range, cmd_sync_fold_range_args(S)}}
|| open_dicts(S), open_dicts_with_keys(S)]
).
%% Precondition (abstract)
precondition(S, {call, ?SERVER, fold_range, [_Tree, _F, _A0, Range]}) ->
is_valid_range(Range) andalso open_dicts(S) andalso open_dicts_with_keys(S);
precondition(S, {call, ?SERVER, delete_exist, [_Name, _K]}) ->
open_dicts(S) andalso open_dicts_with_keys(S);
precondition(S, {call, ?SERVER, get_fail, [_Name, _K]}) ->
open_dicts(S);
precondition(S, {call, ?SERVER, get_exist, [_Name, _K]}) ->
open_dicts(S) andalso open_dicts_with_keys(S);
precondition(#state { open = Open }, {call, ?SERVER, put, [Name, _K, _V]}) ->
dict:is_key(Name, Open);
precondition(#state { open = Open, closed = Closed },
{call, ?SERVER, open, [Name]}) ->
(not (dict:is_key(Name, Open))) and (dict:is_key(Name, Closed));
precondition(#state { open = Open, closed = Closed },
{call, ?SERVER, close, [Name]}) ->
(dict:is_key(Name, Open)) and (not dict:is_key(Name, Closed)).
is_valid_range(#key_range{ from_key=FromKey, from_inclusive=FromIncl,
to_key=ToKey, to_inclusive=ToIncl,
limit=Limit })
when
(Limit == undefined) orelse (Limit > 0),
is_binary(FromKey),
(ToKey == undefined) orelse is_binary(ToKey),
FromKey =< ToKey,
is_boolean(FromIncl),
is_boolean(ToIncl)
->
if (FromKey == ToKey) ->
(FromIncl == true) and (ToIncl == true);
true ->
true
end;
is_valid_range(_) ->
false.
%% Next state manipulation (abstract / concrete)
next_state(S, _Res, {call, ?SERVER, fold_range, [_Tree, _F, _A0, _Range]}) ->
S;
next_state(S, _Res, {call, ?SERVER, get_fail, [_Name, _Key]}) ->
S;
next_state(S, _Res, {call, ?SERVER, get_exist, [_Name, _Key]}) ->
S;
next_state(#state { open = Open} = S, _Res,
{call, ?SERVER, delete_exist, [Name, Key]}) ->
S#state { open = dict:update(Name,
fun(#tree { elements = Dict}) ->
#tree { elements =
dict:erase(Key, Dict)}
end,
Open)};
next_state(#state { open = Open} = S, _Res,
{call, ?SERVER, put, [Name, Key, Value]}) ->
S#state { open = dict:update(
Name,
fun(#tree { elements = Dict}) ->
#tree { elements =
dict:store(Key, Value, Dict) }
end,
Open)};
next_state(#state { open = Open, closed=Closed} = S,
_Res, {call, ?SERVER, open, [Name]}) ->
S#state { open = dict:store(Name, dict:fetch(Name, Closed) , Open),
closed = dict:erase(Name, Closed) };
next_state(#state { open = Open, closed=Closed} = S, _Res,
{call, ?SERVER, close, [Name]}) ->
S#state { closed = dict:store(Name, dict:fetch(Name, Open) , Closed),
open = dict:erase(Name, Open) }.
%% Postcondition check (concrete)
postcondition(#state { open = Open},
{call, ?SERVER, fold_range, [Tree, F, A0, Range]}, Result) ->
#tree { elements = TDict } = dict:fetch(Tree, Open),
DictResult = lists:sort(dict_range_query(TDict, F, A0, Range)),
CallResult = lists:sort(Result),
DictResult == CallResult;
postcondition(_S,
{call, ?SERVER, get_fail, [_Name, _Key]}, not_found) ->
true;
postcondition(#state { open = Open },
{call, ?SERVER, get_exist, [Name, Key]}, {ok, Value}) ->
#tree { elements = Elems } = dict:fetch(Name, Open),
dict:fetch(Key, Elems) == Value;
postcondition(_S, {call, ?SERVER, delete_exist, [_Name, _Key]}, ok) ->
true;
postcondition(_S, {call, ?SERVER, put, [_Name, _Key, _Value]}, ok) ->
true;
postcondition(_S, {call, ?SERVER, open, [_Name]}, ok) ->
true;
postcondition(_S, {call, ?SERVER, close, [_Name]}, ok) ->
true;
postcondition(_State, _Call, _Result) ->
% error_logger:error_report([{not_matching_any_postcondition, _State, _Call, _Result}]),
false.
%% Main property. Running a random set of commands is in agreement
%% with a dict.
prop_dict_agree() ->
?FORALL(Cmds, commands(?MODULE),
?TRAPEXIT(
begin
hanoidb_drv:start_link(),
{History,State,Result} = run_commands(?MODULE, Cmds),
hanoidb_drv:stop(),
cleanup_test_trees(State),
?WHENFAIL(io:format("History: ~w\nState: ~w\nResult: ~w\n",
[History,State,Result]),
Result =:= ok)
end)).
%% UNIT TESTS
%% ----------------------------------------------------------------------
test_tree_simple_1() ->
{ok, Tree} = hanoidb:open("simple"),
ok = hanoidb:put(Tree, <<>>, <<"data", 77:128>>),
{ok, <<"data", 77:128>>} = hanoidb:get(Tree, <<>>),
ok = hanoidb:close(Tree).
test_tree_simple_2() ->
{ok, Tree} = hanoidb:open("simple"),
ok = hanoidb:put(Tree, <<"ã">>, <<"µ">>),
{ok, <<"µ">>} = hanoidb:get(Tree, <<"ã">>),
ok = hanoidb:delete(Tree, <<"ã">>),
not_found = hanoidb:get(Tree, <<"ã">>),
ok = hanoidb:close(Tree).
test_tree_simple_4() ->
Key = <<56,11,62,42,35,163,16,100,9,224,8,228,130,94,198,2,126,117,243,
1,122,175,79,159,212,177,30,153,71,91,85,233,41,199,190,58,3,
173,220,9>>,
Value = <<212,167,12,6,105,152,17,80,243>>,
{ok, Tree} = hanoidb:open("simple"),
ok = hanoidb:put(Tree, Key, Value),
?assertEqual({ok, Value}, hanoidb:get(Tree, Key)),
ok = hanoidb:close(Tree).
test_tree_simple_5() ->
{ok, Tree} = hanoidb:open("simple"),
ok = hanoidb:put(Tree, <<"foo">>, <<"bar">>, 2),
{ok, <<"bar">>} = hanoidb:get(Tree, <<"foo">>),
ok = timer:sleep(3000),
not_found = hanoidb:get(Tree, <<"foo">>),
ok = hanoidb:close(Tree).
test_tree() ->
{ok, Tree} = hanoidb:open("simple2"),
lists:foldl(fun(N,_) ->
ok = hanoidb:put(Tree, <<N:128>>, <<"data",N:128>>)
end,
ok,
lists:seq(2,10000,1)),
% io:format(user, "INSERT DONE 1~n", []),
lists:foldl(fun(N,_) ->
ok = hanoidb:put(Tree, <<N:128>>, <<"data",N:128>>)
end,
ok,
lists:seq(4000,6000,1)),
% io:format(user, "INSERT DONE 2~n", []),
hanoidb:delete(Tree, <<1500:128>>),
% io:format(user, "DELETE DONE 3~n", []),
{Time1,{ok,Count1}} = timer:tc(?MODULE, run_fold, [Tree,1000,2000,9]),
% error_logger:info_msg("time to fold: ~p/sec (time=~p, count=~p)~n", [1000000/(Time1/Count1), Time1/1000000, Count1]),
{Time2,{ok,Count2}} = timer:tc(?MODULE, run_fold, [Tree,1000,2000,1000]),
% error_logger:info_msg("time to fold: ~p/sec (time=~p, count=~p)~n", [1000000/(Time2/Count2), Time2/1000000, Count2]),
ok = hanoidb:close(Tree).
run_fold(Tree,From,To,Limit) ->
F = fun(<<N:128>>, _Value, {N, C}) ->
{N + 1, C + 1};
(<<1501:128>>, _Value, {1500, C}) ->
{1502, C + 1}
end,
{_, Count} = hanoidb:fold_range(Tree, F,
{From, 0},
#key_range{from_key= <<From:128>>, to_key= <<(To+1):128>>, limit=Limit}),
{ok, Count}.
%% Command processing
%% ----------------------------------------------------------------------
cmd_close_args(#state { open = Open }) ->
oneof(dict:fetch_keys(Open)).
cmd_put_args(#state { open = Open }) ->
?LET({Name, Key, Value},
{oneof(dict:fetch_keys(Open)), g_key(), g_value()},
[Name, Key, Value]).
cmd_get_fail_args(#state { open = Open}) ->
?LET(Name, g_open_tree(Open),
?LET(Key, g_non_existing_key(Name, Open),
[Name, Key])).
cmd_get_args(#state { open = Open}) ->
?LET(Name, g_non_empty_btree(Open),
?LET(Key, g_existing_key(Name, Open),
[Name, Key])).
cmd_delete_args(#state { open = Open}) ->
?LET(Name, g_non_empty_btree(Open),
?LET(Key, g_existing_key(Name, Open),
[Name, Key])).
cmd_sync_range_args(#state { open = Open }) ->
?LET(Tree, g_non_empty_btree(Open),
?LET({K1, K2}, {g_existing_key(Tree, Open),
g_existing_key(Tree, Open)},
[Tree, #key_range{from_key=K1, to_key=K2}])).
cmd_sync_fold_range_args(State) ->
?LET([Tree, Range], cmd_sync_range_args(State),
?LET({F, Acc0}, g_fold_operation(),
[Tree, F, Acc0, Range])).
%% Context management
%% ----------------------------------------------------------------------
cleanup_test_trees(#state { open = Open, closed = Closed }) ->
[cleanup_tree(N) || N <- dict:fetch_keys(Open)],
[cleanup_tree(N) || N <- dict:fetch_keys(Closed)].
cleanup_tree(Tree) ->
case file:list_dir(Tree) of
{error, enoent} ->
ok;
{ok, FileNames} ->
[ok = file:delete(filename:join([Tree, Fname]))
|| Fname <- FileNames],
file:del_dir(Tree)
end.
%% Various Helper routines
%% ----------------------------------------------------------------------
open_dicts_with_keys(#state { open = Open}) ->
lists:any(fun({_, #tree { elements = D}}) ->
dict:size(D) > 0
end,
dict:to_list(Open)).
open_dicts(#state { open = Open}) ->
dict:size(Open) > 0.
closed_dicts(#state { closed = Closed}) ->
dict:size(Closed) > 0.
dict_range_query(Dict, Fun, Acc0, Range) ->
KVs = dict_range_query(Dict, Range),
lists:foldl(fun({K, V}, Acc) ->
Fun(K, V, Acc)
end,
Acc0,
KVs).
dict_range_query(Dict, Range) ->
[{K, V} || {K, V} <- dict:to_list(Dict),
?KEY_IN_RANGE(K, Range)].