%%% The MIT License %%% %%% Copyright (C) 2011 by Joseph Wayne Norton %%% %%% Permission is hereby granted, free of charge, to any person obtaining a copy %%% of this software and associated documentation files (the "Software"), to deal %%% in the Software without restriction, including without limitation the rights %%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell %%% copies of the Software, and to permit persons to whom the Software is %%% furnished to do so, subject to the following conditions: %%% %%% The above copyright notice and this permission notice shall be included in %%% all copies or substantial portions of the Software. %%% %%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR %%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, %%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE %%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER %%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, %%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN %%% THE SOFTWARE. -module(qc_statem_lets). -ifdef(QC). %% qc_statem Callbacks -behaviour(qc_statem). -export([command_gen/2]). -export([initial_state/0, state_is_sane/1, next_state/3, precondition/2, postcondition/3]). -export([commands_setup/1, commands_teardown/1, commands_teardown/2]). %% @NOTE For boilerplate exports, see "qc_statem.hrl" -include_lib("qc/include/qc_statem.hrl"). %%%---------------------------------------------------------------------- %%% defines, types, records %%%---------------------------------------------------------------------- %%-define(IMPL, qc_lets_raw). %%-define(IMPL, qc_lets_proxy). -define(IMPL, qc_lets_slave_proxy). -define(TAB, ?MODULE). -define(INT_KEYS, lists:seq(0,10)). -define(FLOAT_KEYS, [float(Key) || Key <- ?INT_KEYS]). -define(BINARY_KEYS, [term_to_binary(Key) || Key <- ?INT_KEYS]). -record(obj, {key :: integer() | float() | binary(), val :: integer() | float() | binary()}). -type obj() :: #obj{}. -type ets_type() :: set | ordered_set. %% default is set -type ets_impl() :: drv | nif | ets. %% default is drv -record(state, { parallel=false :: boolean(), type=undefined :: undefined | ets_type(), impl=undefined :: undefined | ets_impl(), exists=false :: boolean(), tab=undefined :: undefined | tuple(), objs=[] :: [obj()] }). %%%---------------------------------------------------------------------- %%% qc_statem Callbacks %%%---------------------------------------------------------------------- command_gen(Mod,#state{parallel=false}=S) -> serial_command_gen(Mod,S); command_gen(Mod,#state{parallel=true}=S) -> parallel_command_gen(Mod,S). serial_command_gen(_Mod,#state{tab=undefined, type=undefined, impl=undefined}=S) -> {call,?IMPL,new,[?TAB,gen_options(new,S)]}; serial_command_gen(_Mod,#state{tab=undefined}=S) -> {call,?IMPL,new,[undefined,?TAB,gen_options(new,S)]}; serial_command_gen(_Mod,#state{tab=Tab, type=Type}=S) -> %% @TODO insert/3, insert_new/3, delete/3, delete_all_objs/2 write_gen_options %% @TODO lookup/3 read_gen_options oneof([{call,?IMPL,insert,[Tab,oneof([gen_obj(S),gen_objs(S)])]}] ++ [{call,?IMPL,insert_new,[Tab,oneof([gen_obj(S),gen_objs(S)])]} || Type == ets] %% @TODO ++ [{call,?IMPL,delete,[Tab]}] ++ [{call,?IMPL,delete,[Tab,gen_key(S)]}] ++ [{call,?IMPL,delete_all_objs,[Tab]} || Type == ets] ++ [{call,?IMPL,lookup,[Tab,gen_key(S)]}] ++ [{call,?IMPL,first,[Tab]}] ++ [{call,?IMPL,next,[Tab,gen_key(S)]}] %% @TODO info ++ [{call,?IMPL,tab2list,[Tab]}] ). parallel_command_gen(_Mod,#state{tab=undefined, type=undefined, impl=undefined}=S) -> {call,?IMPL,new,[?TAB,gen_options(new,S)]}; parallel_command_gen(_Mod,#state{tab=Tab, type=Type}=S) -> %% @TODO insert/3, insert_new/3, delete_all_objs/2 write_gen_options %% @TODO lookup/3 read_gen_options oneof([{call,?IMPL,insert,[Tab,oneof([gen_obj(S),gen_objs(S)])]}] ++ [{call,?IMPL,insert_new,[Tab,oneof([gen_obj(S),gen_objs(S)])]} || Type == ets] ++ [{call,?IMPL,delete,[Tab,gen_key(S)]}] ++ [{call,?IMPL,delete_all_objs,[Tab]} || Type == ets] ++ [{call,?IMPL,lookup,[Tab,gen_key(S)]}] ++ [{call,?IMPL,first,[Tab]}] ++ [{call,?IMPL,next,[Tab,gen_key(S)]}] ). -spec initial_state() -> #state{}. initial_state() -> ?LET(Parallel,parameter(parallel,false), #state{parallel=Parallel}). -spec state_is_sane(#state{}) -> boolean(). state_is_sane(_S) -> %% @TODO true. -spec next_state(#state{}, term(), tuple()) -> #state{}. next_state(#state{tab=undefined, type=undefined, impl=undefined}=S, V, {call,_,new,[?TAB,Options]}) -> %% @TODO Options case [proplists:get_bool(X, Options) || X <- [set, ordered_set]] of [_, false] -> Type = set; [false, true] -> Type = ordered_set end, case [proplists:get_bool(X, Options) || X <- [drv, nif, ets]] of [_, false, false] -> Impl = drv; [false, true, _] -> Impl = nif; [false, false, true] -> Impl = ets end, S#state{type=Type, impl=Impl, exists=true, tab=V}; next_state(#state{tab=undefined}=S, V, {call,_,new,[_Tab,?TAB,Options]}) -> %% @TODO Options case [proplists:get_bool(X, Options) || X <- [set, ordered_set]] of [_, false] -> Type = set; [false, true] -> Type = ordered_set end, case [proplists:get_bool(X, Options) || X <- [drv, nif, ets]] of [_, false, false] -> Impl = drv; [false, true, _] -> Impl = nif; [false, false, true] -> Impl = ets end, S#state{type=Type, impl=Impl, exists=true, tab=V}; next_state(#state{impl=Impl}=S, _V, {call,_,destroy,[_Tab,?TAB,_Options]}) when Impl /= ets -> S#state{tab=undefined, exists=false, objs=[]}; next_state(S, _V, {call,_,insert,[_Tab,Objs]}) when is_list(Objs) -> insert_objs(S, Objs); next_state(S, _V, {call,_,insert,[_Tab,Obj]}) -> insert_objs(S, [Obj]); next_state(#state{impl=ets}=S, _V, {call,_,insert_new,[_Tab,Objs]}) when is_list(Objs) -> insert_new_objs(S, Objs); next_state(#state{impl=ets}=S, _V, {call,_,insert_new,[_Tab,Obj]}) -> insert_new_objs(S, [Obj]); next_state(S, _V, {call,_,insert_new,[_Tab,_ObjOrObjs]}) -> S; next_state(#state{impl=ets}=S, _V, {call,_,delete,[_Tab]}) -> S#state{tab=undefined, exists=false, objs=[]}; next_state(#state{exists=Exists}=S, _V, {call,_,delete,[_Tab]}) -> S#state{tab=undefined, exists=Exists}; next_state(S, _V, {call,_,delete,[_Tab,Key]}) -> S#state{objs=keydelete(Key, S)}; next_state(#state{impl=ets}=S, _V, {call,_,delete_all_objs,[_Tab]}) -> S#state{objs=[]}; next_state(S, _V, {call,_,delete_all_objs,[_Tab]}) -> S; next_state(S, _V, {call,_,_,_}) -> S. -spec precondition(#state{}, tuple()) -> boolean(). precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,new,[?TAB,Options]}) -> L = proplists:get_value(db, Options, []), proplists:get_bool(create_if_missing, L) andalso proplists:get_bool(error_if_exists, L); precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,new,[_Tab,?TAB,Options]}) -> L = proplists:get_value(db, Options, []), proplists:get_bool(create_if_missing, L) andalso proplists:get_bool(error_if_exists, L); precondition(#state{tab=Tab}, {call,_,new,[?TAB,_Options]}) when Tab /= undefined -> false; precondition(#state{tab=Tab}, {call,_,new,[_Tab,?TAB,_Options]}) when Tab /= undefined -> false; precondition(_S, {call,_,_,_}) -> true. -spec postcondition(#state{}, tuple(), term()) -> boolean(). postcondition(#state{tab=undefined}, {call,_,new,[?TAB,_Options]}, Res) -> ?IMPL:is_table(Res); postcondition(_S, {call,_,new,[?TAB,_Options]}, Res) -> case Res of {'EXIT', {badarg, _}} -> true; _ -> false end; postcondition(#state{tab=undefined}, {call,_,new,[_Tab,?TAB,_Options]}, Res) -> ?IMPL:is_table(Res); postcondition(_S, {call,_,destroy,[_Tab,?TAB,_Options]}, Res) -> Res =:= true; postcondition(_S, {call,_,repair,[_Tab,?TAB,_Options]}, Res) -> Res =:= true; postcondition(_S, {call,_,insert,[_Tab,_ObjOrObjs]}, Res) -> Res =:= true; postcondition(#state{impl=ets}=S, {call,_,insert_new,[_Tab,Objs]}, Res) when is_list(Objs) -> Res =:= has_insert_new_objs(S, Objs); postcondition(#state{impl=ets}=S, {call,_,insert_new,[_Tab,Obj]}, Res) -> Res =:= has_insert_new_objs(S, [Obj]); postcondition(_S, {call,_,insert_new,[_Tab,_ObjOrObjs]}, {'EXIT',{badarg,_}}) -> true; postcondition(_S, {call,_,delete,[_Tab]}, Res) -> Res =:= true; postcondition(_S, {call,_,delete,[_Tab,_Key]}, Res) -> Res =:= true; postcondition(#state{impl=ets}=_S, {call,_,delete_all_objs,[_Tab]}, Res) -> Res =:= true; postcondition(_S, {call,_,delete_all_objs,[_Tab]}, {'EXIT',{badarg,_}}) -> true; postcondition(S, {call,_,lookup,[_Tab,Key]}, Res) -> Res =:= keyfind(Key, S); postcondition(#state{objs=[]}, {call,_,first,[_Tab]}, Res) -> Res =:= '$end_of_table'; postcondition(#state{type=set}=S, {call,_,first,[_Tab]}, Res) -> keymember(Res, S); postcondition(#state{type=ordered_set}=S, {call,_,first,[_Tab]}, Res) -> #obj{key=K} = hd(sort(S)), Res =:= K; postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, {'EXIT',{badarg,_}}) -> not keymember(Key, S); postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, '$end_of_table') -> keymember(Key, S); postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, Res) -> keymember(Key, S) andalso keymember(Res, S); postcondition(#state{type=set}, {call,_,next,[_Tab, _Key]}, '$end_of_table') -> true; postcondition(#state{type=set}=S, {call,_,next,[_Tab, _Key]}, Res) -> keymember(Res, S); postcondition(#state{type=ordered_set, objs=[]}, {call,_,next,[_Tab, _Key]}, Res) -> Res =:= '$end_of_table'; postcondition(#state{type=ordered_set}=S, {call,_,next,[_Tab, Key]}, Res) -> case lists:dropwhile(fun(#obj{key=X}) -> lteq(X, Key, S) end, sort(S)) of [] -> Res =:= '$end_of_table'; [#obj{key=K}|_] -> Res =:= K end; postcondition(#state{type=set}=S, {call,_,tab2list,[_Tab]}, Res) -> [] == (S#state.objs -- Res); postcondition(#state{type=ordered_set}=S, {call,_,tab2list,[_Tab]}, Res) -> sort(S) =:= Res; postcondition(_S, {call,_,_,_}, _Res) -> false. -spec commands_setup(boolean()) -> {ok, term()}. commands_setup(_Hard) -> ?IMPL:teardown(?TAB), {ok, unused}. -spec commands_teardown(term()) -> ok. commands_teardown(unused) -> ?IMPL:teardown(?TAB), ok. -spec commands_teardown(term(), #state{}) -> ok. commands_teardown(Ref, _State) -> commands_teardown(Ref). %%%---------------------------------------------------------------------- %%% Internal %%%---------------------------------------------------------------------- gen_options(Op,#state{tab=undefined, type=undefined, impl=undefined}=S) -> ?LET({Type,Impl}, {gen_ets_type(), gen_ets_impl()}, gen_options(Op,S#state{type=Type, impl=Impl})); gen_options(Op,#state{type=Type, impl=drv=Impl}=S) -> [Type, public, named_table, {keypos,#obj.key}, Impl] ++ gen_leveldb_options(Op,S); gen_options(Op,#state{type=Type, impl=nif=Impl}=S) -> [Type, public, named_table, {keypos,#obj.key}, Impl] ++ gen_leveldb_options(Op,S); gen_options(_Op,#state{type=Type, impl=ets=Impl}) -> [Type, public, named_table, {keypos,#obj.key}, Impl]. gen_leveldb_options(Op,S) -> [gen_db_options(Op,S), gen_db_read_options(Op,S), gen_db_write_options(Op,S)]. gen_db_options(new,#state{exists=Exists}) -> ExistsOptions = if Exists -> []; true -> [create_if_missing, error_if_exists] end, ?LET(Options, ulist(gen_db_options()), {db, Options ++ ExistsOptions}); gen_db_options(_Op,_S) -> ?LET(Options, ulist(gen_db_options()), {db, Options}). gen_db_read_options(_Op,_S) -> ?LET(Options, ulist(gen_db_read_options()), {db_read, Options}). gen_db_write_options(_Op,_S) -> ?LET(Options, ulist(gen_db_write_options()), {db_write, Options}). gen_db_options() -> oneof([paranoid_checks, {paranoid_checks,gen_boolean()}, {write_buffer_size,gen_pos_integer()}, {max_open_files,gen_pos_integer()}, {block_cache_size,gen_pos_integer()}, {block_size,gen_pos_integer()}, {block_restart_interval,gen_pos_integer()}]). gen_db_read_options() -> oneof([verify_checksums, {verify_checksums,gen_boolean()}, fill_cache, {fill_cache,gen_boolean()}]). gen_db_write_options() -> oneof([sync, {sync,gen_boolean()}]). gen_boolean() -> oneof([true, false]). gen_pos_integer() -> nat(). gen_ets_type() -> noshrink(oneof([set, ordered_set])). gen_ets_impl() -> %% @NOTE Remove one or two of these to restrict to a particular %% implementation. noshrink(oneof([drv,nif,ets])). gen_integer_key() -> oneof(?INT_KEYS). gen_float_key() -> oneof(?FLOAT_KEYS). gen_binary_key() -> oneof(?BINARY_KEYS). gen_key() -> frequency([{5, gen_integer_key()}, {1, gen_float_key()}, {1, gen_binary_key()}]). gen_key(#state{objs=[]}) -> gen_key(); gen_key(#state{objs=Objs}) -> oneof([?LET(Obj, oneof(Objs), Obj#obj.key), gen_key()]). gen_int_or_float_or_bin() -> frequency([{5, int()}, {1, real()}, {1, binary()}]). gen_val() -> gen_int_or_float_or_bin(). gen_obj() -> #obj{key=gen_key(), val=gen_val()}. gen_obj(#state{objs=[]}) -> gen_obj(); gen_obj(#state{objs=Objs}) -> oneof([oneof(Objs), gen_obj()]). gen_objs(S) -> frequency([{9, non_empty(list(gen_obj(S)))}, {1, list(gen_obj(S))}]). insert_objs(S, []) -> S; insert_objs(S, [#obj{key=K}=Obj|T]) -> case keymember(K, S) of false -> insert_objs(S#state{objs=[Obj|S#state.objs]}, T); true -> insert_objs(S#state{objs=keyreplace(K, Obj, S)}, T) end. insert_new_objs(S, L) -> insert_new_objs(S, lists:reverse(L), S). insert_new_objs(S, [], _S0) -> S; insert_new_objs(S, [#obj{key=K}=Obj|T], S0) -> case keymember(K, S) of false -> NewT = keydelete(K, T, S), insert_new_objs(S#state{objs=[Obj|S#state.objs]}, NewT, S0); true -> S0 end. has_insert_new_objs(S, L) -> has_insert_new_objs(S, lists:reverse(L), true). has_insert_new_objs(_S, [], Bool) -> Bool; has_insert_new_objs(S, [#obj{key=K}=Obj|T], _Bool) -> case keymember(K, S) of false -> NewT = keydelete(K, T, S), has_insert_new_objs(S#state{objs=[Obj|S#state.objs]}, NewT, true); true -> false end. keydelete(X, #state{objs=L}=S) -> keydelete(X, L, S). keydelete(X, L, S) -> lists:filter(fun(#obj{key=K}) -> neq(X, K, S) end, L). keyreplace(X, Y, #state{objs=L}=S) -> lists:map(fun(Z=#obj{key=K}) -> case eq(X, K, S) of true -> Y; false -> Z end end, L). keyfind(X, #state{objs=L}=S) -> lists:filter(fun(#obj{key=K}) -> eq(X, K, S) end, L). keymember(X, S) -> [] /= keyfind(X, S). eq(X, Y, #state{type=set, impl=ets}) -> X =:= Y; eq(X, Y, #state{type=ordered_set, impl=ets}) -> X == Y; eq(X, Y, #state{type=set}) -> term_to_binary(X) == term_to_binary(Y); eq(X, Y, #state{type=ordered_set}) -> sext:encode(X) == sext:encode(Y). neq(X, Y, #state{type=set, impl=ets}) -> X =/= Y; neq(X, Y, #state{type=ordered_set, impl=ets}) -> X /= Y; neq(X, Y, #state{type=set}) -> term_to_binary(X) /= term_to_binary(Y); neq(X, Y, #state{type=ordered_set}) -> sext:encode(X) /= sext:encode(Y). lteq(X, Y, #state{impl=ets}) -> X =< Y; lteq(X, Y, #state{type=set}) -> term_to_binary(X) =< term_to_binary(Y); lteq(X, Y, #state{type=ordered_set}) -> sext:encode(X) =< sext:encode(Y). sort(#state{impl=ets, objs=L}) -> lists:sort(L); sort(#state{objs=L}) -> [ sext:decode(X) || X <- lists:sort([ sext:encode(Y) || Y <- L ]) ]. -endif. %% -ifdef(QC).