lets/test/qc/qc_statem_lets.erl
Joseph Wayne Norton e3c129b105 Add support to use async thread pool for driver backend
Enhance driver implementation to optionally use Erlang's asynchronous
driver thread pool for all LevelDB operations with the intention to
avoid blocking of Erlang's scheduler threads.
2011-11-06 23:42:47 +09:00

465 lines
17 KiB
Erlang

%%% The MIT License
%%%
%%% Copyright (C) 2011 by Joseph Wayne Norton <norton@alum.mit.edu>
%%%
%%% Permission is hereby granted, free of charge, to any person obtaining a copy
%%% of this software and associated documentation files (the "Software"), to deal
%%% in the Software without restriction, including without limitation the rights
%%% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%%% copies of the Software, and to permit persons to whom the Software is
%%% furnished to do so, subject to the following conditions:
%%%
%%% The above copyright notice and this permission notice shall be included in
%%% all copies or substantial portions of the Software.
%%%
%%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%%% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%%% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%%% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%%% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%%% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%%% THE SOFTWARE.
-module(qc_statem_lets).
-ifdef(QC).
%% qc_statem Callbacks
-behaviour(qc_statem).
-export([command_gen/2]).
-export([initial_state/0, state_is_sane/1, next_state/3, precondition/2, postcondition/3]).
-export([commands_setup/1, commands_teardown/1, commands_teardown/2]).
%% @TODO remove at time of db, db_read, db_write options testing
-compile(export_all).
%% @NOTE For boilerplate exports, see "qc_statem.hrl"
-include_lib("qc/include/qc_statem.hrl").
%%%----------------------------------------------------------------------
%%% defines, types, records
%%%----------------------------------------------------------------------
%%-define(IMPL, qc_lets_raw).
%%-define(IMPL, qc_lets_proxy).
-define(IMPL, qc_lets_slave_proxy).
-define(TAB, ?MODULE).
-define(INT_KEYS, lists:seq(0,10)).
-define(FLOAT_KEYS, [float(Key) || Key <- ?INT_KEYS]).
-define(BINARY_KEYS, [term_to_binary(Key) || Key <- ?INT_KEYS]).
-record(obj, {key :: integer() | float() | binary(), val :: integer() | float() | binary()}).
-type obj() :: #obj{}.
-type ets_type() :: set | ordered_set. %% default is set
-type ets_impl() :: drv | nif | ets. %% default is drv
-record(state, {
parallel=false :: boolean(),
type=undefined :: undefined | ets_type(),
impl=undefined :: undefined | ets_impl(),
exists=false :: boolean(),
tab=undefined :: undefined | tuple(),
objs=[] :: [obj()]
}).
%%%----------------------------------------------------------------------
%%% qc_statem Callbacks
%%%----------------------------------------------------------------------
command_gen(Mod,#state{parallel=false}=S) ->
serial_command_gen(Mod,S);
command_gen(Mod,#state{parallel=true}=S) ->
parallel_command_gen(Mod,S).
serial_command_gen(_Mod,#state{tab=undefined, type=undefined, impl=undefined}=S) ->
{call,?IMPL,new,[?TAB,gen_options(new,S)]};
serial_command_gen(_Mod,#state{tab=undefined}=S) ->
oneof([{call,?IMPL,new,[undefined,?TAB,gen_options(new,S)]}]
%% @TODO ++ [{call,?IMPL,destroy,[undefined,?TAB,gen_options(destroy,S)]}]
%% @TODO ++ [{call,?IMPL,repair,[undefined,?TAB,gen_options(repair,S)]}]
);
serial_command_gen(_Mod,#state{tab=Tab, type=Type}=S) ->
%% @TODO insert/3, insert_new/3, delete/3, delete_all_objs/2 write_gen_options
%% @TODO lookup/3 read_gen_options
oneof([{call,?IMPL,insert,[Tab,oneof([gen_obj(S),gen_objs(S)])]}]
++ [{call,?IMPL,insert_new,[Tab,oneof([gen_obj(S),gen_objs(S)])]} || Type =:= ets]
++ [{call,?IMPL,delete,[Tab]}]
++ [{call,?IMPL,delete,[Tab,gen_key(S)]}]
++ [{call,?IMPL,delete_all_objs,[Tab]} || Type =:= ets]
++ [{call,?IMPL,lookup,[Tab,gen_key(S)]}]
++ [{call,?IMPL,first,[Tab]}]
++ [{call,?IMPL,next,[Tab,gen_key(S)]}]
%% @TODO info
++ [{call,?IMPL,tab2list,[Tab]}]
).
parallel_command_gen(_Mod,#state{tab=undefined, type=undefined, impl=undefined}=S) ->
{call,?IMPL,new,[?TAB,gen_options(new,S)]};
parallel_command_gen(_Mod,#state{tab=Tab, type=Type}=S) ->
%% @TODO insert/3, insert_new/3, delete_all_objs/2 write_gen_options
%% @TODO lookup/3 read_gen_options
oneof([{call,?IMPL,insert,[Tab,oneof([gen_obj(S),gen_objs(S)])]}]
++ [{call,?IMPL,insert_new,[Tab,oneof([gen_obj(S),gen_objs(S)])]} || Type =:= ets]
++ [{call,?IMPL,delete,[Tab,gen_key(S)]}]
++ [{call,?IMPL,delete_all_objs,[Tab]} || Type =:= ets]
++ [{call,?IMPL,lookup,[Tab,gen_key(S)]}]
++ [{call,?IMPL,first,[Tab]}]
++ [{call,?IMPL,next,[Tab,gen_key(S)]}]
).
-spec initial_state() -> #state{}.
initial_state() ->
?LET(Parallel,parameter(parallel,false),
#state{parallel=Parallel}).
-spec state_is_sane(#state{}) -> boolean().
state_is_sane(_S) ->
%% @TODO
true.
-spec next_state(#state{}, term(), tuple()) -> #state{}.
next_state(#state{tab=undefined, type=undefined, impl=undefined}=S, V, {call,_,new,[?TAB,Options]}) ->
%% @TODO Options
case [proplists:get_bool(X, Options) || X <- [set, ordered_set]] of
[_, false] ->
Type = set;
[false, true] ->
Type = ordered_set
end,
case [proplists:get_bool(X, Options) || X <- [drv, nif, ets]] of
[_, false, false] ->
Impl = drv;
[false, true, _] ->
Impl = nif;
[false, false, true] ->
Impl = ets
end,
S#state{type=Type, impl=Impl, exists=true, tab=V};
next_state(#state{tab=undefined}=S, V, {call,_,new,[_Tab,?TAB,Options]}) ->
%% @TODO Options
case [proplists:get_bool(X, Options) || X <- [set, ordered_set]] of
[_, false] ->
Type = set;
[false, true] ->
Type = ordered_set
end,
case [proplists:get_bool(X, Options) || X <- [drv, nif, ets]] of
[_, false, false] ->
Impl = drv;
[false, true, _] ->
Impl = nif;
[false, false, true] ->
Impl = ets
end,
S#state{type=Type, impl=Impl, exists=true, tab=V};
next_state(#state{impl=Impl}=S, _V, {call,_,destroy,[_Tab,?TAB,_Options]})
when Impl =/= ets ->
S#state{tab=undefined, exists=false, objs=[]};
next_state(S, _V, {call,_,insert,[_Tab,Objs]}) when is_list(Objs) ->
insert_objs(S, Objs);
next_state(S, _V, {call,_,insert,[_Tab,Obj]}) ->
insert_objs(S, [Obj]);
next_state(#state{impl=ets}=S, _V, {call,_,insert_new,[_Tab,Objs]}) when is_list(Objs) ->
insert_new_objs(S, Objs);
next_state(#state{impl=ets}=S, _V, {call,_,insert_new,[_Tab,Obj]}) ->
insert_new_objs(S, [Obj]);
next_state(S, _V, {call,_,insert_new,[_Tab,_ObjOrObjs]}) ->
S;
next_state(#state{impl=ets}=S, _V, {call,_,delete,[_Tab]}) ->
S#state{tab=undefined, exists=false, objs=[]};
next_state(#state{exists=Exists}=S, _V, {call,_,delete,[_Tab]}) ->
S#state{tab=undefined, exists=Exists};
next_state(S, _V, {call,_,delete,[_Tab,Key]}) ->
S#state{objs=keydelete(Key, S)};
next_state(#state{impl=ets}=S, _V, {call,_,delete_all_objs,[_Tab]}) ->
S#state{objs=[]};
next_state(S, _V, {call,_,delete_all_objs,[_Tab]}) ->
S;
next_state(S, _V, {call,_,_,_}) ->
S.
-spec precondition(#state{}, tuple()) -> boolean().
precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,new,[?TAB,Options]}) ->
L = proplists:get_value(db, Options, []),
proplists:get_bool(create_if_missing, L) andalso proplists:get_bool(error_if_exists, L);
precondition(#state{tab=Tab}, {call,_,new,[?TAB,_Options]}) ->
Tab =:= undefined;
precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,new,[_Tab,?TAB,Options]}) ->
L = proplists:get_value(db, Options, []),
proplists:get_bool(create_if_missing, L) andalso proplists:get_bool(error_if_exists, L);
precondition(#state{tab=Tab}, {call,_,new,[_Tab,?TAB,_Options]}) ->
Tab =:= undefined;
precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,new,[_Tab,?TAB,_Options]}) ->
false;
precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,destroy,[_Tab,?TAB,_Options]}) ->
false;
precondition(#state{tab=undefined, type=undefined, impl=undefined}, {call,_,repair,[_Tab,?TAB,_Options]}) ->
false;
precondition(_S, {call,_,_,_}) ->
true.
-spec postcondition(#state{}, tuple(), term()) -> boolean().
postcondition(#state{tab=undefined}, {call,_,new,[?TAB,_Options]}, Res) ->
?IMPL:is_table(Res);
postcondition(_S, {call,_,new,[?TAB,_Options]}, Res) ->
case Res of
{'EXIT', {badarg, _}} ->
true;
_ ->
false
end;
postcondition(#state{tab=undefined}, {call,_,new,[_Tab,?TAB,_Options]}, Res) ->
?IMPL:is_table(Res);
postcondition(_S, {call,_,destroy,[_Tab,?TAB,_Options]}, Res) ->
Res =:= true;
postcondition(_S, {call,_,repair,[_Tab,?TAB,_Options]}, Res) ->
Res =:= true;
postcondition(_S, {call,_,insert,[_Tab,_ObjOrObjs]}, Res) ->
Res =:= true;
postcondition(#state{impl=ets}=S, {call,_,insert_new,[_Tab,Objs]}, Res) when is_list(Objs) ->
Res =:= has_insert_new_objs(S, Objs);
postcondition(#state{impl=ets}=S, {call,_,insert_new,[_Tab,Obj]}, Res) ->
Res =:= has_insert_new_objs(S, [Obj]);
postcondition(_S, {call,_,insert_new,[_Tab,_ObjOrObjs]}, {'EXIT',{badarg,_}}) ->
true;
postcondition(_S, {call,_,delete,[_Tab]}, Res) ->
Res =:= true;
postcondition(_S, {call,_,delete,[_Tab,_Key]}, Res) ->
Res =:= true;
postcondition(#state{impl=ets}=_S, {call,_,delete_all_objs,[_Tab]}, Res) ->
Res =:= true;
postcondition(_S, {call,_,delete_all_objs,[_Tab]}, {'EXIT',{badarg,_}}) ->
true;
postcondition(S, {call,_,lookup,[_Tab,Key]}, Res) ->
Res =:= keyfind(Key, S);
postcondition(#state{objs=[]}, {call,_,first,[_Tab]}, Res) ->
Res =:= '$end_of_table';
postcondition(#state{type=set}=S, {call,_,first,[_Tab]}, Res) ->
keymember(Res, S);
postcondition(#state{type=ordered_set}=S, {call,_,first,[_Tab]}, Res) ->
#obj{key=K} = hd(sort(S)),
Res =:= K;
postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, {'EXIT',{badarg,_}}) ->
not keymember(Key, S);
postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, '$end_of_table') ->
keymember(Key, S);
postcondition(#state{impl=ets, type=set}=S, {call,_,next,[_Tab, Key]}, Res) ->
keymember(Key, S) andalso keymember(Res, S);
postcondition(#state{type=set}, {call,_,next,[_Tab, _Key]}, '$end_of_table') ->
true;
postcondition(#state{type=set}=S, {call,_,next,[_Tab, _Key]}, Res) ->
keymember(Res, S);
postcondition(#state{type=ordered_set, objs=[]}, {call,_,next,[_Tab, _Key]}, Res) ->
Res =:= '$end_of_table';
postcondition(#state{type=ordered_set}=S, {call,_,next,[_Tab, Key]}, Res) ->
case lists:dropwhile(fun(#obj{key=X}) -> lteq(X, Key, S) end, sort(S)) of
[] ->
Res =:= '$end_of_table';
[#obj{key=K}|_] ->
Res =:= K
end;
postcondition(#state{type=set}=S, {call,_,tab2list,[_Tab]}, Res) ->
[] =:= (S#state.objs -- Res);
postcondition(#state{type=ordered_set}=S, {call,_,tab2list,[_Tab]}, Res) ->
sort(S) =:= Res;
postcondition(_S, {call,_,_,_}, _Res) ->
false.
-spec commands_setup(boolean()) -> {ok, term()}.
commands_setup(_Hard) ->
?IMPL:teardown(?TAB),
{ok, unused}.
-spec commands_teardown(term()) -> ok.
commands_teardown(unused) ->
?IMPL:teardown(?TAB),
ok.
-spec commands_teardown(term(), #state{}) -> ok.
commands_teardown(Ref, _State) ->
commands_teardown(Ref).
%%%----------------------------------------------------------------------
%%% Internal
%%%----------------------------------------------------------------------
gen_options(Op,#state{tab=undefined, type=undefined, impl=undefined}=S) ->
?LET({Type,Impl}, {gen_ets_type(), gen_ets_impl()},
gen_options(Op,S#state{type=Type, impl=Impl}));
gen_options(Op,#state{type=Type, impl=drv=Impl}=S) ->
[Type, public, named_table, {keypos,#obj.key},
{compressed, gen_boolean()}, {async, gen_boolean()}, Impl]
++ gen_leveldb_options(Op,S);
gen_options(Op,#state{type=Type, impl=nif=Impl}=S) ->
[Type, public, named_table, {keypos,#obj.key},
{compressed, gen_boolean()}, {async, gen_boolean()}, Impl]
++ gen_leveldb_options(Op,S);
gen_options(_Op,#state{type=Type, impl=ets=Impl}) ->
[Type, public, named_table, {keypos,#obj.key},
{compressed, gen_boolean()}, Impl].
gen_leveldb_options(Op,S) ->
[gen_db_options(Op,S), gen_db_read_options(Op,S), gen_db_write_options(Op,S)].
gen_db_options(new,#state{exists=Exists}) ->
ExistsOptions = if Exists -> []; true -> [create_if_missing, error_if_exists] end,
%% @TODO ?LET(Options, ulist(gen_db_options()), {db, Options ++ ExistsOptions});
{db, ExistsOptions};
gen_db_options(_Op,_S) ->
%% @TODO ?LET(Options, ulist(gen_db_options()), {db, Options}).
{db, []} .
gen_db_read_options(_Op,_S) ->
%% @TODO ?LET(Options, ulist(gen_db_read_options()), {db_read, Options}).
{db_read, []}.
gen_db_write_options(_Op,_S) ->
%% @TODO ?LET(Options, ulist(gen_db_write_options()), {db_write, Options}).
{db_write, []}.
gen_db_options() ->
oneof([paranoid_checks, {paranoid_checks,gen_boolean()}, {write_buffer_size,gen_pos_integer()}, {max_open_files,gen_pos_integer()}, {block_cache_size,gen_pos_integer()}, {block_size,gen_pos_integer()}, {block_restart_interval,gen_pos_integer()}]).
gen_db_read_options() ->
oneof([verify_checksums, {verify_checksums,gen_boolean()}, fill_cache, {fill_cache,gen_boolean()}]).
gen_db_write_options() ->
oneof([sync, {sync,gen_boolean()}]).
gen_boolean() ->
oneof([true, false]).
gen_pos_integer() ->
nat().
gen_ets_type() ->
noshrink(oneof([set, ordered_set])).
gen_ets_impl() ->
%% @NOTE Remove one or two of these to restrict to a particular
%% implementation.
noshrink(oneof([drv,nif,ets])).
gen_integer_key() ->
oneof(?INT_KEYS).
gen_float_key() ->
oneof(?FLOAT_KEYS).
gen_binary_key() ->
oneof(?BINARY_KEYS).
gen_key() ->
frequency([{5, gen_integer_key()}, {1, gen_float_key()}, {1, gen_binary_key()}]).
gen_key(#state{objs=[]}) ->
gen_key();
gen_key(#state{objs=Objs}) ->
oneof([?LET(Obj, oneof(Objs), Obj#obj.key), gen_key()]).
gen_int_or_float_or_bin() ->
frequency([{5, int()}, {1, real()}, {1, binary()}]).
gen_val() ->
gen_int_or_float_or_bin().
gen_obj() ->
#obj{key=gen_key(), val=gen_val()}.
gen_obj(#state{objs=[]}) ->
gen_obj();
gen_obj(#state{objs=Objs}) ->
oneof([oneof(Objs), gen_obj()]).
gen_objs(S) ->
frequency([{9, non_empty(list(gen_obj(S)))}, {1, list(gen_obj(S))}]).
insert_objs(S, []) ->
S;
insert_objs(S, [#obj{key=K}=Obj|T]) ->
case keymember(K, S) of
false ->
insert_objs(S#state{objs=[Obj|S#state.objs]}, T);
true ->
insert_objs(S#state{objs=keyreplace(K, Obj, S)}, T)
end.
insert_new_objs(S, L) ->
insert_new_objs(S, lists:reverse(L), S).
insert_new_objs(S, [], _S0) ->
S;
insert_new_objs(S, [#obj{key=K}=Obj|T], S0) ->
case keymember(K, S) of
false ->
NewT = keydelete(K, T, S),
insert_new_objs(S#state{objs=[Obj|S#state.objs]}, NewT, S0);
true ->
S0
end.
has_insert_new_objs(S, L) ->
has_insert_new_objs(S, lists:reverse(L), true).
has_insert_new_objs(_S, [], Bool) ->
Bool;
has_insert_new_objs(S, [#obj{key=K}=Obj|T], _Bool) ->
case keymember(K, S) of
false ->
NewT = keydelete(K, T, S),
has_insert_new_objs(S#state{objs=[Obj|S#state.objs]}, NewT, true);
true ->
false
end.
keydelete(X, #state{objs=L}=S) ->
keydelete(X, L, S).
keydelete(X, L, S) ->
lists:filter(fun(#obj{key=K}) -> neq(X, K, S) end, L).
keyreplace(X, Y, #state{objs=L}=S) ->
lists:map(fun(Z=#obj{key=K}) -> case eq(X, K, S) of true -> Y; false -> Z end end, L).
keyfind(X, #state{objs=L}=S) ->
lists:filter(fun(#obj{key=K}) -> eq(X, K, S) end, L).
keymember(X, S) ->
[] =/= keyfind(X, S).
eq(X, Y, #state{type=set, impl=ets}) ->
X =:= Y;
eq(X, Y, #state{type=ordered_set, impl=ets}) ->
X == Y;
eq(X, Y, #state{type=set}) ->
term_to_binary(X) == term_to_binary(Y);
eq(X, Y, #state{type=ordered_set}) ->
sext:encode(X) == sext:encode(Y).
neq(X, Y, #state{type=set, impl=ets}) ->
X =/= Y;
neq(X, Y, #state{type=ordered_set, impl=ets}) ->
X /= Y;
neq(X, Y, #state{type=set}) ->
term_to_binary(X) /= term_to_binary(Y);
neq(X, Y, #state{type=ordered_set}) ->
sext:encode(X) /= sext:encode(Y).
lteq(X, Y, #state{impl=ets}) ->
X =< Y;
lteq(X, Y, #state{type=set}) ->
term_to_binary(X) =< term_to_binary(Y);
lteq(X, Y, #state{type=ordered_set}) ->
sext:encode(X) =< sext:encode(Y).
sort(#state{impl=ets, objs=L}) ->
lists:sort(L);
sort(#state{objs=L}) ->
[ sext:decode(X) || X <- lists:sort([ sext:encode(Y) || Y <- L ]) ].
-endif. %% -ifdef(QC).