libdb/lang/sql/sqlite/ext/fts1/ft_hash.c
2011-09-13 13:44:24 -04:00

404 lines
12 KiB
C

/*
** 2001 September 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of generic hash-tables used in SQLite.
** We've modified it slightly to serve as a standalone hash table
** implementation for the full-text indexing module.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "ft_hash.h"
void *malloc_and_zero(int n){
void *p = malloc(n);
if( p ){
memset(p, 0, n);
}
return p;
}
/* Turn bulk memory into a hash table object by initializing the
** fields of the Hash structure.
**
** "pNew" is a pointer to the hash table that is to be initialized.
** keyClass is one of the constants HASH_INT, HASH_POINTER,
** HASH_BINARY, or HASH_STRING. The value of keyClass
** determines what kind of key the hash table will use. "copyKey" is
** true if the hash table should make its own private copy of keys and
** false if it should just use the supplied pointer. CopyKey only makes
** sense for HASH_STRING and HASH_BINARY and is ignored
** for other key classes.
*/
void HashInit(Hash *pNew, int keyClass, int copyKey){
assert( pNew!=0 );
assert( keyClass>=HASH_STRING && keyClass<=HASH_BINARY );
pNew->keyClass = keyClass;
#if 0
if( keyClass==HASH_POINTER || keyClass==HASH_INT ) copyKey = 0;
#endif
pNew->copyKey = copyKey;
pNew->first = 0;
pNew->count = 0;
pNew->htsize = 0;
pNew->ht = 0;
pNew->xMalloc = malloc_and_zero;
pNew->xFree = free;
}
/* Remove all entries from a hash table. Reclaim all memory.
** Call this routine to delete a hash table or to reset a hash table
** to the empty state.
*/
void HashClear(Hash *pH){
HashElem *elem; /* For looping over all elements of the table */
assert( pH!=0 );
elem = pH->first;
pH->first = 0;
if( pH->ht ) pH->xFree(pH->ht);
pH->ht = 0;
pH->htsize = 0;
while( elem ){
HashElem *next_elem = elem->next;
if( pH->copyKey && elem->pKey ){
pH->xFree(elem->pKey);
}
pH->xFree(elem);
elem = next_elem;
}
pH->count = 0;
}
#if 0 /* NOT USED */
/*
** Hash and comparison functions when the mode is HASH_INT
*/
static int intHash(const void *pKey, int nKey){
return nKey ^ (nKey<<8) ^ (nKey>>8);
}
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
return n2 - n1;
}
#endif
#if 0 /* NOT USED */
/*
** Hash and comparison functions when the mode is HASH_POINTER
*/
static int ptrHash(const void *pKey, int nKey){
uptr x = Addr(pKey);
return x ^ (x<<8) ^ (x>>8);
}
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
if( pKey1==pKey2 ) return 0;
if( pKey1<pKey2 ) return -1;
return 1;
}
#endif
/*
** Hash and comparison functions when the mode is HASH_STRING
*/
static int strHash(const void *pKey, int nKey){
const char *z = (const char *)pKey;
int h = 0;
if( nKey<=0 ) nKey = (int) strlen(z);
while( nKey > 0 ){
h = (h<<3) ^ h ^ *z++;
nKey--;
}
return h & 0x7fffffff;
}
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
if( n1!=n2 ) return 1;
return strncmp((const char*)pKey1,(const char*)pKey2,n1);
}
/*
** Hash and comparison functions when the mode is HASH_BINARY
*/
static int binHash(const void *pKey, int nKey){
int h = 0;
const char *z = (const char *)pKey;
while( nKey-- > 0 ){
h = (h<<3) ^ h ^ *(z++);
}
return h & 0x7fffffff;
}
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
if( n1!=n2 ) return 1;
return memcmp(pKey1,pKey2,n1);
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** The C syntax in this function definition may be unfamilar to some
** programmers, so we provide the following additional explanation:
**
** The name of the function is "hashFunction". The function takes a
** single parameter "keyClass". The return value of hashFunction()
** is a pointer to another function. Specifically, the return value
** of hashFunction() is a pointer to a function that takes two parameters
** with types "const void*" and "int" and returns an "int".
*/
static int (*hashFunction(int keyClass))(const void*,int){
#if 0 /* HASH_INT and HASH_POINTER are never used */
switch( keyClass ){
case HASH_INT: return &intHash;
case HASH_POINTER: return &ptrHash;
case HASH_STRING: return &strHash;
case HASH_BINARY: return &binHash;;
default: break;
}
return 0;
#else
if( keyClass==HASH_STRING ){
return &strHash;
}else{
assert( keyClass==HASH_BINARY );
return &binHash;
}
#endif
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** For help in interpreted the obscure C code in the function definition,
** see the header comment on the previous function.
*/
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
#if 0 /* HASH_INT and HASH_POINTER are never used */
switch( keyClass ){
case HASH_INT: return &intCompare;
case HASH_POINTER: return &ptrCompare;
case HASH_STRING: return &strCompare;
case HASH_BINARY: return &binCompare;
default: break;
}
return 0;
#else
if( keyClass==HASH_STRING ){
return &strCompare;
}else{
assert( keyClass==HASH_BINARY );
return &binCompare;
}
#endif
}
/* Link an element into the hash table
*/
static void insertElement(
Hash *pH, /* The complete hash table */
struct _ht *pEntry, /* The entry into which pNew is inserted */
HashElem *pNew /* The element to be inserted */
){
HashElem *pHead; /* First element already in pEntry */
pHead = pEntry->chain;
if( pHead ){
pNew->next = pHead;
pNew->prev = pHead->prev;
if( pHead->prev ){ pHead->prev->next = pNew; }
else { pH->first = pNew; }
pHead->prev = pNew;
}else{
pNew->next = pH->first;
if( pH->first ){ pH->first->prev = pNew; }
pNew->prev = 0;
pH->first = pNew;
}
pEntry->count++;
pEntry->chain = pNew;
}
/* Resize the hash table so that it cantains "new_size" buckets.
** "new_size" must be a power of 2. The hash table might fail
** to resize if sqliteMalloc() fails.
*/
static void rehash(Hash *pH, int new_size){
struct _ht *new_ht; /* The new hash table */
HashElem *elem, *next_elem; /* For looping over existing elements */
int (*xHash)(const void*,int); /* The hash function */
assert( (new_size & (new_size-1))==0 );
new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) );
if( new_ht==0 ) return;
if( pH->ht ) pH->xFree(pH->ht);
pH->ht = new_ht;
pH->htsize = new_size;
xHash = hashFunction(pH->keyClass);
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
next_elem = elem->next;
insertElement(pH, &new_ht[h], elem);
}
}
/* This function (for internal use only) locates an element in an
** hash table that matches the given key. The hash for this key has
** already been computed and is passed as the 4th parameter.
*/
static HashElem *findElementGivenHash(
const Hash *pH, /* The pH to be searched */
const void *pKey, /* The key we are searching for */
int nKey,
int h /* The hash for this key. */
){
HashElem *elem; /* Used to loop thru the element list */
int count; /* Number of elements left to test */
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
if( pH->ht ){
struct _ht *pEntry = &pH->ht[h];
elem = pEntry->chain;
count = pEntry->count;
xCompare = compareFunction(pH->keyClass);
while( count-- && elem ){
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
return elem;
}
elem = elem->next;
}
}
return 0;
}
/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
Hash *pH, /* The pH containing "elem" */
HashElem* elem, /* The element to be removed from the pH */
int h /* Hash value for the element */
){
struct _ht *pEntry;
if( elem->prev ){
elem->prev->next = elem->next;
}else{
pH->first = elem->next;
}
if( elem->next ){
elem->next->prev = elem->prev;
}
pEntry = &pH->ht[h];
if( pEntry->chain==elem ){
pEntry->chain = elem->next;
}
pEntry->count--;
if( pEntry->count<=0 ){
pEntry->chain = 0;
}
if( pH->copyKey && elem->pKey ){
pH->xFree(elem->pKey);
}
pH->xFree( elem );
pH->count--;
if( pH->count<=0 ){
assert( pH->first==0 );
assert( pH->count==0 );
HashClear(pH);
}
}
/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey. Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *HashFind(const Hash *pH, const void *pKey, int nKey){
int h; /* A hash on key */
HashElem *elem; /* The element that matches key */
int (*xHash)(const void*,int); /* The hash function */
if( pH==0 || pH->ht==0 ) return 0;
xHash = hashFunction(pH->keyClass);
assert( xHash!=0 );
h = (*xHash)(pKey,nKey);
assert( (pH->htsize & (pH->htsize-1))==0 );
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
return elem ? elem->data : 0;
}
/* Insert an element into the hash table pH. The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created. A copy of the key is made if the copyKey
** flag is set. NULL is returned.
**
** If another element already exists with the same key, then the
** new data replaces the old data and the old data is returned.
** The key is not copied in this instance. If a malloc fails, then
** the new data is returned and the hash table is unchanged.
**
** If the "data" parameter to this function is NULL, then the
** element corresponding to "key" is removed from the hash table.
*/
void *HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
int hraw; /* Raw hash value of the key */
int h; /* the hash of the key modulo hash table size */
HashElem *elem; /* Used to loop thru the element list */
HashElem *new_elem; /* New element added to the pH */
int (*xHash)(const void*,int); /* The hash function */
assert( pH!=0 );
xHash = hashFunction(pH->keyClass);
assert( xHash!=0 );
hraw = (*xHash)(pKey, nKey);
assert( (pH->htsize & (pH->htsize-1))==0 );
h = hraw & (pH->htsize-1);
elem = findElementGivenHash(pH,pKey,nKey,h);
if( elem ){
void *old_data = elem->data;
if( data==0 ){
removeElementGivenHash(pH,elem,h);
}else{
elem->data = data;
}
return old_data;
}
if( data==0 ) return 0;
new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) );
if( new_elem==0 ) return data;
if( pH->copyKey && pKey!=0 ){
new_elem->pKey = pH->xMalloc( nKey );
if( new_elem->pKey==0 ){
pH->xFree(new_elem);
return data;
}
memcpy((void*)new_elem->pKey, pKey, nKey);
}else{
new_elem->pKey = (void*)pKey;
}
new_elem->nKey = nKey;
pH->count++;
if( pH->htsize==0 ){
rehash(pH,8);
if( pH->htsize==0 ){
pH->count = 0;
pH->xFree(new_elem);
return data;
}
}
if( pH->count > pH->htsize ){
rehash(pH,pH->htsize*2);
}
assert( pH->htsize>0 );
assert( (pH->htsize & (pH->htsize-1))==0 );
h = hraw & (pH->htsize-1);
insertElement(pH, &pH->ht[h], new_elem);
new_elem->data = data;
return 0;
}