libumem/umemdbg/mdb/common/leaky_subr.c

1151 lines
26 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "umem.h"
#include <sys/vmem_impl_user.h>
#include <umem_impl.h>
#include <alloca.h>
#include <libproc.h>
#include <stdio.h>
#include <string.h>
#include <sys/stack.h>
#include "leaky_impl.h"
#include "misc.h"
#include "proc_kludges.h"
#include "umem_pagesize.h"
/*
* This file defines the libumem target for ../genunix/leaky.c.
*
* See ../genunix/leaky_impl.h for the target interface definition.
*/
/*
* leaky_subr_dump_start()/_end() depend on the ordering of TYPE_VMEM,
* TYPE_MMAP and TYPE_SBRK.
*/
#define TYPE_MMAP 0 /* lkb_data is the size */
#define TYPE_SBRK 1 /* lkb_data is the size */
#define TYPE_VMEM 2 /* lkb_data is the vmem_seg's size */
#define TYPE_CACHE 3 /* lkb_cid is the bufctl's cache */
#define TYPE_UMEM 4 /* lkb_cid is the bufctl's cache */
#define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */
#define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */
#define LKM_CTL_MEMORY 2 /* non-umem mmap or brk, PTR is region start */
#define LKM_CTL_CACHE 3 /* normal alloc, non-debug, PTR is cache */
#define LKM_CTL_MASK 3L
/*
* create a lkm_bufctl from a pointer and a type
*/
#define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type))
#define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
#define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK))
static uintptr_t leak_brkbase;
static uintptr_t leak_brksize;
#define LEAKY_INBRK(ptr) \
(((uintptr_t)(ptr) - leak_brkbase) < leak_brksize)
typedef struct leaky_seg_info {
uintptr_t ls_start;
uintptr_t ls_end;
} leaky_seg_info_t;
typedef struct leaky_maps {
leaky_seg_info_t *lm_segs;
uintptr_t lm_seg_count;
uintptr_t lm_seg_max;
pstatus_t *lm_pstatus;
leak_mtab_t **lm_lmp;
} leaky_maps_t;
/*ARGSUSED*/
static int
leaky_mtab(uintptr_t addr, const umem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = (uintptr_t)bcp->bc_addr;
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = addr;
return (WALK_NEXT);
}
static int
leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
{
leak_mtab_t *lm = (*lmp)++;
lm->lkm_base = seg->vs_start;
lm->lkm_limit = seg->vs_end;
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
return (WALK_NEXT);
}
static int
leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
{
if (strcmp(vmem->vm_name, "umem_oversize") != 0 &&
strcmp(vmem->vm_name, "umem_memalign") != 0)
return (WALK_NEXT);
if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
mdb_warn("can't walk vmem_alloc for %s (%p)", vmem->vm_name,
addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
{
if (strcmp(vmem->vm_name, "umem_oversize") != 0 &&
strcmp(vmem->vm_name, "umem_memalign") != 0)
return (WALK_NEXT);
*est += (int)(vmem->vm_kstat.vk_alloc - vmem->vm_kstat.vk_free);
return (WALK_NEXT);
}
static int
leaky_seg_cmp(const void *l, const void *r)
{
const leaky_seg_info_t *lhs = (const leaky_seg_info_t *)l;
const leaky_seg_info_t *rhs = (const leaky_seg_info_t *)r;
if (lhs->ls_start < rhs->ls_start)
return (-1);
if (lhs->ls_start > rhs->ls_start)
return (1);
return (0);
}
static ssize_t
leaky_seg_search(uintptr_t addr, leaky_seg_info_t *listp, unsigned count)
{
ssize_t left = 0, right = count - 1, guess;
while (right >= left) {
guess = (right + left) >> 1;
if (addr < listp[guess].ls_start) {
right = guess - 1;
continue;
}
if (addr >= listp[guess].ls_end) {
left = guess + 1;
continue;
}
return (guess);
}
return (-1);
}
/*ARGSUSED*/
static int
leaky_count(uintptr_t addr, void *unused, size_t *total)
{
++*total;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_read_segs(uintptr_t addr, const vmem_seg_t *seg, leaky_maps_t *lmp)
{
leaky_seg_info_t *my_si = lmp->lm_segs + lmp->lm_seg_count;
if (seg->vs_start == seg->vs_end && seg->vs_start == 0)
return (WALK_NEXT);
if (lmp->lm_seg_count++ >= lmp->lm_seg_max)
return (WALK_ERR);
my_si->ls_start = seg->vs_start;
my_si->ls_end = seg->vs_end;
return (WALK_NEXT);
}
/* ARGSUSED */
static int
leaky_process_anon_mappings(uintptr_t ignored, const prmap_t *pmp,
leaky_maps_t *lmp)
{
uintptr_t start = pmp->pr_vaddr;
uintptr_t end = pmp->pr_vaddr + pmp->pr_size;
leak_mtab_t *lm;
pstatus_t *Psp = lmp->lm_pstatus;
uintptr_t brk_start = Psp->pr_brkbase;
uintptr_t brk_end = Psp->pr_brkbase + Psp->pr_brksize;
int has_brk = 0;
int in_vmem = 0;
/*
* This checks if there is any overlap between the segment and the brk.
*/
if (end > brk_start && start < brk_end)
has_brk = 1;
if (leaky_seg_search(start, lmp->lm_segs, lmp->lm_seg_count) != -1)
in_vmem = 1;
/*
* We only want anonymous, mmaped memory. That means:
*
* 1. Must be read-write
* 2. Cannot be shared
* 3. Cannot have backing
* 4. Cannot be in the brk
* 5. Cannot be part of the vmem heap.
*/
if ((pmp->pr_mflags & (MA_READ | MA_WRITE)) == (MA_READ | MA_WRITE) &&
(pmp->pr_mflags & MA_SHARED) == 0 &&
(pmp->pr_mapname[0] == 0) &&
!has_brk &&
!in_vmem) {
dprintf(("mmaped region: [%p, %p)\n", start, end));
lm = (*lmp->lm_lmp)++;
lm->lkm_base = start;
lm->lkm_limit = end;
lm->lkm_bufctl = LKM_CTL(pmp->pr_vaddr, LKM_CTL_MEMORY);
}
return (WALK_NEXT);
}
static void
leaky_handle_sbrk(leaky_maps_t *lmp)
{
uintptr_t brkbase = lmp->lm_pstatus->pr_brkbase;
uintptr_t brkend = brkbase + lmp->lm_pstatus->pr_brksize;
leak_mtab_t *lm;
leaky_seg_info_t *segs = lmp->lm_segs;
int x, first = -1, last = -1;
dprintf(("brk: [%p, %p)\n", brkbase, brkend));
for (x = 0; x < lmp->lm_seg_count; x++) {
if (segs[x].ls_start >= brkbase && segs[x].ls_end <= brkend) {
if (first == -1)
first = x;
last = x;
}
}
if (brkbase == brkend) {
dprintf(("empty brk -- do nothing\n"));
} else if (first == -1) {
dprintf(("adding [%p, %p) whole brk\n", brkbase, brkend));
lm = (*lmp->lm_lmp)++;
lm->lkm_base = brkbase;
lm->lkm_limit = brkend;
lm->lkm_bufctl = LKM_CTL(brkbase, LKM_CTL_MEMORY);
} else {
uintptr_t curbrk = P2ROUNDUP(brkbase, umem_pagesize);
if (curbrk != segs[first].ls_start) {
dprintf(("adding [%p, %p) in brk, before first seg\n",
brkbase, segs[first].ls_start));
lm = (*lmp->lm_lmp)++;
lm->lkm_base = brkbase;
lm->lkm_limit = segs[first].ls_start;
lm->lkm_bufctl = LKM_CTL(brkbase, LKM_CTL_MEMORY);
curbrk = segs[first].ls_start;
} else if (curbrk != brkbase) {
dprintf(("ignore [%p, %p) -- realign\n", brkbase,
curbrk));
}
for (x = first; x <= last; x++) {
if (curbrk < segs[x].ls_start) {
dprintf(("adding [%p, %p) in brk\n", curbrk,
segs[x].ls_start));
lm = (*lmp->lm_lmp)++;
lm->lkm_base = curbrk;
lm->lkm_limit = segs[x].ls_start;
lm->lkm_bufctl = LKM_CTL(curbrk,
LKM_CTL_MEMORY);
}
curbrk = segs[x].ls_end;
}
if (curbrk < brkend) {
dprintf(("adding [%p, %p) in brk, after last seg\n",
curbrk, brkend));
lm = (*lmp->lm_lmp)++;
lm->lkm_base = curbrk;
lm->lkm_limit = brkend;
lm->lkm_bufctl = LKM_CTL(curbrk, LKM_CTL_MEMORY);
}
}
}
static int
leaky_handle_anon_mappings(leak_mtab_t **lmp)
{
leaky_maps_t lm;
vmem_t *heap_arena;
vmem_t *vm_next;
vmem_t *heap_top;
vmem_t vmem;
pstatus_t Ps;
if (mdb_get_xdata("pstatus", &Ps, sizeof (Ps)) == -1) {
mdb_warn("couldn't read pstatus xdata");
return (DCMD_ERR);
}
lm.lm_pstatus = &Ps;
leak_brkbase = Ps.pr_brkbase;
leak_brksize = Ps.pr_brksize;
if (umem_readvar(&heap_arena, "heap_arena") == -1) {
mdb_warn("couldn't read heap_arena");
return (DCMD_ERR);
}
if (heap_arena == NULL) {
mdb_warn("heap_arena is NULL.\n");
return (DCMD_ERR);
}
for (vm_next = heap_arena; vm_next != NULL; vm_next = vmem.vm_source) {
if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)vm_next) == -1) {
mdb_warn("couldn't read vmem at %p", vm_next);
return (DCMD_ERR);
}
heap_top = vm_next;
}
lm.lm_seg_count = 0;
lm.lm_seg_max = 0;
if (mdb_pwalk("vmem_span", (mdb_walk_cb_t)leaky_count,
&lm.lm_seg_max, (uintptr_t)heap_top) == -1) {
mdb_warn("couldn't walk vmem_span for vmem %p", heap_top);
return (DCMD_ERR);
}
lm.lm_segs = mdb_alloc(lm.lm_seg_max * sizeof (*lm.lm_segs),
UM_SLEEP | UM_GC);
if (mdb_pwalk("vmem_span", (mdb_walk_cb_t)leaky_read_segs, &lm,
(uintptr_t)heap_top) == -1) {
mdb_warn("couldn't walk vmem_span for vmem %p",
heap_top);
return (DCMD_ERR);
}
if (lm.lm_seg_count > lm.lm_seg_max) {
mdb_warn("segment list for vmem %p grew\n", heap_top);
return (DCMD_ERR);
}
qsort(lm.lm_segs, lm.lm_seg_count, sizeof (*lm.lm_segs), leaky_seg_cmp);
lm.lm_lmp = lmp;
prockludge_add_walkers();
if (mdb_walk(KLUDGE_MAPWALK_NAME,
(mdb_walk_cb_t)leaky_process_anon_mappings, &lm) == -1) {
mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME);
prockludge_remove_walkers();
return (DCMD_ERR);
}
prockludge_remove_walkers();
leaky_handle_sbrk(&lm);
return (DCMD_OK);
}
static int
leaky_interested(const umem_cache_t *c)
{
vmem_t vmem;
if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
mdb_warn("cannot read arena %p for cache '%s'",
(uintptr_t)c->cache_arena, c->cache_name);
return (0);
}
/*
* If this cache isn't allocating from either the umem_default or
* umem_firewall vmem arena, we're not interested.
*/
if (strcmp(vmem.vm_name, "umem_default") != 0 &&
strcmp(vmem.vm_name, "umem_firewall") != 0) {
dprintf(("Skipping cache '%s' with arena '%s'\n",
c->cache_name, vmem.vm_name));
return (0);
}
return (1);
}
/*ARGSUSED*/
static int
leaky_estimate(uintptr_t addr, const umem_cache_t *c, size_t *est)
{
if (!leaky_interested(c))
return (WALK_NEXT);
*est += umem_estimate_allocated(addr, c);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_cache(uintptr_t addr, const umem_cache_t *c, leak_mtab_t **lmp)
{
leak_mtab_t *lm = *lmp;
mdb_walk_cb_t cb;
const char *walk;
int audit = (c->cache_flags & UMF_AUDIT);
if (!leaky_interested(c))
return (WALK_NEXT);
if (audit) {
walk = "bufctl";
cb = (mdb_walk_cb_t)leaky_mtab;
} else {
walk = "umem";
cb = (mdb_walk_cb_t)leaky_mtab_addr;
}
if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
mdb_warn("can't walk umem for cache %p (%s)", addr,
c->cache_name);
return (WALK_DONE);
}
for (; lm < *lmp; lm++) {
lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
if (!audit)
lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
}
return (WALK_NEXT);
}
static char *map_head = "%-?s %?s %-10s used reason\n";
static char *map_fmt = "[%?p,%?p) %-10s ";
#define BACKING_LEN 10 /* must match the third field's width in map_fmt */
static void
leaky_mappings_header(void)
{
dprintf((map_head, "mapping", "", "backing"));
}
/* ARGSUSED */
static int
leaky_grep_mappings(uintptr_t ignored, const prmap_t *pmp,
const pstatus_t *Psp)
{
const char *map_libname_ptr;
char db_mp_name[BACKING_LEN+1];
map_libname_ptr = strrchr(pmp->pr_mapname, '/');
if (map_libname_ptr != NULL)
map_libname_ptr++;
else
map_libname_ptr = pmp->pr_mapname;
strlcpy(db_mp_name, map_libname_ptr, sizeof (db_mp_name));
dprintf((map_fmt, pmp->pr_vaddr, (char *)pmp->pr_vaddr + pmp->pr_size,
db_mp_name));
#define USE(rsn) dprintf_cont(("yes %s\n", (rsn)))
#define IGNORE(rsn) dprintf_cont(("no %s\n", (rsn)))
if (!(pmp->pr_mflags & MA_WRITE) || !(pmp->pr_mflags & MA_READ)) {
IGNORE("read-only");
} else if (pmp->pr_vaddr <= Psp->pr_brkbase &&
pmp->pr_vaddr + pmp->pr_size > Psp->pr_brkbase) {
USE("bss"); /* grab up to brkbase */
leaky_grep(pmp->pr_vaddr, Psp->pr_brkbase - pmp->pr_vaddr);
} else if (pmp->pr_vaddr >= Psp->pr_brkbase &&
pmp->pr_vaddr < Psp->pr_brkbase + Psp->pr_brksize) {
IGNORE("in brk");
} else if (pmp->pr_vaddr == Psp->pr_stkbase &&
pmp->pr_size == Psp->pr_stksize) {
IGNORE("stack");
} else if (0 == strcmp(map_libname_ptr, "a.out")) {
USE("a.out data");
leaky_grep(pmp->pr_vaddr, pmp->pr_size);
} else if (0 == strncmp(map_libname_ptr, "libumem.so", 10)) {
IGNORE("part of umem");
} else if (pmp->pr_mapname[0] != 0) {
USE("lib data"); /* library data/bss */
leaky_grep(pmp->pr_vaddr, pmp->pr_size);
} else if ((pmp->pr_mflags & MA_ANON) && pmp->pr_mapname[0] == 0) {
IGNORE("anon");
} else {
IGNORE(""); /* default to ignoring */
}
#undef USE
#undef IGNORE
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
leaky_mark_lwp(void *ignored, const lwpstatus_t *lwp)
{
leaky_mark_ptr(lwp->pr_reg[R_SP] + STACK_BIAS);
return (0);
}
/*ARGSUSED*/
static int
leaky_process_lwp(void *ignored, const lwpstatus_t *lwp)
{
const uintptr_t *regs = (const uintptr_t *)&lwp->pr_reg;
int i;
uintptr_t sp;
uintptr_t addr;
size_t size;
for (i = 0; i < R_SP; i++)
leaky_grep_ptr(regs[i]);
sp = regs[i++] + STACK_BIAS;
if (leaky_lookup_marked(sp, &addr, &size))
leaky_grep(sp, size - (sp - addr));
for (; i < NPRGREG; i++)
leaky_grep_ptr(regs[i]);
return (0);
}
/*
* Handles processing various proc-related things:
* 1. calls leaky_process_lwp on each the LWP
* 2. leaky_greps the bss/data of libraries and a.out, and the a.out stack.
*/
static int
leaky_process_proc(void)
{
pstatus_t Ps;
struct ps_prochandle *Pr;
if (mdb_get_xdata("pstatus", &Ps, sizeof (Ps)) == -1) {
mdb_warn("couldn't read pstatus xdata");
return (DCMD_ERR);
}
dprintf(("pstatus says:\n"));
dprintf(("\tbrk: base %p size %p\n",
Ps.pr_brkbase, Ps.pr_brksize));
dprintf(("\tstk: base %p size %p\n",
Ps.pr_stkbase, Ps.pr_stksize));
if (mdb_get_xdata("pshandle", &Pr, sizeof (Pr)) == -1) {
mdb_warn("couldn't read pshandle xdata");
return (DCMD_ERR);
}
if (Plwp_iter(Pr, leaky_mark_lwp, NULL) != 0) {
mdb_warn("findleaks: Failed to iterate lwps\n");
return (DCMD_ERR);
}
if (Plwp_iter(Pr, leaky_process_lwp, NULL) != 0) {
mdb_warn("findleaks: Failed to iterate lwps\n");
return (DCMD_ERR);
}
prockludge_add_walkers();
leaky_mappings_header();
if (mdb_walk(KLUDGE_MAPWALK_NAME, (mdb_walk_cb_t)leaky_grep_mappings,
&Ps) == -1) {
mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME);
prockludge_remove_walkers();
return (-1);
}
prockludge_remove_walkers();
return (0);
}
static void
leaky_subr_caller(const uintptr_t *stack, uint_t depth, char *buf,
uintptr_t *pcp)
{
int i;
GElf_Sym sym;
uintptr_t pc = 0;
buf[0] = 0;
for (i = 0; i < depth; i++) {
pc = stack[i];
if (mdb_lookup_by_addr(pc,
MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
continue;
if (strncmp(buf, "libumem.so", 10) == 0)
continue;
*pcp = pc;
return;
}
/*
* We're only here if the entire call chain is in libumem.so;
* this shouldn't happen, but we'll just use the last caller.
*/
*pcp = pc;
}
int
leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
{
char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
uintptr_t lcaller, rcaller;
int rval;
leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
if (rval = strcmp(lbuf, rbuf))
return (rval);
if (lcaller < rcaller)
return (-1);
if (lcaller > rcaller)
return (1);
if (lhs->lkb_data < rhs->lkb_data)
return (-1);
if (lhs->lkb_data > rhs->lkb_data)
return (1);
return (0);
}
/*ARGSUSED*/
int
leaky_subr_estimate(size_t *estp)
{
if (umem_ready == 0) {
mdb_warn(
"findleaks: umem is not loaded in the address space\n");
return (DCMD_ERR);
}
if (umem_ready == UMEM_READY_INIT_FAILED) {
mdb_warn("findleaks: umem initialization failed -- no "
"possible leaks.\n");
return (DCMD_ERR);
}
if (umem_ready != UMEM_READY) {
mdb_warn("findleaks: No allocations have occured -- no "
"possible leaks.\n");
return (DCMD_ERR);
}
if (mdb_walk("umem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
mdb_warn("couldn't walk 'umem_cache'");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
mdb_warn("couldn't walk 'vmem'");
return (DCMD_ERR);
}
if (*estp == 0) {
mdb_warn("findleaks: No allocated buffers found.\n");
return (DCMD_ERR);
}
prockludge_add_walkers();
if (mdb_walk(KLUDGE_MAPWALK_NAME, (mdb_walk_cb_t)leaky_count,
estp) == -1) {
mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME);
prockludge_remove_walkers();
return (DCMD_ERR);
}
prockludge_remove_walkers();
return (DCMD_OK);
}
int
leaky_subr_fill(leak_mtab_t **lmpp)
{
if (leaky_handle_anon_mappings(lmpp) != DCMD_OK) {
mdb_warn("unable to process mappings\n");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
mdb_warn("couldn't walk 'vmem'");
return (DCMD_ERR);
}
if (mdb_walk("umem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
mdb_warn("couldn't walk 'umem_cache'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
int
leaky_subr_run(void)
{
if (leaky_process_proc() == DCMD_ERR) {
mdb_warn("failed to process proc");
return (DCMD_ERR);
}
return (DCMD_OK);
}
void
leaky_subr_add_leak(leak_mtab_t *lmp)
{
uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
uint_t depth;
vmem_seg_t vs;
umem_bufctl_audit_t *bcp;
UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
case LKM_CTL_BUFCTL:
if (mdb_vread(bcp, UMEM_BUFCTL_AUDIT_SIZE, addr) == -1) {
mdb_warn("couldn't read leaked bufctl at addr %p",
addr);
return;
}
depth = MIN(bcp->bc_depth, umem_stack_depth);
/*
* The top of the stack will be in umem_cache_alloc().
* Since the offset in umem_cache_alloc() isn't interesting
* we skip that frame for the purposes of uniquifying stacks.
*
* Also, we use the cache pointer as the leaks's cid, to
* prevent the coalescing of leaks from different caches.
*/
if (depth > 0)
depth--;
leaky_add_leak(TYPE_UMEM, addr, (uintptr_t)bcp->bc_addr,
bcp->bc_timestamp, bcp->bc_stack + 1, depth,
(uintptr_t)bcp->bc_cache, (uintptr_t)bcp->bc_cache);
break;
case LKM_CTL_VMSEG:
if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
mdb_warn("couldn't read leaked vmem_seg at addr %p",
addr);
return;
}
depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
break;
case LKM_CTL_MEMORY:
if (LEAKY_INBRK(addr))
leaky_add_leak(TYPE_SBRK, addr, addr, 0, NULL, 0, 0,
lmp->lkm_limit - addr);
else
leaky_add_leak(TYPE_MMAP, addr, addr, 0, NULL, 0, 0,
lmp->lkm_limit - addr);
break;
case LKM_CTL_CACHE:
leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
NULL, 0, addr, addr);
break;
default:
mdb_warn("internal error: invalid leak_bufctl_t\n");
break;
}
}
static int lk_vmem_seen;
static int lk_cache_seen;
static int lk_umem_seen;
static size_t lk_ttl;
static size_t lk_bytes;
void
leaky_subr_dump_start(int type)
{
switch (type) {
case TYPE_MMAP:
lk_vmem_seen = 0;
break;
case TYPE_SBRK:
case TYPE_VMEM:
return; /* don't zero counts */
case TYPE_CACHE:
lk_cache_seen = 0;
break;
case TYPE_UMEM:
lk_umem_seen = 0;
break;
default:
break;
}
lk_ttl = 0;
lk_bytes = 0;
}
void
leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
{
const leak_bufctl_t *cur;
umem_cache_t cache;
size_t min, max, size;
char sz[30];
char c[MDB_SYM_NAMLEN];
uintptr_t caller;
const char *nm, *nm_lc;
uint8_t type = lkb->lkb_type;
if (verbose) {
lk_ttl = 0;
lk_bytes = 0;
} else if (!lk_vmem_seen && (type == TYPE_VMEM || type == TYPE_MMAP ||
type == TYPE_SBRK)) {
lk_vmem_seen = 1;
mdb_printf("%-16s %7s %?s %s\n",
"BYTES", "LEAKED", "VMEM_SEG", "CALLER");
}
switch (lkb->lkb_type) {
case TYPE_MMAP:
case TYPE_SBRK:
nm = (lkb->lkb_type == TYPE_MMAP) ? "MMAP" : "SBRK";
nm_lc = (lkb->lkb_type == TYPE_MMAP) ? "mmap(2)" : "sbrk(2)";
for (; lkb != NULL; lkb = lkb->lkb_next) {
if (!verbose)
mdb_printf("%-16d %7d %?p %s\n", lkb->lkb_data,
lkb->lkb_dups + 1, lkb->lkb_addr, nm);
else
mdb_printf("%s leak: [%p, %p), %ld bytes\n",
nm_lc, lkb->lkb_addr,
lkb->lkb_addr + lkb->lkb_data,
lkb->lkb_data);
lk_ttl++;
lk_bytes += lkb->lkb_data;
}
return;
case TYPE_VMEM:
min = max = lkb->lkb_data;
for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
size = cur->lkb_data;
if (size < min)
min = size;
if (size > max)
max = size;
lk_ttl++;
lk_bytes += size;
}
if (min == max)
(void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
else
(void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
min, max);
if (!verbose) {
leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
c, &caller);
mdb_printf("%-16s %7d %?p %a\n", sz, lkb->lkb_dups + 1,
lkb->lkb_addr, caller);
} else {
mdb_arg_t v;
if (lk_ttl == 1)
mdb_printf("umem_oversize leak: 1 vmem_seg, "
"%ld bytes\n", lk_bytes);
else
mdb_printf("umem_oversize leak: %d vmem_segs, "
"%s bytes each, %ld bytes total\n",
lk_ttl, sz, lk_bytes);
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = "-v";
if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
DCMD_ADDRSPEC, 1, &v) == -1) {
mdb_warn("'%p::vmem_seg -v' failed",
lkb->lkb_addr);
}
}
return;
case TYPE_CACHE:
if (!lk_cache_seen) {
lk_cache_seen = 1;
if (lk_vmem_seen)
mdb_printf("\n");
mdb_printf("%-?s %7s %?s %s\n",
"CACHE", "LEAKED", "BUFFER", "CALLER");
}
if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
/*
* This _really_ shouldn't happen; we shouldn't
* have been able to get this far if this
* cache wasn't readable.
*/
mdb_warn("can't read cache %p for leaked "
"buffer %p", lkb->lkb_data, lkb->lkb_addr);
return;
}
lk_ttl += lkb->lkb_dups + 1;
lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
if (caller != 0) {
(void) mdb_snprintf(c, sizeof (c), "%a", caller);
} else {
(void) mdb_snprintf(c, sizeof (c), "%s",
(verbose) ? "" : "?");
}
if (!verbose) {
mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
lkb->lkb_dups + 1, lkb->lkb_addr, c);
} else {
if (lk_ttl == 1)
mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
cache.cache_name, lk_bytes);
else
mdb_printf("%s leak: %d buffers, "
"%ld bytes each, %ld bytes total,\n",
cache.cache_name, lk_ttl,
cache.cache_bufsize, lk_bytes);
mdb_printf(" %s%s%ssample addr %p\n",
(caller == 0) ? "" : "caller ", c,
(caller == 0) ? "" : ", ", lkb->lkb_addr);
}
return;
case TYPE_UMEM:
if (!lk_umem_seen) {
lk_umem_seen = 1;
if (lk_vmem_seen || lk_cache_seen)
mdb_printf("\n");
mdb_printf("%-?s %7s %?s %s\n",
"CACHE", "LEAKED", "BUFCTL", "CALLER");
}
if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
/*
* This _really_ shouldn't happen; we shouldn't
* have been able to get this far if this
* cache wasn't readable.
*/
mdb_warn("can't read cache %p for leaked "
"bufctl %p", lkb->lkb_data, lkb->lkb_addr);
return;
}
lk_ttl += lkb->lkb_dups + 1;
lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
if (!verbose) {
leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, c,
&caller);
mdb_printf("%0?p %7d %0?p %a\n", lkb->lkb_data,
lkb->lkb_dups + 1, lkb->lkb_addr, caller);
} else {
mdb_arg_t v;
if (lk_ttl == 1)
mdb_printf("%s leak: 1 buffer, %ld bytes\n",
cache.cache_name, lk_bytes);
else
mdb_printf("%s leak: %d buffers, "
"%ld bytes each, %ld bytes total\n",
cache.cache_name, lk_ttl,
cache.cache_bufsize, lk_bytes);
v.a_type = MDB_TYPE_STRING;
v.a_un.a_str = "-v";
if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
DCMD_ADDRSPEC, 1, &v) == -1) {
mdb_warn("'%p::bufctl -v' failed",
lkb->lkb_addr);
}
}
return;
default:
return;
}
}
void
leaky_subr_dump_end(int type)
{
int i;
int width;
const char *leak;
switch (type) {
case TYPE_VMEM:
if (!lk_vmem_seen)
return;
width = 16;
leak = "oversized leak";
break;
case TYPE_CACHE:
if (!lk_cache_seen)
return;
width = sizeof (uintptr_t) * 2;
leak = "buffer";
break;
case TYPE_UMEM:
if (!lk_umem_seen)
return;
width = sizeof (uintptr_t) * 2;
leak = "buffer";
break;
default:
return;
}
for (i = 0; i < 72; i++)
mdb_printf("-");
mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
width, "Total", lk_ttl, leak, (lk_ttl == 1) ? "" : "s",
lk_bytes, (lk_bytes == 1) ? "" : "s");
}
int
leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
void *cbdata)
{
vmem_seg_t vs;
umem_bufctl_audit_t *bcp;
UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
switch (lkb->lkb_type) {
case TYPE_VMEM:
if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
mdb_warn("unable to read vmem_seg at %p",
lkb->lkb_addr);
return (WALK_NEXT);
}
return (cb(lkb->lkb_addr, &vs, cbdata));
case TYPE_UMEM:
if (mdb_vread(bcp, UMEM_BUFCTL_AUDIT_SIZE,
lkb->lkb_addr) == -1) {
mdb_warn("unable to read bufctl at %p",
lkb->lkb_addr);
return (WALK_NEXT);
}
return (cb(lkb->lkb_addr, bcp, cbdata));
default:
return (cb(lkb->lkb_addr, NULL, cbdata));
}
}