
Draft #0.9, May 2014

Chain Replication metadata management
in Machi, an immutable file store

Introducing the “humming consensus” algorithm

Basho Japan KK

1. Origins
This document was first written during the autumn of 2014
for a Basho-only internal audience. Since its original drafts,
Machi has been designated by Basho as a full open source
software project. This document has been rewritten in 2015
to address an external audience. For an overview of the
design of the larger Machi system, please see [5].

2. Abstract
TODO Fix, after all of the recent changes to this document.

Machi is an immutable file store, now in active devel-
opment by Basho Japan KK. Machi uses Chain Replication
to maintain strong consistency of file updates to all replica
servers in a Machi cluster. Chain Replication is a variation
of primary/backup replication where the order of updates be-
tween the primary server and each of the backup servers is
strictly ordered into a single “chain”. Management of Chain
Replication’s metadata, e.g., “What is the current order of
servers in the chain?”, remains an open research problem.
The current state of the art for Chain Replication metadata
management relies on an external oracle (e.g., ZooKeeper)
or the Elastic Replication algorithm.

This document describes the Machi chain manager, the
component responsible for managing Chain Replication
metadata state. The chain manager uses a new technique,
based on a variation of CORFU, called “humming consen-
sus”. Humming consensus does not require active partic-
ipation by all or even a majority of participants to make
decisions. Machi’s chain manager bases its logic on hum-
ming consensus to make decisions about how to react to
changes in its environment, e.g. server crashes, network par-
titions, and changes by Machi cluster admnistrators. Once
a decision is made during a virtual time epoch, humming
consensus will eventually discover if other participants have
made a different decision during that epoch. When a differ-
ing decision is discovered, new time epochs are proposed in
which a new consensus is reached and disseminated to all
available participants.

[]

3. Introduction
3.1 What does “self-management” mean?
For the purposes of this document, chain replication self-
management is the ability for the N nodes in an N -length
chain replication chain to manage the chain’s metadata with-
out requiring an external party to perform these management
tasks. Chain metadata state and state management tasks in-
clude:

• Preserving data integrity of all metadata and data stored
within the chain. Data loss is not an option.

• Preserving stable knowledge of chain membership (i.e.
all nodes in the chain, regardless of operational status). A
systems administrator is expected to make “permanent”
decisions about chain membership.

• Using passive and/or active techniques to track opera-
tional state/status, e.g., up, down, restarting, full data
sync, partial data sync, etc.

• Choosing the run-time replica ordering/state of the chain,
based on current member status and past operational his-
tory. All chain state transitions must be done safely and
without data loss or corruption.

• As a new node is added to the chain administratively or
old node is restarted, adding the node to the chain safely
and perform any data synchronization/repair required to
bring the node’s data into full synchronization with the
other nodes.

3.2 Ultimate goal: Preserve data integrity of Chain
Replicated data

Preservation of data integrity is paramount to any chain state
management technique for Machi. Even when operating in
an eventually consistent mode, Machi must not lose data
without cause outside of all design, e.g., all particpants crash
permanently.

3.3 Goal: Contribute to Chain Replication metadata
management research

We believe that this new self-management algorithm, hum-
ming consensus, contributes a novel approach to Chain

Draft #0.9, May 2014 1 2015/5/5

Replication metadata management. The “monitor and man-
gage your neighbor” technique proposed in Elastic Repli-
cation (Section 4.1) appears to be the current state of the
art in the distributed systems research community. Typical
practice in the IT industry appears to favor using an external
oracle, e.g., using ZooKeeper as a trusted coordinator.

See Section 4 for a brief review.

3.4 Goal: Support both eventually consistent &
strongly consistent modes of operation

Machi’s first use cases are all for use as a file store in an
eventually consistent environment. In eventually consistent
mode, humming consensus allows a Machi cluster to frag-
ment into arbitrary islands of network partition, all the way
down to 100% of members running in complete network
isolation from each other. Furthermore, it provides enough
agreement to allow formerly-partitioned members to coordi-
nate the reintegration and reconciliation of their data when
partitions are healed.

Later, we wish the option of supporting strong con-
sistency applications such as CORFU-style logging while
reusing all (or most) of Machi’s infrastructure. Such strongly
consistent operation is the main focus of this document.

3.5 Anti-goal: Minimize churn
Humming consensus’s goal is to manage Chain Replica-
tion metadata safely. If participants have differing notions
of time, e.g., running on extremely fast or extremely slow
hardware, then humming consensus may ”churn” rapidly in
different metadata states in such a way that the chain’s data
is effectively unavailable.

In practice, however, any series of network partition
changes that case humming consensus to churn will cause
other management techniques (such as an external ”oracle”)
similar problems. [Proof by handwaving assertion.] (See
also: Section 5.3)

4. Review of current Chain Replication
metadata management methods

We briefly survey the state of the art of research and industry
practice of chain replication metadata management options.

4.1 “Leveraging Sharding in the Design of Scalable
Replication Protocols” by Abu-Libdeh, van
Renesse, and Vigfusson

Multiple chains are arranged in a ring (called a ”band” in the
paper). The responsibility for managing the chain at position
N is delegated to chain N-1. As long as at least one chain is
running, that is sufficient to start/bootstrap the next chain,
and so on until all chains are running. This technique is
called “Elastic Replication”.

The paper then estimates mean-time-to-failure (MTTF)
and suggests a ”band of bands” topology to handle very large
clusters while maintaining an MTTF that is as good or better
than other management techniques.

NOTE: If the chain self-management method proposed
for Machi does not succeed, this paper’s technique is our
best fallback recommendation.

4.2 An external management oracle, implemented by
ZooKeeper

This is not a recommendation for Machi: we wish to avoid
using ZooKeeper and any other “large” external service de-
pendency. See the “Assumptions” section of [5] for Machi’s
overall design assumptions and limitations.

However, many other open source software products use
ZooKeeper for exactly this kind of critical metadata replica
management problem.

4.3 An external management oracle, implemented by
Riak Ensemble

This is a much more palatable choice than option 4.2 above.
We also wish to avoid an external dependency on something
as big as Riak Ensemble. However, if it comes between
choosing Riak Ensemble or choosing ZooKeeper, the choice
feels quite clear: Riak Ensemble will win, unless there is
some critical feature missing from Riak Ensemble. If such an
unforseen missing feature is discovered, it would probably
be preferable to add the feature to Riak Ensemble rather than
to use ZooKeeper (and for Basho to document ZK, package
ZK, provide commercial ZK support, etc.).

5. Assumptions
Given a long history of consensus algorithms (viewstamped
replication, Paxos, Raft, et al.), why bother with a slightly
different set of assumptions and a slightly different protocol?

The answer lies in one of our explicit goals: to have
an option of running in an ”eventually consistent” manner.
We wish to be able to make progress, i.e., remain available
in the CAP sense, even if we are partitioned down to a
single isolated node. VR, Paxos, and Raft alone are not
sufficient to coordinate service availability at such small
scale. The humming consensus algorithm can manage both
strongly consistency systems (i.e., the typical use for Chain
Replication) as well as eventually consistent data systems.

5.1 The CORFU protocol is correct
This work relies tremendously on the correctness of the
CORFU protocol [2], a cousin of the Paxos protocol. If the
implementation of this self-management protocol breaks an
assumption or prerequisite of CORFU, then we expect that
Machi’s implementation will be flawed.

5.2 Communication model
The communication model is asynchronous point-to-point
messaging. The network is unreliable: messages may be ar-
bitrarily dropped and/or reordered. Network partitions may
occur at any time. Network partitions may be asymmetric,
e.g., a message can be sent successfully from A → B, but

Draft #0.9, May 2014 2 2015/5/5

messages from B → A can be lost, dropped, and/or arbitrar-
ily delayed.

System particpants may be buggy but not actively mali-
cious/Byzantine.

5.3 Time model
Our time model is per-node wall-clock time clocks, loosely
synchronized by NTP.

The protocol and algorithm presented here do not specify
or require any timestamps, physical or logical. Any mention
of time inside of data structures are for human/historic/diagnostic
purposes only.

Having said that, some notion of physical time is sug-
gested for purposes of efficiency. It’s recommended that
there be some ”sleep time” between iterations of the algo-
rithm: there is no need to ”busy wait” by executing the algo-
rithm as quickly as possible. See also Section 10.2.2.

5.4 Failure detector model
We assume that the failure detector that the algorithm uses
is weak, it’s fallible, and it informs the algorithm in boolean
status updates/toggles as a node becomes available or not.

5.5 Data consistency: strong unless otherwise noted
Most discussion in this document assumes a desire to pre-
serve strong consistency in all data managed by Machi’s
chain replication. We use the short-hand notation “CP mode”
to describe this default mode of operation, where “C” and
“P” refer to the CAP Theorem [9].

However, there are interesting use cases where Machi is
useful in a more relaxed, eventual consistency environment.
We may use the short-hand “AP mode” when describing fea-
tures that preserve only eventual consistency. Discussion of
strongly consistent CP mode is always the default; explo-
ration of AP mode features in this document will always be
explictly noted.

5.6 Use of the “wedge state”
A participant in Chain Replication will enter ”wedge state”,
as described by the Machi high level design [5] and by
CORFU, when it receives information that a newer projec-
tion (i.e., run-time chain state reconfiguration) is available.
The new projection may be created by a system administra-
tor or calculated by the self-management algorithm. Notifi-
cation may arrive via the projection store API or via the file
I/O API.

When in wedge state, the server will refuse all file write
I/O API requests until the self-management algorithm has
determined that humming consensus has been decided (see
next bullet item). The server may also refuse file read I/O
API requests, depending on its CP/AP operation mode.

5.7 Use of “humming consensus”
CS literature uses the word ”consensus” in the context of the
problem description at [20] . This traditional definition dif-
fers from what is described here as “humming consensus”.

”Humming consensus” describes consensus that is de-
rived only from data that is visible/known at the current time.
The algorithm will calculate a rough consensus despite not
having input from all/majority of chain members. Humming
consensus may proceed to make a decision based on data
from only a single participant, i.e., only the local node.

See Section 10 for detailed discussion.

5.8 Concurrent chain managers execute humming
consensus independently

Each Machi file server has its own concurrent chain manager
process embedded within it. Each chain manager process
will execute the humming consensus algorithm using only
local state (e.g., the Pcurrent projection currently used by the
local server) and values observed in everyone’s projection
stores (Section 6).

The chain manager communicates with the local Machi
file server using the wedge and un-wedge request API. When
humming consensus has chosen a projection Pnew to replace
Pcurrent, the value of Pnew is included in the un-wedge
request.

6. The projection store
The Machi chain manager relies heavily on a key-value store
of write-once registers called the “projection store”. Each
Machi node maintains its own projection store. The store’s
keyspace is divided into two halves (described below), each
with different rules for who can write keys to that half of the
store.

The store’s key is a 2-tuple of a positive integer and
the half of the partition, the “public” half or the “private”
half. The integer represents the epoch number of the pro-
jection stored with this key. The store’s value is either the
special ‘unwritten’ value1 or else a binary blob that is im-
mutable thereafter; the projection data structure is serialized
and stored in this binary blob.

The projection store is vital for the correct implementa-
tion of humming consensus (Section 10). The write-once
register primitive allows us to reason about the store’s be-
havior using the same logical tools and techniques as the
CORFU ordered log.

6.1 The publicly-writable half of the projection store
The publicly-writable projection store is used to share in-
formation during the first half of humming consensus algo-
rithm. Projections in the public half of the store form a log

1 We use ⊥ to denote the unwritten value.

Draft #0.9, May 2014 3 2015/5/5

of suggestions2 by humming consensus participants for how
they wish to change the chain’s metadata state.

Any chain member may write to the public half of the
store. Any chain member may read from the public half of
the store.

6.2 The privately-writable half of the projection store
The privately-writable projection store is used to store the
Chain Replication metadata state (as chosen by humming
consensus) that is in use now by the local Machi server as
well as previous operation states.

Only the local server may write values into the private
half of store. Any chain member may read from the private
half of the store.

The private projection store serves multiple purposes,
including:

• Remove/clear the local server from “wedge state”.
• Act as a world-readable indicator of what projection that

the local server is currently using. The current projection
will be called Pcurrent throughout this document.

• Act as the local server’s log/history of its sequence of
Pcurrent projection changes.

The private half of the projection store is not replicated.

7. Projections: calculation, storage, and use
Machi uses a “projection” to determine how its Chain Repli-
cation replicas should operate; see [5] and [2]. At runtime,
a cluster must be able to respond both to administrative
changes (e.g., substituting a failed server with replacement
hardware) as well as local network conditions (e.g., is there
a network partition?).

The projection defines the operational state of Chain
Replication’s chain order as well the (re-)synchronization of
data managed by by newly-added/failed-and-now-recovering
members of the chain. This chain metadata, together with
computational processes that manage the chain, must be
managed in a safe manner in order to avoid unintended data
loss of data managed by the chain.

The concept of a projection is borrowed from CORFU but
has a longer history, e.g., the Hibari key-value store [7] and
goes back in research for decades, e.g., Porcupine [18].

7.1 The projection data structure
NOTE: This section is a duplicate of the “The Projection
and the Projection Epoch Number” section of [5].

The projection data structure defines the current adminis-
tration & operational/runtime configuration of a Machi clus-
ter’s single Chain Replication chain. Each projection is iden-

2 I hesitate to use the word “propose” or “proposal” anywhere in this
document . . . until I’ve done a more formal analysis of the protocol. Those
words have too many connotations in the context of consensus protocols
such as Paxos and Raft.

-type m_server_info() :: {Hostname, Port,...}.

-record(projection, {

epoch_number :: m_epoch_n(),

epoch_csum :: m_csum(),

creation_time :: now(),

author_server :: m_server(),

all_members :: [m_server()],

active_upi :: [m_server()],

repairing :: [m_server()],

down_members :: [m_server()],

dbg_annotations :: proplist()

}).

Figure 1. Sketch of the projection data structure

tified by a strictly increasing counter called the epoch projec-
tion number (or more simply “the epoch”).

Projections are calculated by each server using input from
local measurement data, calculations by the server’s chain
manager (see below), and input from the administration API.
Each time that the configuration changes (automatically or
by administrator’s request), a new epoch number is assigned
to the entire configuration data structure and is distributed to
all servers via the server’s administration API.

Pseudo-code for the projection’s definition is shown in
Figure 1. To summarize the major components:

• epoch number and epoch csum The epoch number and
projection checksum are unique identifiers for this pro-
jection.

• creation time Wall-clock time, useful for humans and
general debugging effort.

• author server Name of the server that calculated the
projection.

• all members All servers in the chain, regardless of cur-
rent operation status. If all operating conditions are per-
fect, the chain should operate in the order specified here.

• active upi All active chain members that we know are
fully repaired/in-sync with each other and therefore the
Update Propagation Invariant (Section A.1 is always true.

• repairing All running chain members that are in active
data repair procedures.

• down members All members that the author server

believes are currently down or partitioned.
• dbg annotations A “kitchen sink” proplist, for code to

add any hints for why the projection change was made,
delay/retry information, etc.

7.2 Why the checksum field?
According to the CORFU research papers, if a server node
S or client node C believes that epoch E is the latest epoch,
then any information that S or C receives from any source
that an epoch E + δ (where δ > 0) exists will push S into

Draft #0.9, May 2014 4 2015/5/5

the ”wedge” state and C into a mode of searching for the
projection definition for the newest epoch.

In the humming consensus description in Section 10, it
should become clear that it’s possible to have a situation
where two nodes make proposals for a single epoch number.
In the simplest case, assume a chain of nodes a and b.
Assume that a symmetric network partition between a and b
happens. Also, let’s assume that operating in AP/eventually
consistent mode.

On a’s network-partitioned island, a can choose an active
chain definition of [A]. Similarly b can choose a definition of
[B]. Both a and B might choose the epoch for their proposal
to be #42. Because each are separated by network partition,
neither can realize the conflict.

When the network partition heals, it can become obvious
to both servers that there are conflicting values for epoch
#42. If we use CORFU’s protocol design, which identifies
the epoch identifier as an integer only, then the integer 42
alone is not sufficient to discern the differences between the
two projections.

Humming consensus requires that any projection be iden-
tified by both the epoch number and the projection check-
sum, as described in Section 7.1.

8. Managing multiple projection store
replicas

An independent replica management technique very similar
to the style used by both Riak Core [12] and Dynamo is used
to manage replicas of Machi’s projection data structures.
The major difference is that humming consensus does not
necessarily require successful return status from a minimum
number of participants (e.g., a quorum).

8.1 Read repair: repair only unwritten values
The idea of “read repair” is also shared with Riak Core
and Dynamo systems. However, Machi has situations where
read repair cannot truly “fix” a key because two different
values have been written by two different replicas. Machi’s
projection store is write-once, and there is no “undo” or
“delete” or “overwrite” in the projection store API.3 Machi’s
projection store read repair can only repair values that are
unwritten, i.e., storing ⊥.

The value used to repair ⊥ values is the “best” projection
that is currently available for the current epoch E. If there
is a single, unanimous value Vu for the projection at epoch
E, then Vu is use to repair all projections stores at E that
contain ⊥ values. If the value of K is not unanimous, then
the “highest ranked value” Vbest is used for the repair; see
Section 10.6 for a description of projection ranking.

3 It doesn’t matter what caused the two different values. In case of multiple
values, all participants in humming consensus merely agree that there were
multiple suggestions at that epoch which must be resolved by the creation
and writing of newer projections with later epoch numbers.

8.2 Writing to public projection stores
Writing replicas of a projection Pnew to the cluster’s public
projection stores is similar, in principle, to writing a Chain
Replication-managed system or Dynamo-like system. But
unlike Chain Replication, the order doesn’t really matter.
In fact, the two steps below may be performed in parallel.
The significant difference with Chain Replication is how we
interpret the return status of each write operation.

1. Write Pnew to the local server’s public projection store
using Pnew’s epoch number E as the key. As a side ef-
fect, a successful write will trigger “wedge” status in the
local server, which will then cascade to other projection-
related activity by the local chain manager.

2. Write Pnew to key E of each remote public projection
store of all participants in the chain.

In cases of error written status, the process may be
aborted and read repair triggered. The most common reason
for error written status is that another actor in the system
has already calculated another (perhaps different) projection
using the same projection epoch number and that read repair
is necessary. The error written may also indicate that an-
other server has performed read repair on the exact projec-
tion Pnew that the local server is trying to write!

8.3 Writing to private projection stores
Only the local server/owner may write to the private half of
a projection store. Also, the private projection store is not
replicated.

8.4 Reading from public projection stores
A read is simple: for an epoch E, send a public projec-
tion read API request to all participants. As when writing
to the public projection stores, we can ignore any time-
out/unavailable return status.4 If we discover any unwritten
values ⊥, the read repair protocol is followed.

The minimum number of non-error responses is only
one.5 If all available servers return a single, unanimous value
Vu, Vu ̸= ⊥, then Vu is the final result for epoch E. Any non-
unanimous values are considered complete disagreement for
the epoch. This disagreement is resolved by humming con-
sensus by later writes to the public projection stores during
subsequent iterations of humming consensus.

We are not concerned with unavailable servers. Humming
consensus only uses as many public projections as are avail-
able at the present moment of time. If some server S is un-
available at time t and becomes available at some later t+ δ,
and if at t + δ we discover that S’s public projection store

4 The success/failure status of projection reads and writes is not ignored
with respect to the chain manager’s internal liveness tracker. However,
the liveness tracker’s state is typically only used when calculating new
projections.
5 The local projection store should always be available, even if no other
remote replica projection stores are available.

Draft #0.9, May 2014 5 2015/5/5

for key E contains some disagreeing value Vweird, then the
disagreement will be resolved in the exact same manner that
would be used as if we had found the disagreeing values at
the earlier time t.

9. Phases of projection change, a prelude to
Humming Consensus

Machi’s projection changes use four discrete phases: net-
work monitoring, projection calculation, projection storage,
and adoption of new projections. The phases are described
in the subsections below. The reader should then be able to
recognize each of these phases when reading the humming
consensus algorithm description in Section 10.

9.1 Network monitoring
Monitoring of local network conditions can be implemented
in many ways. None are mandatory, as far as this RFC is
concerned. Easy-to-maintain code should be the primary
driver for any implementation. Early versions of Machi may
use some/all of the following techniques:

• Other FLU file and projection store API requests.
• Internal “no op” FLU-level protocol request & response.
• Network tests via ICMP ECHO REQUEST, a.k.a. ping(8)

Output of the monitor should declare the up/down (or
alive/unknown) status of each server in the projection. Such
Boolean status does not eliminate fuzzy logic, probabilistic
methods, or other techniques for determining availability
status. A hard choice of boolean up/down status is required
only by the projection calculation phase (Section 9.2).

9.2 Calculating a new projection data structure
A new projection may be required whenever an administra-
tive change is requested or in response to network conditions
(e.g., network partitions, crashed server).

Projection calculation is a pure computation, based on
input of:

1. The current projection epoch’s data structure

2. Administrative request (if any)

3. Status of each server, as determined by network monitor-
ing (Section 9.1).

Decisions about when to calculate a projection are made
using additional runtime information. Administrative change
requests probably should happen immediately. Change based
on network status changes may require retry logic and de-
lay/sleep time intervals.

9.3 Writing a new projection
In Machi’s case, the writing a new projection phase is very
straightforward; see Section 8.2 for the technique for writ-
ing projections to all participating servers’ projection stores.
Humming Consensus does not care if the writes succeed or

not: its final phase, adopting a new projection, will determine
which write operations are usable.

9.4 Adoption a new projection
It may be helpful to consider the projections written to the
cluster’s public projection stores as “suggestions” for what
the cluster’s new projection ought to be. (We avoid using the
word “proposal” here, to avoid direct parallels with protocols
such as Raft and Paxos.)

In general, a projection Pnew at epoch Enew is adopted
by a server only if the change in state from the local server’s
current projection to new projection, Pcurrent → Pnew will
not cause data loss, e.g., the Update Propagation Invariant
and all other safety checks required by chain repair in Sec-
tion 13 are correct. For example, any new epoch must be
strictly larger than the current epoch, i.e., Enew > Ecurrent.

Machi first reads the latest projection from all available
public projection stores. If the result is not a single unan-
mous projection, then we return to the step in Section 9.2.
If the result is a unanimous projection Pnew in epoch Enew,
and if Pnew does not violate chain safety checks, then the
local node may replace its local Pcurrent projection with
Pnew.

Not all safe projection transitions are useful, however. For
example, it’s trivally safe to suggest projection Pzero, where
the chain length is zero. In an eventual consistency environ-
ment, projection Pone where the chain length is exactly one
is also trivially safe.6

10. Humming Consensus
Humming consensus describes consensus that is derived
only from data that is visible/available at the current time.
It’s OK if a network partition is in effect and not all chain
members are available; the algorithm will calculate a rough
consensus despite not having input from all chain members.
Humming consensus may proceed to make a decision based
on data from only one participant, i.e., only the local node.

• When operating in AP mode, i.e., in eventual consistency
mode, humming consensus may reconfigure a chain of
length N into N independent chains of length 1. When a
network partition heals, the humming consensus is suf-
ficient to manage the chain so that each replica’s data
can be repaired/merged/reconciled safely. Other features
of the Machi system are designed to assist such repair
safely.

• When operating in CP mode, i.e., in strong consistency
mode, humming consensus would require additional re-
strictions. For example, any chain that didn’t have a min-
imum length of the quorum majority size of all members
would be invalid and therefore would not move itself out
of wedged state. In very general terms, this requirement

6 Although, if the total number of participants is more than one, eventual
consistency would demand that Pself cannot be used forever.

Draft #0.9, May 2014 6 2015/5/5

for a quorum majority of surviving participants is also a
requirement for Paxos, Raft, and ZAB. See Section 11
for a proposal to handle “split brain” scenarios while in
CP mode.

If a projection suggestion is made during epoch E, hum-
ming consensus will eventually discover if other participants
have made a different suggestion during epoch E. When
a conflicting suggestion is discovered, newer & later time
epochs are defined to try to resolve the conflict.

The next portion of this section follows the same pattern
as Section 9: network monitoring, calculating new projec-
tions, writing projections, then perhaps adopting the newest
projection (which may or may not be the projection that we
just wrote). Beginning with Section 10.5, we provide addi-
tional detail to the rough outline of humming consensus.

This section will refer heavily to Figure 2, a flowchart of
the humming consensus algorithm. The following notation
is used by the flowchart and throughout this section.

Author The name of the server that created the projection.

Rank Assigns a numeric score to a projection, see Sec-
tion 10.6.

E The epoch number of a projection.

UPI ”Update Propagation Invariant”. The UPI part of the
projection is the ordered list of chain members where
the Update Propagation Invariant of the original Chain
Replication paper [19] is preserved. All UPI members of
the chain have their data fully synchronized and consis-
tent, except for updates in-process at the current instant
in time. The UPI list is what Chain Replication usually
considers “the chain”. For strongly consistent read oper-
ations, all clients send their read operations to the tail/last
member of the UPI server list. In Hibari’s implementation
of Chain Replication [7], the chain members between the
“head” and “official tail” (inclusive) are what Machi calls
the UPI server list. (See also Section A.1.)

Repairing The ordered list of nodes that are in repair mode,
i.e., synchronizing their data with the UPI members of the
chain. In Hibari’s implementation of Chain Replication,
any chain members that follow the “official tail” are what
Machi calls the repairing server list.

Down The list of chain members believed to be down, from
the perspective of the author.

Pcurrent The projection actively used by the local node
right now. It is also the projection with largest epoch
number in the local node’s private projection store.

Pnewprop A new projection suggestion, as calculated by the
local server (Section 10.2).

Platest The highest-ranked projection with the largest sin-
gle epoch number that has been read from all available
public projection stores, including the local node’s pub-
lic projection store.

Unanimous The Platest projection is unanimous if all repli-
cas in all accessible public projection stores are effec-
tively identical. All major elements such as the epoch
number, checksum, and UPI list must the same.

Pcurrent → Platest transition safe? A predicate function
to check the sanity & safety of the transition from the
local server’s Pcurrent to the Platest projection.

Stop state One iteration of the self-management algorithm
has finished on the local server.

The flowchart has three columns, from left to right:

Column A Is there any reason to change?

Column B Do I act?

Column C How do I act?

C1xx Save latest suggested projection to local private
store, unwedge, then stop.

C2xx Ask the author of Platest to try again, then we wait,
then iterate.

C3xx Our new projection Pnewprop appears best, so
write it to all public projection stores, then iterate.

The Erlang source code that implements the Machi chain
manager is structured as a state machine where the func-
tion executing for the flowchart’s state is named by the ap-
proximate location of the state within the flowchart. Most
flowchart states in a column are numbered in increasing or-
der, top-to-bottom. These numbers appear in blue in Fig-
ure 2. Some state numbers, such as A40, describe multi-
ple flowchart states; the Erlang code for that function, e.g.
react to env A40(), implements the logic for all such
flowchart states.

10.1 Network monitoring
The actions described in this section are executed in the top
part of Column A of Figure 2. See also, Section 9.1.

In today’s implementation, there is only a single crite-
rion for determining the alive/perhaps-not-alive status of a
remote server S: is S’s projection store available now? This
question is answered by attemping to read the projection
store on server S. If successful, then we assume that all S
is available. If S’s projection store is not available for any
reason (including timeout), we assume S is entirely unavail-
able. This simple single criterion appears to be sufficient for
humming consensus, according to simulations of arbitrary
network partitions.

10.2 Calculating a new projection data structure
The actions described in this section are executed in the top
part of Column A of Figure 2. See also, Section 9.2.

Execution starts at “Start” state of Column A of Figure 2.
Rule A20’s uses recent success & failures in accessing other
public projection stores to select a hard boolean up/down
status for each participating server.

Draft #0.9, May 2014 7 2015/5/5

Figure 2. Humming consensus flow chart

10.2.1 Calculating flapping state
Also at this stage, the chain manager calculates its local
“flapping” state. The name “flapping” is borrowed from IP
network engineer jargon “route flapping”:

“Route flapping is caused by pathological con-
ditions (hardware errors, software errors, configu-
ration errors, intermittent errors in communications
links, unreliable connections, etc.) within the network
which cause certain reachability information to be re-
peatedly advertised and withdrawn.” [21]

Flapping due to constantly changing network partitions
and/or server crashes and restarts Currently, Machi does
not attempt to dampen, smooth, or ignore recent history
of constantly flapping peer servers. If necessary, a failure
detector such as the ϕ accrual failure detector [10] can be
used to help mange such situations.

Flapping due to asymmetric network partitions The sim-
ulator’s behavior during stable periods where at least one
node is the victim of an asymmetric network partition is
. . . weird, wonderful, and something I don’t completely un-
derstand yet. This is another place where we need more eyes
reviewing and trying to poke holes in the algorithm.

In cases where any node is a victim of an asymmetric net-
work partition, the algorithm oscillates in a very predictable
way: each server S makes the same Pnew projection at epoch
E that S made during a previous recent epoch E − δ (where
δ is small, usually much less than 10). However, at least
one node makes a suggestion that makes rough consensus
impossible. When any epoch E is not acceptable (because
some node disagrees about something, e.g., which nodes are
down), the result is more new rounds of suggestions that cre-
ate a repeating loop that lasts as long as the asymmetric par-
tition lasts.

From the perspective of S’s chain manager, the pattern
of this infinite loop is easy to detect: S inspects the pattern

Draft #0.9, May 2014 8 2015/5/5

of the last L projections that it has suggested, e.g., the last
10. Tiny details such as the epoch number and creation
timestamp will differ, but the major details such as UPI list
and repairing list are the same.

If the major details of the last L projections authored and
suggested by S are the same, then S unilaterally decides that
it is “flapping” and enters flapping state. See Section 10.5 for
additional disucssion of the flapping state.

10.2.2 When to calculate a new projection
The Chain Manager schedules a periodic timer to act as a
reminder to calculate a new projection. The timer interval
is typically 0.5–2.0 seconds, if the cluster has been stable.
A client may call an external API call to trigger a new
projection, e.g., if that client knows that an environment
change has happened and wishes to trigger a response prior
to the next timer firing.

It’s recommended that the timer interval be staggered
according to the participant ranking rules in Section 10.6;
higher-ranked servers use shorter timer intervals. Staggering
sleep timers is not required, but the total amount of churn (as
measured by suggested projections that are ignored or imme-
diately replaced by a new and nearly-identical projection) is
lower when using staggered timers.

10.3 Writing a new projection
See also: Section 9.3.

To focus very specifically about writing a projection, Fig-
ure 2 shows that writing a private projection is done by state
C110 and that writing a public projection is done by states
C300 and C310.

Broadly speaking, there are a number of decisions made
in all three columns of Figure 2 to decide if and when any
type of projection should be written at all. Sometimes, the
best action is to do nothing.

10.3.1 Column A: Is there any reason to change?
The main tasks of the flowchart states in Column A is to
calculate a new projection Pnew and perhaps also the inner
projection Pnew2 if we’re in flapping mode. Then we try
to figure out which projection has the greatest merit: our
current projection Pcurrent, the new projection Pnew, or the
latest epoch Platest. If our local Pcurrent projection is best,
then there’s nothing more to do.

10.3.2 Column B: Do I act?
The main decisions that states in Column B need to make
are:

• Is the Platest projection written unanimously (as far as
we call tell right now)? If yes, then we consider using it
for our new internal state; go to state C100.

• We compare Platest projection to our local Pnew. If
Platest is better, then we wait for a while. The waiting
loop is broken by a local retry counter. If the counter is

small enough, we wait (via state C200). While we wait,
the author of the Platest projection will have an opportu-
nity to re-write it in a newer epoch unanimously. If the
retry counter is too big, then we break out of our loop
and go to state C300.

• Otherwise we go to state C300, where we try to write
our Pnew to all public projection stores because, as far as
we can discern, our projection is best and everyone else
ought to know it.

It’s notable that if Pnew is truly the best projection
available at the moment, it must always first be written
to everyone’s public projection stores and only then pro-
cessed through another monitor & calculate loop through
the flowchart.

10.3.3 Column C: How do I act?
This column contains three variations of how to act:

C1xx Try to adopt the Platest suggestion. If the transi-
tion between Pcurrent to Platest isn’t safe, then jump
to C300. If it is completely safe, we’ll use it by storing
Platest in our local private projection store and then adopt
it by setting Pcurrent = Platest.

C2xx Do nothing but sleep a while. Then we loop back
to state A20 and step through the flowchart loop again.
Optionally, we might want to poke the author of Platest to
ask it to write its proposal unanimously in a later epoch.

C3xx We try to replicate our Pnew suggestion to all local
projection stores, because it seems best.

10.4 Adopting a new projection
See also: Section 9.4.

The latest projection Platest is adopted by a Machi server
at epoch E if the following two requirements are met:

#1: All available copies of Platest are unanimous/identical
If we read two projections at epoch E, P 1

E and P 2
E , with

different checksum values, then we must consider P 2
E ̸= P 1

E

and therefore the suggested projections at epoch E are not
unanimous.

#2: The transition from current → new projection is safe
Given the projection that the server is currently using,
Pcurrent, the projection Platest is evaluated by numerous
rules and invariants, relative to Pcurrent. If such rule or in-
variant is violated/false, then the local server will discard
Platest.

The transition from Pcurrent → Platest is checked for
safety and sanity. The conditions used for the check include:

1. The Erlang data types of all record members are correct.

2. The members of the UPI, repairing, and down lists con-
tain no duplicates and are in fact mutually disjoint.

3. The author node is not down (as far as we can observe).

Draft #0.9, May 2014 9 2015/5/5

4. There is no re-ordering of the UPI list members: the rel-
ative order of the UPI list members in both projections
must be strictly maintained. The same re-reordering re-
striction applies to all servers in Platest’s repairing list
relative to Pcurrent’s repairing list.

5. Any server S that was added to Platest’s UPI list must
appear in the tail the UPI list. Furthermore, S must have
been in Pcurrent’s repairing list and had successfully
completed file repair prior to the transition.

10.5 Additional discussion of flapping state
All Pnew projections calculated while in flapping state have
additional diagnostic information added, including:

• Flag: server S is in flapping state.
• Epoch number & wall clock timestamp when S entered

flapping state.
• The collection of all other known participants who are

also flapping (with respective starting epoch numbers).
• A list of nodes that are suspected of being partitioned,

called the “hosed list”. The hosed list is a union of all
other hosed list members that are ever witnessed, directly
or indirectly, by a server while in flapping state.

10.5.1 Flapping diagnostic data accumulates
While in flapping state, this diagnostic data is gathered from
all available participants and merged together in a CRDT-
like manner. Once added to the diagnostic data list, a datum
remains until S drops out of flapping state. When flapping
state stops, all accumulated diagnostic data is discarded.

This accumulation of diagnostic data in the projection
data structure acts in part as a substitute for a separate gossip
protocol. However, since all participants are already com-
municating with each other via read & writes to each oth-
ers’ projection stores, the diagnostic data can propagate in a
gossip-like manner via the projection stores.

10.5.2 Flapping example (part 1)
Any server listed in the “hosed list” is suspected of having
some kind of network communication problem with some
other server. For example, let’s examine a scenario involving
a Machi cluster of servers a, b, c, d, and e. Assume there
exists an asymmetric network partition such that messages
from a → b are dropped, but messages from b → a are
delivered.7

Once a participant S enters flapping state, it starts gath-
ering the flapping starting epochs and hosed lists from all of
the other projection stores that are available. The sum of this
info is added to all projections calculated by S. For exam-

7 If this partition were happening at or below the level of a reliable delivery
network protocol like TCP, then communication in both directions would
be affected by an asymmetric partition. However, in this model, we are as-
suming that a “message” lost during a network partition is a uni-directional
projection API call or its response.

ple, projections authored by a will say that a believes that b
is down. Likewise, projections authored by b will say that b
believes that a is down.

10.5.3 The inner projection (flapping example, part 2)
. . . We continue the example started in the previous subsec-
tion. . .

Eventually, in a gossip-like manner, all other participants
will eventually find that their hosed list is equal to [a, b]. Any
other server, for example server c, will then calculate another
projection, Pnew2, using the assumption that both a and b are
down in addition to all other known unavailable servers.

• If operating in the default CP mode, both a and b are
down and therefore not eligible to participate in Chain
Replication. This may cause an availability problem for
the chain: we may not have a quorum of participants (real
or witness-only) to form a correct UPI chain.

• If operating in AP mode, a and b can still form two
separate chains of length one, using UPI lists of [a] and
[b], respectively.

This re-calculation, Pnew2, of the new projection is called
an “inner projection”. The inner projection definition is
nested inside of its parent projection, using the same flap-
ping disagnostic data used for other flapping status tracking.

When humming consensus has determined that a projec-
tion state change is necessary and is also safe (relative to
both the outer and inner projections), then the outer projec-
tion8 is written to the local private projection store. With re-
spect to future iterations of humming consensus, the innter
projection is ignored. However, with respect to Chain Repli-
cation, the server’s subsequent behavior will consider the in-
ner projection only. The inner projection is used to order the
UPI and repairing parts of the chain and trigger wedge/un-
wedge behavior. The inner projection is also advertised to
Machi clients.

The epoch of the inner projection, Einner is always less
than or equal to the epoch of the outer projection, E. The
Einner epoch typically only changes when new servers are
added to the hosed list.

To attempt a rough analogy, the outer projection is the
carrier wave that is used to transmit the inner projection and
its accompanying gossip of diagnostic data.

10.5.4 Outer projection churn, inner projection
stability

One of the intriguing features of humming consensus’s reac-
tion to asymmetric partition: flapping behavior continues for
as long as an any asymmetric partition exists.

10.5.5 Stability in symmetric partition cases
Although humming consensus hasn’t been formally proven
to handle all asymmetric and symmetric partition cases, the

8 With the inner projection Pnew2 nested inside of it.

Draft #0.9, May 2014 10 2015/5/5

current implementation appears to converge rapidly to a
single chain state in all symmetric partition cases. This is
in contrast to asymmetric partition cases, where “flapping”
will continue on every humming consensus iteration until all
asymmetric partition disappears. A formal proof is an area
of future work.

10.5.6 Leaving flapping state and discarding inner
projection

There are two events that can trigger leaving flapping state.

• A server S in flapping state notices that its long history of
repeatedly suggesting the same projection will be broken:
S instead calculates some differing projection instead.
This change in projection history happens whenever a
perceived network partition changes in any way.

• Server S reads a public projection suggestion, Pnoflap,
that is authored by another server S′, and that Pnoflap

no longer contains the flapping start epoch for S′ that is
present in the history that S has maintained while S has
been in flapping state.

When either trigger event happens, server S will exit flap-
ping state. All new projections authored by S will have all
flapping diagnostic data removed. This includes stopping use
of the inner projection: the UPI list of the inner projection is
copied to the outer projection’s UPI list, to avoid a drastic
change in UPI membership.

10.6 Ranking projections
A projection’s rank is based on the epoch number (higher
always wins), chain length (larger wins), number & state of
any repairing members of the chain (larger wins), and node
name of the author server (as a tie-breaking criteria).

11. “Split brain” management in CP Mode
Split brain management is a thorny problem. The method
presented here is one based on pragmatics. If it doesn’t work,
there isn’t a serious worry, because Machi’s first serious
use case all require only AP Mode. If we end up falling
back to “use Riak Ensemble” or “use ZooKeeper”, then
perhaps that’s fine enough. Meanwhile, let’s explore how
a completely self-contained, no-external-dependencies CP
Mode Machi might work.

Wikipedia’s description of the quorum consensus solu-
tion9 is nice and short:

A typical approach, as described by Coulouris et
al.,[4] is to use a quorum-consensus approach. This
allows the sub-partition with a majority of the votes to
remain available, while the remaining sub-partitions
should fall down to an auto-fencing mode.

This is the same basic technique that both Riak Ensemble
and ZooKeeper use. Machi’s extensive use of write-registers

9 See http://en.wikipedia.org/wiki/Split-brain (computing).

Partition “side” Partition “side”
Quorum UPI Minority UPI
[S1, S0, S2] []
[W0, S1, S0] [W1, S2]
[W1,W0, S1] [S0, S2]

Figure 3. Illustration of witness servers: on the left side,
witnesses provide enough servers to form a UPI chain of
quorum length. Servers on the right side cannot suggest a
quorum UPI chain and therefore wedge themselves. Under
real conditions, there may be multiple minority “sides”.

are a big advantage when implementing this technique. Also
very useful is the Machi “wedge” mechanism, which can au-
tomatically implement the “auto-fencing” that the technique
requires. All Machi servers that can communicate with only
a minority of other servers will automatically “wedge” them-
selves, refuse to author new projections, and and refuse all
file API requests until communication with the majority10

can be re-established.

11.1 The quorum: witness servers vs. real servers
TODO Proofread for clarity: this is still a young draft.

In any quorum-consensus system, at least 2f + 1 partic-
ipants are required to survive f participant failures. Machi
can borrow an old technique of “witness servers” to permit
operation despite having only a minority of “real” servers.

A “witness server” is one that participates in the network
protocol but does not store or manage all of the state that a
“real server” does. A “real server” is a Machi server as de-
scribed by this RFC document. A “witness server” is a server
that only participates in the projection store and projection
epoch transition protocol and a small subset of the file ac-
cess API. A witness server doesn’t actually store any Machi
files. A witness server’s state is very tiny when compared to
a real Machi server.

A mixed cluster of witness and real servers must still
contain at least a quorum f + 1 participants. However, as
few as one of them must be a real server, and the remaining
f are witness servers. In such a cluster, any majority quorum
must have at least one real server participant.

Witness servers are always placed at the front of the
chain.

When in CP mode, any server that is on the minority
side of a network partition and thus cannot calculate a new
projection that includes a quorum of servers will enter wedge
state and remain wedged until the network partition heals
enough to communicate with a quorum of. This is a nice
property: we automatically get “fencing” behavior.11

10 I.e, communication with the majority’s collection of projection stores.
11 Any server on the minority side is wedged and therefore refuses to serve
because it is, so to speak, “on the wrong side of the fence.”

Draft #0.9, May 2014 11 2015/5/5

11.2 Witness server data and protocol changes
Some small changes to the projection’s data structure are
required (relative to the initial spec described in [5]). The
projection itself needs new annotation to indicate the oper-
ating mode, AP mode or CP mode. The state type notifies
the chain manager how to react in network partitions and
how to calculate new, safe projection transitions and which
file repair mode to use (Section 13). Also, we need to label
member server servers as real- or witness-type servers.

Write API requests are processed by witness servers in
almost but not quite no-op fashion. The only requirement
of a witness server is to return correct interpretations of
local projection epoch numbers, via the error bad epoch

and error wedged error codes. In fact, a new API call
is sufficient for querying witness servers: {check epoch,

m epoch()}. Any client write operation sends the check -

epoch API command to witness servers and sends the usual
write req command to real servers.

11.3 Restarting after entire chain crashes
There’s a corner case that requires additional safety checks
to preserve strong consistency: restarting after the entire
chain crashes.

The default restart behavior for the chain manager is to
start the local server S with Pcurrent = Pzero, i.e., S be-
lieves that the current chain length is zero. Then S’s chain
manager will attempt to join the chain by waiting for an-
other active chain member S′ to notice that S is now avail-
able. Then S′’s chain manager will automatically suggest a
projection where S is added to the repairing list. If there is
no other active server, then S will suggest projection Pone, a
chain of length one where S is the sole UPI member of the
chain.

The default restart strategy cannot work correctly if: a).
all members of the chain crash simultaneously (e.g., power
failure), or b). the UPI chain was not at maximum length
(i.e., no chain members are under repair or down). For ex-
ample, assume that the cluster consists of servers Sa, Sb,
and witness W0. Assume that the UPI chain is Pone =
[W0, Sa] when a power failure halts the entire data center.
When power is restored, let’s assume server Sb restarts first.
Sb’s chain manager must suggest neither [Sb] nor [W0, Sb].
Clients must not access Sb at this time because we do not
know how much stale data Sb may have.

The chain’s operational history is preserved and dis-
tributed amongst the participants’ private projection stores.
The maximum of the private projection store’s epoch num-
ber from a quorum of servers (including witnesses) gives
sufficient information to know how to safely restart a chain.
In the example above, we must endure the worst-case and
wait until Sa also returns to service.

1. Projection PE says that chain membership is [Sa].

2. A write of bytes B to file F at offset O is successful.

3. An administration API request triggers projection PE+1

that expands chain membership is [Sa, Sb]. Al file re-
pair/resyncronization process is scheduled to start some-
time later.

4. FLU Sa crashes.

5. The chain manager on Sb notices Sa’s crash, decides to
create a new projection PE+2 where chain membership
is [Sb]; Sb executes a couple rounds of Humming Con-
sensus, adopts PE+2, unwedges itself, and continues op-
eration.

6. The bytes in B are definitely unavailable at the moment.
If server Sa is never re-added to the chain, then B are lost
forever.

Figure 4. An illustration of data loss due to careless han-
dling of file repair/synchronization.

12. Possible problems with Humming
Consensus

There are some unanswered questions about Machi’s pro-
posed chain management technique. The problems that we
guess are likely/possible include:

• A counter-example is found which nullifies Humming
Consensus’s safety properties.

• Coping with rare flapping conditions. It’s hoped that the
“best projection” ranking system will be sufficient to
prevent endless flapping of projections, but it isn’t yet
clear that it will be.

• CP Mode management via the method proposed in Sec-
tion 11 may not be sufficient in all cases.

13. File Repair/Synchronization
There are some situations where read-repair of individual
byte ranges of files is insufficient and repair of entire files
is necessary.

• To synchronize data on servers added to the end of
a chain in a projection change. This case covers both
adding a new, data-less server and re-adding a previous,
data-full server back to the chain.

• To avoid data loss when changing the order of the chain’s
existing servers.

Both situations can cause data loss if handled incorrectly.
If a violation of the Update Propagation Invariant (see end of
Section A) is permitted, then the strong consistency guaran-
tee of Chain Replication is violated. Machi uses write-once
registers, so the number of possible strong consistency viola-
tions is smaller than Chain Replication of mutable registers.

Draft #0.9, May 2014 12 2015/5/5

[

Chain #1 (U.P. Invariant preserving)︷ ︸︸ ︷
H1︸︷︷︸

Head of Heads

,M11, . . . , T1︸︷︷︸
Tail #1

|

Chain #2 (repairing)︷ ︸︸ ︷
H2,M21, . . . , T2︸︷︷︸

Tail #2

| . . . |

Chain #n (repairing)︷ ︸︸ ︷
Hn,Mn1, . . . , Tn︸︷︷︸

Tail #n & Tail of Tails (Ttails)

]

Figure 5. A general representation of a “chain of chains”: a chain prefix of Update Propagation Invariant preserving FLUs
(“Chain #1”) with FLUs from an arbitrary n− 1 other chains under repair.

[

Chain (U.P. Invariant preserving)︷ ︸︸ ︷
H1︸︷︷︸

Head

,M11, T1,H2,M21, T2, . . . Hn,Mn1, Tn︸︷︷︸
Tail

]

Figure 6. Representation of Figure 5 after all repairs have
finished successfully and a new projection has been calcu-
lated.

However, even when using write-once registers, any client
that witnesses a written → unwritten transition is a violation
of strong consistency. Avoiding even this single bad scenario
can be a bit tricky; see Figure 4 for a simple example.

13.1 Just “rsync” it!
A simple repair method might loosely be described as “just
rsync all files to all servers in an infinite loop.”12 Unfor-
tunately, such an informal method cannot tell you exactly
when you are in danger of data loss and when data loss has
actually happened. However, if we always maintain the Up-
date Propagation Invariant, then we know exactly when data
loss is imminent or has happened.

We intend to use Machi for multiple use cases, in both
require strong consistency and eventual consistency envi-
ronments. For a use case that implements a CORFU-like
service, strong consistency is a non-negotiable requirement.
Therefore, we will use the Update Propagation Invariant as
the foundation for Machi’s data loss prevention techniques.

13.2 Whole file repair as servers are (re-)added to a
chain

Machi’s repair process must preserve the Update Propaga-
tion Invariant. To avoid data races with data copying from
“U.P. Invariant preserving” servers (i.e. fully repaired with
respect to the Update Propagation Invariant) to servers of
unreliable/unknown state, a projection like the one shown in
Figure 5 is used. In addition, the operations rules for data
writes and reads must be observed in a projection of this
type.

• The system maintains the distinction between “U.P. pre-
serving” and “repairing” FLUs at all times. This allows
the system to track exactly which servers are known

12 The file format suggested in [5] does not actually permit rsync as-
is to be sufficient. A variation of rsync would need to be aware of the
data/metadata split within each file and only replicate the data section
. . . and the metadata would still need to be managed outside of rsync.

to preserve the Update Propagation Invariant and which
servers do not.

• All “repairing” FLUs must be added only at the end of
the chain-of-chains.

• All write operations must flow successfully through the
chain-of-chains in order, i.e., from Tail #1 to the “tail of
tails”. This rule also includes any repair operations.

While normal operations are performed by the cluster, a
file synchronization process is initiated to repair any data
missing in the tail servers. The sequence of steps differs
depending on the AP or CP mode of the system.

13.2.1 Repair in CP mode
In cases where the cluster is operating in CP Mode, CORFU’s
repair method of “just copy it all” (from source FLU to re-
pairing FLU) is correct, except for the small problem pointed
out in Section B. The problem for Machi is one of time &
space. Machi wishes to avoid transferring data that is already
correct on the repairing nodes. If a Machi node is storing
170 TBytes of data, we really do not wish to use 170 TBytes
of bandwidth to repair only 2 MBytes of truly-out-of-sync
data.

However, it is vitally important that all repairing FLU
data be clobbered/overwritten with exactly the same data as
the Update Propagation Invariant preserving chain. If this
rule is not strictly enforced, then fill operations can corrupt
Machi file data. The algorithm proposed is:

1. Change the projection to a “chain of chains” configura-
tion such as depicted in Figure 5.

2. For all files on all FLUs in all chains, extract the lists
of written/unwritten byte ranges and their correspond-
ing file data checksums. Send these lists to the tail of
tails Ttails, which will collate all of the lists into a
list of tuples such as {FName, Ostart, Oend, CSum,

FLU List} where FLU List is the list of all FLUs in
the entire chain of chains where the bytes at the location
{FName, Ostart, Oend} are known to be written (as of
the beginning of the current repair period).

3. For chain #1 members, i.e., the leftmost chain relative
to Figure 5, repair files byte ranges for any chain #1
members that are not members of the FLU List set.
This will repair any partial writes to chain #1 that were
unsuccessful (e.g., client crashed). (Note however that
this step only repairs FLUs in chain #1.)

Draft #0.9, May 2014 13 2015/5/5

4. For all file byte ranges B in all files on all FLUs in all
repairing chains where Tail #1’s value is written, send
repair data B & metadata to any repairing FLU if the
value repairing FLU’s value is unwritten or the checksum
is not exactly equal to Tail #1’s checksum.

5. For all file byte ranges B in all files on all FLUs in all
repairing chains where Tail #1’s value is unwritten ⊥,
force B on all repairing FLUs to also be ⊥.13

When the repair is known to have copied all missing
data successfully, then the chain can change state via a new
projection that includes the repaired FLU(s) at the end of
the U.P. Invariant preserving chain #1 in the same order in
which they appeared in the chain-of-chains during repair.
See Figure 6. This transition may progress one server at a
time, moving the server formerly in role H2 to the new role
T1 and adjusting all downstream chain members to “shift
left” by one position.

The repair can be coordinated by the Ttails FLU or any
other FLU or cluster member that has spare capacity to
manage the process.

There is no race condition here between the enumeration
steps and the repair steps. Why? Because the change in pro-
jection at step #1 will force any new data writes to adapt to
a new projection. Consider the mutations that either happen
before or after a projection change:

• For all mutations M1 prior to the projection change, the
enumeration steps #3 & #4 and #5 will always encounter
mutation M1. Any repair must write through the entire
chain-of-chains and thus will preserve the Update Propa-
gation Invariant when repair is finished.

• For all mutations M2 starting during or after the projec-
tion change has finished, a new mutation M2 may or may
not be included in the enumeration steps #3 & #4 and
#5. However, in the new projection, M2 must be written
to all chain of chains members, and such in-order writes
will also preserve the Update Propagation Invariant and
therefore is also be safe.

13.2.2 Repair in AP Mode
In cases the cluster is operating in AP Mode:

1. In general, follow the steps of the “CP Mode” sequence
(above).

2. At step #3, instead of repairing only FLUs in Chain #1,
AP mode will repair the byte range of any FLU that is not
a member of the FLU List set.

3. Do not use step #5; stop at step #4; under no circum-
stances go to step #6.

13 This may appear to be a violation of write-once register semantics, but in
truth, we are fixing the results of partial write failures and therefore must be
able to undo any partial write in this circumstance.

The end result is a big “merge” where any {FName,
Ostart, Oend} range of bytes that is written on FLU Sw

but unwritten from FLU Su is written down the full chain
of chains, skipping any FLUs where the data is known to
be written and repairing all such Su servers. Such writes
will also preserve Update Propagation Invariant when repair
is finished, even though AP Mode does not require strong
consistency that the Update Propagation Invariant provides.

13.3 Whole-file repair when changing server ordering
within a chain

This section has been cut — please see Git commit history
of this document for discussion.

14. Additional sources for information about
humming consensus

• “On Consensus and Humming in the IETF” [11], for
background on the use of humming by IETF meeting
participants during IETF meetings.

• “On ‘Humming Consensus’, an allegory” [8], for an alle-
gory in homage to the style of Leslie Lamport’s original
Paxos paper.

15. Acknowledgements
We wish to thank everyone who has read and/or reviewed
this document in its really-terrible early drafts and have
helped improve it immensely: Justin Sheehy, Kota Uenishi,
Shunichi Shinohara, Andrew Stone, Jon Meredith, Chris
Meiklejohn, John Daily, Mark Allen, and Zeeshan Lakhani.

References
[1] Abu-Libdeh, Hussam et al. Leveraging Sharding in the Design

of Scalable Replication Protocols. Proceedings of the 4th
Annual Symposium on Cloud Computing (SOCC’13), 2013.
http://www.ymsir.com/papers/sharding-socc.pdf

[2] Balakrishnan, Mahesh et al. CORFU: A Shared Log Design
for Flash Clusters. Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI’12),
2012. http://research.microsoft.com/pubs/157204/
corfumain-final.pdf

[3] Balakrishnan, Mahesh et al. CORFU: A Dis-
tributed Shared Log ACM Transactions on Com-
puter Systems, Vol. 31, No. 4, Article 10, Decem-
ber 2013. http://www.snookles.com/scottmp/corfu/
corfu.a10-balakrishnan.pdf

[4] Basho Japan KK. Machi Chain Self-Management
Sketch https://github.com/basho/machi/tree/

master/doc/chain-self-management-sketch.org

[5] Basho Japan KK. Machi: an immutable file
store https://github.com/basho/machi/tree/

master/doc/high-level-machi.pdf

[6] Calder, Brad et al. Windows Azure Storage: A
Highly Available Cloud Storage Service with Strong

Draft #0.9, May 2014 14 2015/5/5

Consistency Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP’11),
2011. http://sigops.org/sosp/sosp11/current/

2011-Cascais/printable/11-calder.pdf

[7] Fritchie, Scott Lystig. Chain Replication in The-
ory and in Practice. Proceedings of the 9th ACM
SIGPLAN Workshop on Erlang (Erlang’10), 2010.
http://www.snookles.com/scott/publications/

erlang2010-slf.pdf

[8] Fritchie, Scott Lystig. On Humming Consensus, an alle-
gory. http://www.snookles.com/slf-blog/2015/03/
01/on-humming-consensus-an-allegory/

[9] Seth Gilbert and Nancy Lynch. Brewers conjec-
ture and the feasibility of consistent, available,
partition-tolerant web services. SigAct News, June
2002. http://webpages.cs.luc.edu/ pld/353/

gilbert lynch brewer proof.pdf

[10] Naohiro Hayashibara et al. The accrual failure detector. Pro-
ceedings of the 23rd IEEE International Symposium on. IEEE,
2004. https://dspace.jaist.ac.jp/dspace/bitstream/
10119/4784/1/IS-RR-2004-010.pdf

[11] Internet Engineering Task Force. RFC 7282:
On Consensus and Humming in the IETF.
https://tools.ietf.org/html/rfc7282

[12] Klophaus, Rusty. ”Riak Core.” ACM SIGPLAN Commer-
cial Users of Functional Programming (CUFP’10), 2010.
http://dl.acm.org/citation.cfm?id=1900176 and
https://github.com/basho/riak core

[13] Kreps, Jay. The Log: What every software engineer
should know about real-time data’s unifying abstrac-
tion http://engineering.linkedin.com/distributed-

systems/log-what-every-software-engineer-should-

know-about-real-time-datas-unifying

[14] Kreps, Jay et al. Kafka: a distributed mes-
saging system for log processing. NetDB11.
http://research.microsoft.com/en-us/UM/people/

srikanth/netdb11/netdb11papers/netdb11-final12.pdf

[15] Lamport, Leslie. The Part-Time Parlia-
ment. DEC technical report SRC-049, 1989.
ftp://apotheca.hpl.hp.com/gatekeeper/pub/

DEC/SRC/research-reports/SRC-049.pdf

[16] Lamport, Leslie. Paxos Made Simple. In SIGACT News
#4, Dec, 2001. http://research.microsoft.com/users/
lamport/pubs/paxos-simple.pdf

[17] Miranda, Alberto et al. Random Slicing: Efficient and Scal-
able Data Placement for Large-Scale Storage Systems. ACM
Transactions on Storage, Vol. 10, No. 3, Article 9, July 2014.
http://www.snookles.com/scottmp/corfu/random-

slicing.a9-miranda.pdf

[18] Saito, Yasushi et al. Manageability, availability and perfor-
mance in Porcupine: a highly scalable, cluster-based mail ser-
vice. 7th ACM Symposium on Operating System Principles
(SOSP99). http://homes.cs.washington.edu/%7Elevy/
porcupine.pdf

[19] van Renesse, Robbert et al. Chain Replication for Sup-
porting High Throughput and Availability. Proceedings

of the 6th Conference on Symposium on Operating Sys-
tems Design & Implementation (OSDI’04) - Volume 6,
2004. http://www.cs.cornell.edu/home/rvr/papers/
osdi04.pdf

[20] Wikipedia. Consensus (“computer science”).
http://en.wikipedia.org/wiki/Consensus

(computer science)#Problem description

[21] Wikipedia. Route flapping.
http://en.wikipedia.org/wiki/Route flapping

A. Chain Replication: why is it correct?
See Section 3 of [19] for a proof of the correctness of Chain
Replication. A short summary is provide here. Readers in-
terested in good karma should read the entire paper.

A.1 The Update Propagation Invariant
“Update Propagation Invariant” is the original chain replica-
tion paper’s name for the Hi ⪰ Hj property mentioned in
Figure 7. This paper will use the same name. This property
may also be referred to by its acronym, “UPI”.

A.2 Chain Replication and strong consistency
The basic rules of Chain Replication and its strong consis-
tency guarantee:

1. All replica servers are arranged in an ordered list C.

2. All mutations of a datum are performed upon each replica
of C strictly in the order which they appear in C. A muta-
tion is considered completely successful if the writes by
all replicas are successful.

3. The head of the chain makes the determination of the
order of all mutations to all members of the chain. If the
head determines that some mutation Mi happened before
another mutation Mj , then mutation Mi happens before
Mj on all other members of the chain.14

4. All read-only operations are performed by the “tail”
replica, i.e., the last replica in C.

The basis of the proof lies in a simple logical trick, which
is to consider the history of all operations made to any server
in the chain as a literal list of unique symbols, one for each
mutation.

Each replica of a datum will have a mutation history list.
We will call this history list H . For the ith replica in the
chain list C, we call Hi the mutation history list for the ith

replica.
Before the ith replica in the chain list begins service, its

mutation history Hi is empty, []. After this replica runs in
a Chain Replication system for a while, its mutation history
list grows to look something like [M0,M1,M2, ...,Mm−1]

14 While necesary for general Chain Replication, Machi does not need this
property. Instead, the property is provided by Machi’s sequencer and the
write-once register of each byte in each file.

Draft #0.9, May 2014 15 2015/5/5

1. Destroy all data on the repair destination FLU.

2. Add the repair destination FLU to the tail of the chain in
a new projection Pp+1.

3. Change the active projection from Pp to Pp+1.

4. Let single item read repair fix all of the problems.

Figure 8. Simplest CORFU-style repair algorithm.

where m is the total number of mutations of the datum that
this server has processed successfully.

Let’s assume for a moment that all mutation operations
have stopped. If the order of the chain was constant, and
if all mutations are applied to each replica in the chain’s
order, then all replicas of a datum will have the exact same
mutation history: Hi = HJ for any two replicas i and j
in the chain (i.e., ∀i, j ∈ C,Hi = HJ). That’s a lovely
property, but it is much more interesting to assume that the
service is not stopped. Let’s look next at a running system.

If the entire chain C is processing any number of concur-
rent mutations, then we can still understand C’s behavior.
Figure 7 shows us two replicas in chain C: replica Ri that’s
on the left/earlier side of the replica chain C than some other
replica Rj . We know that i’s position index in the chain is
smaller than j’s position index, so therefore i < j. The re-
strictions of Chain Replication make it true that length(Hi)
≥ length(Hj) because it’s also that Hi ⊃ Hj , i.e, Hi on the
left is always is a superset of Hj on the right.

When considering Hi and Hj as strictly ordered lists, we
have Hi ⪰ Hj , where the right side is always an exact prefix
of the left side’s list. This prefixing propery is exactly what
strong consistency requires. If a value is read from the tail of
the chain, then no other chain member can have a prior/older
value because their respective mutations histories cannot be
shorter than the tail member’s history.

B. Divergence from CORFU’s repair
The original repair design for CORFU is simple and effec-
tive, mostly. See Figure 8 for a complete description of the
algorithm Figure 9 for an example of a strong consistency
violation that can follow.

A variation of the repair algorithm is presented in sec-
tion 2.5 of a later CORFU paper [3]. However, the re-use a
failed server is not discussed there, either: the example of a
failed server S6 uses a new server, S8 to replace S6. Further-
more, the repair process is described as:

“Once S6 is completely rebuilt on S8 (by copying
entries from S7), the system moves to projection (C),
where S8 is now used to service all reads in the range
[40K, 80K).”

The phrase “by copying entries” does not give enough de-
tail to avoid the same data race as described in Figure 9. We
believe that if “copying entries” means copying only written

1. Write value V to offset O in the log with chain [Sa]. This
write is considered successful.

2. Change projection to configure chain as [Sa, Sb]. All val-
ues on FLU Sb are unwritten, ⊥. We assume that Sb’s un-
written values will be written by read-repair operations.

3. FLU server Sa crashes. The new projection defines the
chain as [Sb].

4. A client attempts to read offset O and finds ⊥. This is
a strong consistency violation: the value V should have
been found.

Figure 9. An example scenario where the CORFU simplest
repair algorithm can lead to a violation of strong consistency.

pages, then CORFU remains vulnerable. If “copying entries”
also means “fill any unwritten pages prior to copying them”,
then perhaps the vulnerability is eliminated.15.

15 SLF’s note: Probably? This is my gut feeling right now. However, given
that I’ve just convinced myself 100% that fill during any possibility of split
brain is not safe in Machi, I’m not 100% certain anymore than this “easy”
fix for CORFU is correct.

Draft #0.9, May 2014 16 2015/5/5

On left side of C On right side of C
Looking at replica order in chain C:

i < j
For example:

0 < 2
It must be true: history lengths per replica:

length(Hi) ≥ length(Hj)
For example, a quiescent chain:

length(Hi) = 48 ≥ length(Hj) = 48
For example, a chain being mutated:

length(Hi) = 55 ≥ length(Hj) = 48
Example ordered mutation sets:
[M0,M1, . . . ,M46,M47, . . . ,M53,M54] ⊃ [M0,M1, . . . ,M46,M47]

Therefore the right side is always an ordered subset
of the left side. Furthermore, the ordered sets on both

sides have the exact same order of those elements they have in common.
The notation used by the Chain Replication paper is shown below:

[M0,M1, . . . ,M46,M47, . . . ,M53,M54] ⪰ [M0,M1, . . . ,M46,M47]

Figure 7. The “Update Propagation Invariant” as illustrated by Chain Replication protocol history.

Draft #0.9, May 2014 17 2015/5/5

