
Draft #1, April 2014

Machi: an immutable file store
High level design & strawman implementation suggestions
with focus on eventual consistency/”EC” mode of operation

Basho Japan KK

1. Origins
This document was first written during the autumn of 2014
for a Basho-only internal audience. Since its original drafts,
Machi has been designated by Basho as a full open source
software project. This document has been rewritten in 2015
to address an external audience. Furthermore, discussion of
the “chain manager” service and of strong consistency have
been moved to a separate document, please see [3].

2. Abstract
Our goal is a robust & reliable, distributed, highly available1

large file store based upon write-once registers, append-only
files, Chain Replication, and client-server style architecture.
All members of the cluster store all of the files. Distributed
load balancing/sharding of files is outside of the scope of this
system. However, it is a high priority that this system be able
to integrate easily into systems that do provide distributed
load balancing, e.g., Riak Core. Although strong consistency
is a major feature of Chain Replication, this document will
focus mainly on eventual consistency features — strong
consistency design will be discussed in a separate document.

3. Introduction
“I must not scope creep. Scope creep is the mind-

killer. Scope creep is the little-death that brings total
obliteration. I will face my scope.”

— Fred Hebert, @mononcqc

3.1 Origin of the name “Machi”
“Machi” is a Japanese word for “village” or “small town”.
A village is a rather self-contained thing, but it is small, not
like a city.

One use case for Machi is for file storage, as-is. However,
as Tokyo City is built with a huge collection of machis, so
then this project is also designed to work well as part of a
larger system, such as Riak Core. Tokyo wasn’t built in a day,
after all, and definitely wasn’t built out of a single village.

1 Capable of operating in “AP mode” or “CP mode” relative to the CAP
Theorem, see Section 4.7.

[]

3.2 Assumptions
Machi is a client-server system. All servers in a Machi clus-
ter store identical copies/replicas of all files, preferably large
files. This puts an effective limit on the size of a Machi clus-
ter. For example, five servers will replicate all files for an
effective replication N factor of 5.

Any mechanism to distribute files across a subset of
Machi servers is outside the scope of Machi and of this
design.

Machi’s design assumes that it stores mostly large files.
“Large file” means hundreds of MBytes or more per file. The
design “sweet spot” targets about 1 GByte/file and/or man-
aging up to a few million files in a single cluster. The maxi-
mum size of a single Machi file is limited by the server’s un-
derlying OS and file system; a practical estimate is 2Tbytes
or less but may be larger.

Machi files are write-once, read-many data structures;
the label “append-only” is mostly correct. However, to be
100% truthful truth, the bytes a Machi file can be written
temporally in any order.

Machi files are always named by the server; Machi clients
have no direct control of the name assigned by a Machi
server. Machi servers determine the file name and byte offset
to all client write requests. (Machi clients may advise servers
with a desired file name prefix.)

Machi shall be a robust and reliable system. Machi will
not lose data until a fundamental assumption has been vio-
lated, e.g., all servers have crashed permanently. Machi’s file
replicaion algorithms can provide strong or eventual consis-
tency and is provably correct. Our only task is to not put bugs
into the implementation of the algorithms. Machi’s small
pieces and restricted API and semantics will reduce (we be-
lieve) the effort required to test and verify the implementa-
tion.

Machi should not have “big” external runtime depen-
dencies when practical. For example, the feature set of
ZooKeeper makes it a popular distributed systems coordi-
nation service. When possible, Machi should try to avoid
using such a big runtime dependency. For the purposes of
explaining “big”, the Riak KV service is too big and thus
runs afoul of this requirement.

Draft #1, April 2014 1 2015/4/20

• Append bytes B to a file with name prefix "foo".
• Write bytes B to offset O of file F .
• Read N bytes from offset O of file F .
• List files: name, size, etc.

Figure 1. Nearly complete list of file API operations

1. Client1: Write 1 byte at offset 0 of file F .

2. Client2: Write 1 byte at offset 2 of file F .

3. Client3: (an intermittently slow client) Write 1 byte at
offset 1 of file F .

Figure 2. Example of temporally out-of-order file append
sequence that is valid within a Machi cluster.

Machi clients must assume that any interrupted or incom-
plete write operation may be readable at some later time.
Read repair or incomplete writes may happen long after the
client has finished or even crashed. In effect, Machi will pro-
vide clients with “at least once” behavior for writes.

Machi is not a Hadoop file system (HDFS) replacement.
There is no mechanism for writing Machi files to a subset
of available storage servers: all servers in a Machi server
store identical copies/replicas of all files. However, Machi is
intended to play very nicely with a layer above it, where that
layer does handle file scattering and on-the-fly file migration
across servers and all of the nice things that HDFS, Riak CS,
and similar systems can do.

3.3 Defining a Machi file
A Machi “file” is an undifferentiated, one-dimensional array
of bytes. This definition matches the POSIX definition of
a file. However, the Machi API does not conform to the
UNIX/POSIX file I/O API.

A list of client operations are shown in Figure 1. This list
may change, but it shows the basic shape of the service.

The file read & write granularity of Machi is one byte. (In
CORFU operation mode, perhaps, the granularity would be
page size on the order of 4 KBytes or 16 KBytes.)

3.3.1 Append-only files
Machi’s file writing semantics are append-only. Machi’s
append-only behavior is spatial and is not enforced tem-
porally. For example, Figure 2 shows client operations upon
a single file, in strictly increasing wall clock time ticks. Fig-
ure 2’s is perfectly valid Machi behavior.

Any byte in a file may have three states:

1. unwritten: no value has been assigned to the byte.

2. written: exactly one value has been assigned to the byte.

3. trimmed: only used for garbage collection & disk space
reclamation purposes

Transitions between these states are strictly ordered.
Valid orders are:

• unwritten → written
• unwritten → trimmed
• written → trimmed

Client append operations are atomic: the transition from
one state to another happens for all bytes, or else no transi-
tion is made for any bytes.

3.3.2 Machi servers choose all file names
A Machi server always chooses the full file name of file
that will have data appended to it. A Machi server always
chooses the offset within the file that will have data ap-
pended to it.

All file names chosen by Machi are unique, relative to
itself. Any duplicate file names can cause correctness viola-
tions.2

3.3.3 File integrity and bit-rot
Clients may specify a per-write checksum of the data being
written, e.g., SHA1. These checksums will be appended to
the file’s metadata. Checksums are first-class metadata and
is replicated with the same consistency and availability guar-
antees as its corresponding file data. Clients may optionally
fetch the checksum of the bytes they read.

Bit-rot can and will happen. To guard against bit-rot on
disk, strong checksums are used to detect bit-rot at all possi-
ble places.

• Client-calculated checksums of appended data
• Whole-file checksums, calculated by Machi servers for

internal sanity checking. See Section 8.3 for commentary
on how this may not be feasible.

• Any other place that makes sense for the paranoid.

Full 100% protection against arbitrary RAM bit-flips is
not a design goal . . . but would be cool for as research for
the great and glorious future. Meanwhile, Machi will use as
many “defense in depth” techniques as feasible.

3.3.4 File metadata
Files may have metadata associated with them. Clients may
request appending metadata to a file, for example, {file
F, bytes X-Y, property list of 2-tuples}. This
metadata receives second-class handling with regard to con-
sistency and availability, as described below and in contrast
to the per-append checksums described in Section 3.3.3

• File metadata is strictly append-only.
• File metadata is always eventually consistent.

2 For participation in a larger system, Machi can construct file names that
are unique within that larger system, e.g. by embedding a unique Machi
cluster name or perhaps a UUID-style string in the name.

Draft #1, April 2014 2 2015/4/20

• Temporal order of metadata entries is not preserved.
• Multiple metadata stores for a file may be merged at any

time.

If a client requires idempotency, then the property
list should contain all information required to identify
multiple copies of the same metadata item.

Metadata properties should be considered CRDT-like:
the final metadata list should converge eventually to a
single list of properties.

NOTE: It isn’t yet clear how much support early versions
of Machi will need for file metadata features.

3.3.5 File replica management via Chain Replication
Machi uses Chain Replication (CR) internally to maintain
file replicas and inter-replica consistency. A Machi cluster
of F + 1 servers can sustain the failure of up to F servers
without data loss.

A simple explanation of Chain Replication is that it is
a variation of single-primary/multiple-secondary replication
with the following restrictions:

1. All writes are strictly performed by servers that are ar-
ranged in a single order, known as the “chain order”, be-
ginning at the chain’s head and ending at the chain’s tail.

2. All strongly consistent reads are performed only by the
tail of the chain, i.e., the last server in the chain order.

3. Inconsistent reads may be performed by any single server
in the chain.

Machi contains enough Chain Replication implementa-
tion to maintain its chain state, strict file data integrity, and
file metadata eventual consistency. See also Section 3.3.6.

The first version of Machi will use a single chain for man-
aging all files in the cluster. If the system is quiescent, then
all chain members store the same data: all Machi servers
will all store identical files. Later versions of Machi may
play clever games with projection data structures and algo-
rithms that interpret these projections to implement alterna-
tive replication schemes. However, such clever games are
scope creep and are therefore research topics for the future.

Machi will probably not3 implement chain replication us-
ing CORFU’s description of its protocol. CORFU’s authors
made an implementation choice to make the FLU servers
(Section 4.1) as dumb as possible. The CORFU authors were
(in part) experimenting with the FLU server implemented by
an FPGA; a dumb-as-possible server was a feature.

Machi does not have CORFU’s minimalism as a design
principle. Therefore, it’s likely that Machi will implement
CR using the original Chain Replication [13] paper’s pattern
of message passing, i.e., with direct server-to-server message

3 Final decision TBD

passing.4 However, the description of the protocols in this
document will use CORFU-style Chain Replication. The
two variations are equivalent from a correctness point of
view — what matters is the communication pattern and
total number of messages required per operation. CORFU’s
client-driven messaging patterns feel easier to describe and
to align with CORFU- and Tango-related research papers.

3.3.6 Data integrity self-management
Machi servers automatically monitor each others health.
Signs of poor health will automatically reconfigure the
Machi cluster to avoid data loss and to provide maximum
availability. For example, if a server S crashes and later
restarts, Machi will automatically bring the data on S back
to full sync. This service will be provided by the “chain
manager”, which is described in [3].

Machi will provide an administration API for managing
Machi servers, e.g., cluster membership, file integrity and
checksum verification, etc.

3.4 Out of Machi’s scope
Anything not mentioned in this paper is outside of Machi’s
scope. However, it’s worth mentioning (again!) that the fol-
lowing are explicitly considered out-of-scope for Machi.

Machi does not distribute/shard files across disjoint sets
of servers. Distribution of files across Machi servers is left
for a higher level of abstraction, e.g. Riak Core. See also
Sections 3.1 and 3.2 and the quote at the top of Section 3.

Later versions of Machi may support erasure coding di-
rectly, or Machi can be used as-is to store files that client ap-
plications that are aware that they are manipulating erasure
coded data. In the latter case, the client can read a 1 GByte
file from a Machi cluster with a chain length of N , erasure
encode it in a 15-choose-any-10 encoding scheme and con-
catenate them into a 1.5 GByte file, then store each of the
fifteen 0.1 GByte chunks in a different Machi cluster, each
with a chain length of only 1. Using separate Machi clusters
makes the burden of physical separation of each coded piece
(i.e., “rack awareness”) someone/something else’s problem.

4. Architecture: base components and ideas
This section presents the major architectural components.
They are:

• The FLU: the server that stores a single replica of a file.
(Section 4.1)

• The Sequencer: assigns a unique file name + offset to
each file append request. (Section 4.2)

4 Also, the original CR algorithm’s requirement for message passing back
up the chain to enforce write consistency is not required: Machi’s combina-
tion of client-driven data repair and write-once registers make inter-server
synchronization unnecessary.

Draft #1, April 2014 3 2015/4/20

• The chain manager: monitors the health of the chain
and calculates new projections when failure is detected.
(Section 4.4)

• The Projection Store: a write-once key-value blob store,
used by Machi’s chain manager for storing projections.
(Section 4.3)

Also presented here are the major concepts used by
Machi components:

• The Projection: the data structure that describes the cur-
rent state of the Machi chain. Projections are stored in the
write-once Projection Store. (Section 4.5)

• The Projection Epoch Number (a.k.a. The Epoch): Each
projection is numbered with an epoch. (Also section 4.5)

• The Bad Epoch Error: a response when a protocol op-
eration uses a projection epoch number smaller than the
current projection epoch. (Section 4.6)

• The Wedge: a response when a protocol operation uses a
projection epoch number larger than the current projec-
tion epoch. (Section 4.7)

• AP Mode and CP Mode: the general mode of a Machi
cluster may be in “AP Mode” or “CP Mode”, which
are short-hand notations for Machi clusters with eventual
consistency or strong consistency behavior. Both modes
have different availability profiles and slightly different
feature sets. (Section 4.8)

4.1 The FLU
The basic idea of the FLU is borrowed from CORFU.
The base CORFU data server is called a “flash unit”. For
Machi, the equivalent server is nicknamed a FLU, a “FiLe
replica Unit”. A FLU is responsible for maintaining a single
replica/copy of each file (and its associated metadata) stored
in a Machi cluster.

The FLU’s API is very simple: see Figure 3 for its data
types and operations. This description is not 100% complete
but is sufficient for discussion purposes.

The FLU must enforce the state of each byte of each
file. Transitions between these states are strictly ordered. See
Section 3.3.1 for state transitions and the restrictions related
to those transitions.

The FLU also keeps track of the projection epoch number
(number and checksum both, see also Section 4.1.1) of the
last modification to a file. This projection number is used for
quick comparisons during repair (Section 7) to determine if
files are in sync or not.

4.1.1 Divergence from CORFU
In Machi, the type signature of m epoch() includes both the
projection epoch number and a checksum of the projection’s
contents. This checksum is used in cases where Machi is
configured to run in “AP mode”, which allows a running
Machi cluster to fragment into multiple running sub-clusters

during network partitions. Each sub-cluster can choose an
epoch projection number Pside for its side of the cluster.

After the partition is healed, it may be true that epoch
numbers assigned to two different projections Pleft and
Pright are equal. However, their checksum signatures will
differ. If a Machi client or server detects a difference in ei-
ther the epoch number or the epoch checksum, it must wedge
itself (Section 4.7) until a new projection with a larger epoch
number is available.

4.2 The Sequencer
For every file append request, the Sequencer assigns a
unique {file-name,byte-offset} location tuple.

Each FLU server runs a sequencer server. Typically, only
the sequencer of the head of the chain is used by clients.
However, for development and administration ease, each
FLU should have a sequencer running at all times. If a
client were to use a sequencer other than the chain head’s
sequencer, no harm would be done.

The sequencer must assign a new file name whenever any
of the following events happen:

• The current file size is too big, per cluster administration
policy.

• The sequencer or the entire FLU restarts.
• The FLU receives a projection or client API call that

includes a newer/larger projection epoch number than its
current projection epoch number.

The sequencer assignment given to a Machi client is valid
only for the projection epoch in which it was assigned.
Machi FLUs must enforce this requirement. If a Machi
client’s write attempt is interrupted in the middle by a pro-
jection change, then the following rules must be used to
continue:

• If the client’s write has been successful on at least the
head FLU in the chain, then the client may continue to
use the old location. The client is now performing read
repair of this location in the new epoch. (The client may
be required to add a “read repair” option to its requests
to bypass the FLUs usual enforcement of the location’s
epoch.)

• If the client’s write to the head FLU has not started yet,
or if it doesn’t know the status of the write to the head
(e.g., timeout), then the client must abandon the current
location assignment and request a new assignment from
the sequencer.

If the client eventually wishes to write a contiguous
chunk of Y bytes, but only X bytes (X < Y) are avail-
able right now, the client may make a sequencer request for
the larger Y byte range immediately. The client then uses
this file + byte range assignment to write the X bytes now
and all of the remaining Y −X bytes at some later time.

Draft #1, April 2014 4 2015/4/20

-type m_bytes() :: iolist().

-type m_csum() :: {none | sha1 | sha1_excl_final_20, binary(20)}.

-type m_epoch() :: {m_epoch_n(), m_csum()}.

-type m_epoch_n() :: non_neg_integer().

-type m_err_r() :: error_unwritten | error_trimmed.

-type m_err_w() :: error_written | error_trimmed.

-type m_file_info() :: {m_name(), Size::integer(), ...}.

-type m_fill_err() :: error_not_permitted.

-type m_generr() :: error_bad_epoch | error_wedged |

error_bad_checksum | error_unavailable.

-type m_name() :: binary().

-type m_offset() :: non_neg_integer().

-type m_prefix() :: binary().

-type m_rerror() :: m_err_r() m_generr().

-type m_werror() :: m_generr() | m_err_w().

-spec append(m_prefix(), m_bytes(), m_epoch()) -> {ok, m_name(), m_offset()} |

m_werror().

-spec fill(m_name(), m_offset(), integer(), m_epoch()) -> ok | m_fill_err() |

m_werror().

-spec list_files() -> {ok, [m_file_info()]} | m_generr().

-spec read(m_name(), m_offset(), integer(), m_epoch()) -> {ok, binary()} | m_rerror().

-spec trim(m_name(), m_offset(), integer(), m_epoch()) -> ok | m_generr().

-spec write(m_name(), m_offset(), m_bytes(), m_csum(),

m_epoch()) -> ok | m_werror().

-spec proj_get_largest_key() -> m_epoch_n() | error_unavailable.

-spec proj_get_largest_keyval() -> {ok, m_epoch_n(), binary()} |

-spec proj_list() -> {ok, [m_epoch_n()]}.

-spec proj_read(m_epoch_n()) -> {ok, binary()} | m_err_r().

-spec proj_write(m_epoch_n(), m_bytes(), m_csum()) -> ok | m_err_w() |

error_unwritten | error_unavailable.

Figure 3. FLU data and projection operations as viewed as an API and data types (excluding metadata operations)

4.2.1 Divergence from CORFU
CORFU’s sequencer is not necessary in a CORFU system
and is merely a performance optimization.

In Machi, the sequencer is required because it assigns
both a file byte offset and also a full file name. The client can
request a certain file name prefix, e.g. "foo". The sequencer
must make the file name unique across the entire Machi
system. A Machi cluster has a name that is shared by all
servers. The client’s prefix wish is combined with the cluster
name, sequencer name, and a per-sequencer strictly unique
ID (such as a counter) to form an opaque suffix. For example,

"foo.m=machi4.s=flu-A.n=72006"

One reviewer asked, “Why not just use UUIDs?” Any
naming system that generates unique file names is sufficient.

4.3 The Projection Store
Each FLU maintains a key-value store of write-once regis-
ters for the purpose of storing projections. Reads & writes to

this store are provided by the FLU administration API. The
projection store runs on each server that provides FLU ser-
vice, for several reasons. First, the projection data structure
need not include extra server names to identify projection
store servers or their locations. Second, writes to the pro-
jection store require notification to a FLU of the projection
update anyway. Third, certain kinds of writes to the projec-
tion store indicate changes in cluster status which require
prompt changes of state inside of the FLU (e.g., entering
wedge state).

The store’s basic operation set is simple: get, put, get
largest key (and optionally its value), and list all keys. The
projection store’s data types are:

• key = the projection number
• value = the entire projection data structure, serialized as

an opaque byte blob stored in write-once register. The
value is typically a few KBytes but may be up to 10s of

Draft #1, April 2014 5 2015/4/20

MBytes in size. (A Machi projection data structure will
likely be much less than 10 KBytes.)

As a write-once register, any attempt to write a key K
when the local store already has a value written for K will
always fail with a error written status.

Any write of a key whose value is larger than the FLU’s
current projection number will move the FLU to the wedged
state (Section 4.7).

The contents of the projection blob store are main-
tained by neither Chain Replication techniques nor any other
server-side technique. All replication and read repair is done
only by the projection store clients. Astute readers may the-
orize that race conditions exist in such management; see
Section 6 for details and restrictions that make it practical.

4.4 The chain manager
Each FLU runs an administration agent, the chain man-
ager, that is responsible for monitoring the health of the en-
tire Machi cluster. Each chain manager instance is fully au-
tonomous and communicates with other chain managers in-
directly via writes and reads to its peers’ projection stores.

If a change of state is noticed (via measurement) or is
requested (via the administration API), one or more actions
may be taken:

• Enter wedge state (Section 4.7).
• Calculate a new projection to fit the new environment.
• Attempt to store the new projection locally and remotely.
• Read a newer projection from local + remote stores (and

possibly perform read repair).
• Adopt a new unanimous projection, as read from all cur-

rently available readable blob stores.
• Exit wedge state.

See also Section 6 and also the Chain Manager design
document [3].

4.5 The Projection and the Projection Epoch Number
The projection data structure defines the current administra-
tion & operational/runtime configuration of a Machi clus-
ter’s single Chain Replication chain. Each projection is iden-
tified by a strictly increasing counter called the Epoch Pro-
jection Number (or more simply “the epoch”).

Projections are calculated by each FLU using input from
local measurement data, calculations by the FLU’s chain
manager (see below), and input from the administration API.
Each time that the configuration changes (automatically or
by administrator’s request), a new epoch number is assigned
to the entire configuration data structure and is distributed
to all FLUs via the FLU’s administration API. Each FLU
maintains the current projection epoch number as part of its
soft state.

Pseudo-code for the projection’s definition is shown in
Figure 4. To summarize the major components:

-type m_server_info() :: {Hostname, Port,...}.

-record(projection, {

epoch_number :: m_epoch_n(),

epoch_csum :: m_csum(),

creation_time :: now(),

author_server :: m_server(),

all_members :: [m_server()],

active_upi :: [m_server()],

active_all :: [m_server()],

down_members :: [m_server()],

dbg_annotations :: proplist()

}).

Figure 4. Sketch of the projection data structure

• epoch number and epoch csum The epoch number and
projection checksum are unique identifiers for this pro-
jection.

• creation time Wall-clock time, useful for humans and
general debugging effort.

• author server Name of the server that calculated the
projection.

• all members All servers in the chain, regardless of cur-
rent operation status. If all operating conditions are per-
fect, the chain should operate in the order specified here.
(See also the limitations in [3], “Whole-file repair when
changing FLU ordering within a chain”.)

• active upi All active chain members that we know are
fully repaired/in-sync with each other and therefore the
Update Propagation Invariant [3] is always true. See also
Section 7.

• active all All active chain members, including those
that are under active repair procedures.

• down members All members that the author server

believes are currently down or partitioned.
• dbg annotations A “kitchen sink” proplist, for code to

add any hints for why the projection change was made,
delay/retry information, etc.

4.6 The Bad Epoch Error
Most Machi protocol actions are tagged with the actor’s
best knowledge of the current epoch. However, Machi does
not have a single/master coordinator for making configura-
tion changes. Instead, change is performed in a fully asyn-
chronous manner by each local chain manager. During a
cluster configuration change, some servers will use the old
projection number, Pp, whereas others know of a newer pro-
jection, Pp+x where x > 0.

When a protocol operation with Pp−x arrives at an actor
who knows Pp, the response must be error bad epoch.
This is a signal that the actor using Pp−x is indeed out-of-
date and that a newer projection must be found and used.

Draft #1, April 2014 6 2015/4/20

4.7 The Wedge
If a FLU server is using a projection Pp and receives a
protocol message that mentions a newer projection Pp+x

that is larger than its current projection value, then it enters
“wedge” state and stops processing all new requests. The
server remains in wedge state until a new projection (with a
larger/higher epoch number) is discovered and appropriately
acted upon. (In the Windows Azure storage system [5], this
state is called the “sealed” state.)

4.8 “AP Mode” and “CP Mode”
Machi’s first use cases require only eventual consistency
semantics and behavior, a.k.a. “AP mode”. However, with
only small modifications, Machi can operate in a strongly
consistent manner, a.k.a. “CP mode”.

The chain manager service (Section 4.4) is sufficient for
an “AP Mode” Machi service. In AP Mode, all mutations
to any file on any side of a network partition are guaran-
teed to use unique locations (file names and/or byte off-
sets). When network partitions are healed, all files can be
merged together (while considering the details discussed in
Section 7.3.1) in any order without conflict.

“CP mode” will be extensively covered in [3]. In sum-
mary, to support “CP mode”, we believe that the chain man-
ager service proposed by [3] can guarantee strong consis-
tency at all times.

5. Sketches of single operations
5.1 Single operation: append a single sequence of bytes

to a file
To write/append atomically a single sequence/hunk of bytes
to a file, here’s the sequence of steps required. See Figure 5
for a diagram that illustrates this example; the same exam-
ple is also shown in Figure 7 using MSC style (message
sequence chart). In this case, the first FLU contacted has
a newer projection epoch, P13, than the P12 epoch that the
client first attempts to use.

1. The client chooses a file name prefix. This prefix gives
the sequencer implicit advice of where the client wants
data to be placed. For example, if two different append
requests are for file prefixes Pref1 and Pref2 where
Pref1 ̸= Pref2, then the two byte sequences will def-
initely be written to different files. If Pref1 = Pref2,
then the sequencer may choose the same file for both (but
no guarantee of how “close together” the two requests
might be time-wise).

2. (cacheable) Find the list of Machi member servers. This
step is only needed at client initialization time or when all
Machi members are down/unavailable. This step is out
of scope of Machi, i.e., found via another source: local
configuration file, DNS, LDAP, Riak KV, ZooKeeper,
carrier pigeon, papyrus, etc.

3. (cacheable) Find the current projection number and pro-
jection data structure by fetching it from one of the Machi
FLU server’s projection store service. This info may be
cached and reused for as long as Machi API operations
do not result in error bad epoch.

4. Client sends a sequencer op5 to the sequencer process on
the head of the Machi chain (as defined by the projection
data structure): {sequence req, Filename Prefix,

Number of Bytes}. The reply includes {Full Filename,

Offset}.

5. The client sends a write request to the head of the Machi
chain: {write req, Full Filename, Offset, Bytes,

Options}. The client-calculated checksum is a recom-
mended option.

6. If the head’s reply is ok, then repeat for all remaining
chain members in strict chain order.

7. If all chain members’ replies are ok, then the append
was successful. The client now knows the full Machi file
name and byte offset, so that future attempts to read the
data can do so by file name and offset.

8. Upon any non-ok reply from a FLU server, the client
must either perform read repair or else consider the en-
tire append operation a failure. If the client wishes, it
may retry the append operation using a new location as-
signment from the sequencer or, if permitted by Machi
restrictions, perform read repair on the original location.
If this read repair is fully successful, then the client may
consider the append operation successful.

9. (optional) If a FLU server FLU is unavailable, notify
another up/available chain member that FLU appears
unavailable. This info may be used by the chain manager
service to change projections. If the client wishes, it may
retry the append op or perhaps wait until a new projection
is available.

10. If any FLU server reports error written, then either of
two things has happened:
• The appending client Cw was too slow after at least

one successful write. Client Cr attempted a read, no-
ticed the partial write, and then engaged in read re-
pair. Client Cw should also check all replicas to verify
that the repaired data matches its write attempt – in all
cases, the values written by Cw and Cr are identical.

• The appending client Cw was too slow when attempt-
ing to write to the head of the chain. Another client,
Cr, attempted a read. Cr observes that the tail’s value
was unwritten and observes that the head’s value was
also unwritten. Then Cr initiated a “fill” operation to

5 The append() API operation is performed by the server as if it were
two different API operations in sequence: sequence() and write(). The
append() operation is provided as an optimization to reduce latency by
reducing messages sent & received by a client.

Draft #1, April 2014 7 2015/4/20

Step 6: Client now knows that projection 12 is invalid. Fetch projection 13, then retry at step #8.

Get epoch 13

Active=[a,b,c]
Members=[a,b,c]
Epoch=13

Epoch=12
Members=[a,b,c]
Active=[a,b]

Projection (data structure)

− write once
− key=integer
− value=projection data structure
k=11, v=...
k=12, v=...
k=13, v=...

FLU projection store (proc)

epoch=13
files:
 "foo.seq_a.006"
 "foo.seq_b.007"
 "foo.seq_b.008"

FLU (proc)

Sequencer (proc)

epoch=13
map=[{"foo", next_file=8,

next_offset=0}...]

server logic

Append <<123 bytes>>
to a file with prefix
"foo".

CLIENT (proc)

ok

ok

Write to FLU B −> ok

Write to FLU C −> ok

Request 123 bytes, prefix="foo", epoch=12

{bad_epoch,13}

{ok, proj=...}

Write <<123 bytes>> to
file="foo.seq_a.008", offset=0

Server A

Req. 123 bytes, prefix="foo", epoch=131

2 3

5

7

file="foo.seq_a.008", offset=0

6

4

16
8

9

10

12,13

14,15

11

Figure 5. Flow diagram: append 123 bytes onto a file with prefix "foo".

write junk into this offset of the file. The fill operation
succeeded, and now the slow appending client Cw dis-
covers that it was too slow via the error written

response.

6. Projections: calculation, storage, then use
Machi uses a “projection” to determine how its Chain Repli-
cation replicas should operate; see Section 3.3.5 and [2]. At
runtime, a cluster must be able to respond both to admin-
istrative changes (e.g., substituting a failed server box with
replacement hardware) as well as local network conditions
(e.g., is there a network partition?). The concept of a projec-
tion is borrowed from CORFU but has a longer history, e.g.,
the Hibari key-value store [6] and goes back in research for
decades, e.g., Porcupine [11].

See [3] for the design and discussion of all aspects of
projection management and storage.

7. Chain Replication repair: how to fix
servers after they crash and return to
service

The theory of why it’s possible to avoid data loss with chain
replication is summarized in this section, followed by a
discussion of Machi-specific details that must be included
in any production-quality implementation.

7.1 When to trigger read repair of single values
Assume that some client X wishes to fetch a datum that’s
managed by Chain Replication. Client X must discover the

chain’s configuration for that datum, then send its read re-
quest to the tail replica of the chain, Rtail.

In CORFU and in Machi, the store is a set of write-once
registers. Therefore, the only possible responses that client
X might get from a query to the chain’s Rtail are:

1. error unwritten

2. {ok, <<...data bytes...>>}
3. error trimmed (in environments where space reclama-

tion/garbage collection is permitted)

Let’s explore each of these responses in the following
subsections.

7.1.1 Tail replica replies error unwritten

There are only a few reasons why this value is possible. All
are discussed here.

Scenario 1: The block truly hasn’t been written yet A
read from any other server in the chain will also yield
error unwritten.

Scenario 2: The block has not yet finished being writ-
ten A read from any other server in the chain may yield
error unwritten or may find written data. (In this sce-
nario, the head server has written data, but we don’t know
the state of the middle and tail server(s).) The client ought
to perform read repair of this data. (See also, scenario #4
below.)

During read repair, the client’s writes operations may
race with the original writer’s operations. However, both the

Draft #1, April 2014 8 2015/4/20

original writer and the repairing client are always writing the
same data. Therefore, data corruption by concurrent client
writes is not possible.

Scenario 3: A client Xw has received a sequencer’s assign-
ment for this location, but the client has crashed some-
where in the middle of writing the value to the chain. The
correct action to take here depends on the value of the Rhead

replica’s value. If Rhead’s value is unwritten, then the writ-
ing client Xw crashed before writing to Rhead. The reading
client Xr must “fill” the page with junk bytes or else do
nothing.

If Rhead’s value is indeed written, then the reading client
Xr must finish a “read repair” operation before the client
may proceed. See Section 7.2 for details.

Scenario 4: A client has received a sequencer’s assignment
for this location, but the client has become extremely slow
(or is experiencing a network partition, or any other rea-
son) and has not yet updated Rtail . . . but that client will
eventually finish its work and will eventually update Rtail.
It should come as little surprise that reading client Cr cannot
know whether the writing client Cw has really crashed or if
Cw is merely very slow. It is therefore very nice that the ac-
tion that Cr must take in either case is the same — see the
scenario #2 for details.

7.1.2 Tail replica replies {ok, <<...>>}
There is no need to perform single item read repair in this
case. The Update Propagation Invariant guarantees that this
value is the one strictly consistent value for this register.

7.1.3 Tail replica replies error trimmed

There is no need to perform single item read repair in this
case.

NOTE: It isn’t yet clear how much support early versions
of Machi will need for GC/space reclamation via trimming.

7.2 How to read repair a single value
If a value at Rtail is unwritten, then the answer to “what
value should I use to repair the chain’s value?” is simple:
the value at the head Rhead is the value Vhead that must be
used. The client then writes Vhead to all other members of
the chain C, in order.

The client may not proceed with its upper-level logic until
the read repair operation is successful. If the read repair
operation is not successful, then the client must react in the
same manner as if the original read attempt of Rtail’s value
had failed.

7.3 Repair of entire files
There are some situations where repair of entire files is
necessary.

• To repair FLUs added to a chain in a projection change,
specifically adding a new FLU to the chain. This case

covers both adding a new, data-less FLU and re-adding a
previous, data-full FLU back to the chain.

• To avoid data loss when changing the order of the chain’s
servers.

The full file repair discussion in [3] argues for correct-
ness in both eventually consistent and strongly consistent
environments. Discussion in this section will be limited to
eventually consistent environments (“AP mode”) .

7.3.1 “Just ‘rsync’ it!”
The “just rsync it!” method could loosely be described as,
“run rsync on all files to all servers.” This simple repair
method is nearly sufficient enough for Machi’s eventual con-
sistency mode of operation. There’s only one small problem
that rsync cannot handle by itself: handling late writes to
a file. It is possible that the same file could contain the fol-
lowing pattern of written and unwritten data on two different
replicas A and B:

• Server A: x bytes written, y bytes unwritten
• Server B: x bytes unwritten, y bytes written

If rsync is used as-is to replicate this file, then one of the
two written sections will lost, i.e., overwritten by NUL bytes.
Obviously, we don’t want this kind of data loss. However,
we already have a requirement that Machi file servers must
enforce write-once behavior on all file byte ranges. The same
metadata used to maintain written and unwritten state can be
used to merge file state safely so that both the x and y byte
ranges will be correct after repair.

7.3.2 The larger problem with “Just ‘rsync’ it!”
Assume for a moment that the rsync utility could in-
deed preserve Machi written chunk boundaries as described
above. A larger administration problem still remains: this
informal method cannot tell you exactly when you are in
danger of data loss or when data loss has actually happened.
If we maintain the Update Propagation Invariant (as argued
in [3]), then we always know exactly when data loss is im-
manent or has probably happened.

8. On-disk storage and file corruption
detection

An individual FLU has a couple of goals: store file data and
metadata as efficiently as possible, and make it easy to detect
and fix file corruption.

FLUs have a lot of flexibility to implement their on-
disk data formats in whatever manner allow them to be safe
and fast. Any scheme that allows safe management of file
names, per-file data chunks, and per-data-chunk metadata is
sufficient. 6

6 The proof-of-concept implementation at GitHub in the
prototype/demo-day directory uses two files in the local file sys-

Draft #1, April 2014 9 2015/4/20

|<--- Data section --->|<---- Metadata section (starts at fixed offset) ---->

|<- trailer -->

V1,C1 | V2,C2 | ||| C1t,O1a,O1z,C1 | C2t,O2a,O2z,C2 | Summ | SummBytes |eof

|<- trailer -->

V1,C1 | V2,C2 | V3,C3 ||| C1t,O1a,O1z,C1 | C2t,O2a,O2z,C2 | C3t,O3a,O3z,C3 | Summ | SummBytes |eof

Figure 6. File format draft #1, a snapshot at two different times.

8.1 First draft/strawman proposal for on-disk data
format

NOTE: The suggestions in this section are “strawman qual-
ity” only.

See Figure 6 for an example file layout. Prominent fea-
tures are:

• The data section is a fixed size, e.g. 1 GByte, so the
metadata section is known to start at a particular offset.
The sequencers on all FLUs must also be aware of of this
file size limit.

• Data section Vn, Cn tuples: client-written data plus the
20 byte SHA1 hash of that data, concatenated. The client
must be aware that the hash is the final 20 bytes of the
value that it reads . . . but this feels like a small price to pay
to have the checksum co-located exactly adjacent to the
data that it protects. The client may elect not to store the
checksum explicitly in the file body, knowing that there
is likely a performance penalty when it wishes to fetch
the checksum via the file metadata API.

• Metadata section Cnt, Ona, Onz, Cn tuples: The chunk’s
checksum type (e.g. SHA1 for all but the final 20 bytes),7

the starting offset (“a”), ending offset (“z”) of a chunk,
and the chunk’s SHA1 checksum (which is intentionally
duplicated in this example in both sections). The approx-
imate size is 4 + 4 + 1 + 20 = 25 bytes per metadata
entry.

• Metadata section Summ: a compact summary of the un-
written/written status of all bytes in the file, e.g., using
byte range encoding for contiguous regions of writes.

• Metadata section SummBytes: the number of bytes back-
ward to look for the start of the Summ summary.

• eof The end of file.

When a chunk write is requested by a client, the FLU
must verify that the byte range has entirely “unwritten” sta-
tus. If that information is not cached by the FLU somehow,
it can be easily read by reading the trailer, which is always
positioned at the end of the file.

If the FLU is queried for checksum information and/or
chunk boundary information, and that info is not cached,

tem per Machi file: one for Machi file data and one for checksum
metadata.
7 Other types may include: no checksum, checksum of the entire value, and
checksums using other hash algorithms.

then the FLU can simply read all data beyond the start of
the metadata section. For a 1 GByte file written in 1 MByte
chunks, the metadata section would be approximately 25
KBytes. For 4 KByte pages (CORFU style), the metadata
section would be approximately 6.4 MBytes.

Each time that a new chunk(s) is written within the data
section, no matter its offset, the old Summ and SummBytes

trailer is overwritten by the offset+checksum metadata for
the new chunk(s) followed by the new trailer. Overwriting
the trailer is justified in that if corruption happens in the
metadata section, the system’s worst-case reaction would be
as if the corruption had happened in the data section: the file
is invalid, and Machi will repair the file from another replica.
A more likely scenario is that some early part of the file is
correct, and only a part of the end of the file requires repair
from another replica.

8.2 If the client does not provide a checksum?
If the client doesn’t provide a checksum, then it’s almost cer-
tainly a good idea to have the FLU calculate the checksum
before writing. The Ct value should be a type that indicates
that the checksum was not calculated by the client. In all
other fields, the metadata section data would be identical.

8.3 Detecting corrupted files (“checksum scrub”)
This task is a bit more difficult than with a typical append-
only, file-written-in-order file. In most append-only situa-
tions, the file is really written in a strict order, both tempo-
rally and spatially, from offset 0 to the (eventual) end-of-file.
The order in which the bytes were written is the same order
as the bytes are fed into a checksum or hashing function,
such as SHA1.

However, a Machi file is not written strictly in order
from offset 0 to some larger offset. Machi’s append-only file
guarantee is guaranteed in space, i.e., the offset within the
file and is definitely not guaranteed in time.

The file format proposed in Figure 6 contains the check-
sum of each client write, using the checksum value that the
client or the FLU provides. A FLU could then:

1. Read the metadata section to discover all written chunks
and their checksums.

2. For each written chunk, read the chunk and calculate
the checksum (with the same algorithm specified by the
metadata).

Draft #1, April 2014 10 2015/4/20

3. For any checksum mismatch, ask the FLU to trigger a
repair from another FLU in the chain.

The corruption detection should run at a lower priority
than normal FLU activities. FLUs should implement a basic
rate limiting mechanism.

FLUs should also be able to schedule their checksum
scrubbing activity periodically and limit their activity to cer-
tain times, per a only-as-complex-as-it-needs-to-be adminis-
trative policy.

9. Load balancing read vs. write ops
Consistent reads in Chain Replication require reading only
from the tail of the chain. This requirement can cause
workload imbalances for any chain longer than length one
under high read-only workloads. For example, for chain
[Fa, Fb, Fc] and a 100% read-only workload, FLUs Fa and
Fb will be completely idle, and FLU Fc must handle all of
the workload.

Because all bytes of a Machi file is immutable, the extra
synchronization between servers as suggested by [12] are
not needed. Machi’s use of write-once registers makes any
server choice correct. The implementation is therefore free
to make any load balancing choice for read operations, as
long as the read repair protocol is honored.

10. Integration strategy with Riak Core and
other distributed systems

We have repeatedly stated that load balancing/sharding
files across multiple Machi clusters is out of scope of
this document. This section ignores that warning and ex-
plores a couple of extremely simple methods to imple-
ment a cluster-of-Machi-clusters. Note that the method
sketched in Section 10.3 has been implemented in the
Machi proof-of-concept implementation at GitHub in the
prototype/demo-day directory.

10.1 Assumptions
We assume that any technique is able to perform extremely
basic parsing of the file names that Machi sequencers create.
The example shown in Section 4.2.1 depicts a client write
specifying the file prefix "foo"; Machi assigns that write to
a file name such as:

"foo.m=machi4.s=flu-A.n=72006"

Given a Machi file name, the client-specified prefix will
always be easily parseable, e.g., all characters to the left of
the first dot/period character. However, anything following
the separator character should strictly be considered opaque.

10.2 Machi and the Riak Core ring
Simplest scheme: Get rid of the power-of-2 partition num-
ber restriction of the Riak Core ring data structure. Have ex-
actly one partition per Machi cluster, where the ring data
includes each Machi cluster name. We don’t bother using

successive partitions on the ring for deciding the member-
ship of any of the Machi clusters: that is a Riak KV style
pattern that is not applicable here.

Also, it would be handy to remove the current Core as-
sumption of equal partition sizes.

Parse the Machi file name F (per above) to find the
original file prefix Fprefix given to Machi at write time.
Hash the empty bucket <<>> and key Fprefix to calculate
the preflist. Take only the head of the preflist, which names
the Machi cluster M that stores F . Ask one of M ’s nodes
for the current projection (if not alrady cached). Then fetch
the desired byte range(s) from F .

To add/remove Machi clusters, use ring resizing.

10.3 Machi and Random Slicing
Simplest scheme: Instead of using the machinery of Riak
Core to hash a Machi file name F to some Machi cluster
M , let’s suggest Random Slicing [10]. It appears that [10]
was co-invented at about the same time that Hibari [6] im-
plemented it.

The data structure to describe a Random Slicing scheme
is pretty small, about 100 KBytes in a convenient but space-
inefficient representation in Erlang for a few hundred chains.
A pure function implementation with domain of Machi file
name plus Random Slicing map and range of all available
Machi clusters is straightforward.

Parse the Machi file name F (per above) to find the
original file prefix Fprefix given to Machi at write time.
To move/relocate files from one Machi server to another,
two different Random Slicing maps, RSMold and RSMnew.
For each Machi file in all Machi clusters, if MAP (Fprefix,
RSMold) = MAP (Fprefix, RSMnew), then the file does
not need to move.

A file migration process iterates over all files where the
value of MAP (F,RSMnew) differs. All Machi files are
immutable, which makes the coordination effort much easier
than many other distributed systems. For file lookup, try
using the RSMnew first. If the file doesn’t exist there, use
RSMold). An honest race may then force a second attempt
with RSMnew again.

Multiple migrations can be concurrent, at the expense of
additional latency. The generalization of the move/relocate
algorithm above is:

1. For each RSMj mapping for the “new” location map
list, query the Machi cluster MAP (Fprefix, RSMj) and
take the first {ok,...} response. If no results are found,
then . . .

2. For each RSMi mapping for the “old” location map list,
query the Machi cluster MAP (Fprefix, RSMi) and take
the first {ok,...} response. If no results are found, then
. . .

Draft #1, April 2014 11 2015/4/20

3. To deal with races when moving files and then removing
them from the “old” locations, perform step #1 again to
look in the new location(s).

4. If the data is not found at this stage, then the data does
not exist.

10.3.1 Problems with the “simplest scheme”
The major drawback to the “simplest schemes” sketched
above is a problem of uneven file distributions across the
cluster-of-clusters. The risk of this imbalance is directly pro-
portional to the risk of clients that make poor prefix choices.
The worst case is if all clients always request the same pre-
fix. Research for effective, well-balancing file prefix choices
is an area for future work.

11. Recommended reading & related work
A big reason for the large size of this document is that it
includes a lot of background information. People tend to be
busy, and sitting down to read 4–6 research papers to get
familiar with a topic . . . doesn’t happen very quickly. We
recommend you read the papers mentioned in this section
and in the “References” section, but if our job is done well
enough, it isn’t necessary.

Familiarity with the CAP Theorem, the concepts & se-
mantics & trade-offs of eventual consistency and strong con-
sistency in the context of asynchronous distributed systems,
network partitions and failure detection in asynchronous
distributed systems, and “split brain” syndrome are all as-
sumed.8

The replication protocol for Machi is based almost en-
tirely on the CORFU ordered log protocol [2]. If the reader
is familiar with the content of this paper, understanding the
implementation details of Machi will be easy. The longer pa-
per [4] goes into much more detail — Machi developers are
strongly recommended to read this paper also.

CORFU is, in turn, a very close cousin of the Paxos
distributed consensus protocol [9]. Understanding Paxos is
not required for understanding Machi, but reading about it
can certainly increase your good karma.

CORFU also uses the Chain Replication algorithm [13].
This paper is recommended for Machi developers who need
to understand the guarantees and restrictions of the protocol.
For other readers, it is recommended for good karma.

Machi’s function roughly corresponds to the Windows
Azure Storage (WAS) paper [5] “stream layer” as described
in section 4. The main features from that section that WAS
does support are file distribution/sharding across multiple
servers and erasure coding; both are explicitly outside of
Machi’s scope.

The Kafka paper [8] is highly recommended reading for
why you’d want to have an ordered log service and how
you’d build one (though this particular paper is too short to

8 Heh, let’s see how well the authors actually know those things. . . .

describe how it’s actually done). Machi feels like a better
foundation to build a distributed immutable file store than
Kafka’s internals, but that’s debate for another forum. The
blog posting by Kreps [7] is long but does a good job of
explaining the why and how of using a strongly ordered dis-
tributed log to build complicated-seeming distributed sys-
tems in an easy way.

The Hibari paper [6] describes some of the implementa-
tion details of chain replication that are not explored in detail
in the CR paper. It is also recommended for Machi develop-
ers, especially sections 2 and 12.

References
[1] Abu-Libdeh, Hussam et al. Leveraging Sharding in the Design

of Scalable Replication Protocols. Proceedings of the 4th
Annual Symposium on Cloud Computing (SOCC’13), 2013.
http://www.ymsir.com/papers/sharding-socc.pdf

[2] Balakrishnan, Mahesh et al. CORFU: A Shared Log Design
for Flash Clusters. Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI’12),
2012. http://research.microsoft.com/pubs/157204/
corfumain-final.pdf

[3] Basho Japan KK. Machi Chain Replication: management the-
ory and design https://github.com/basho/machi/tree/

master/doc/high-level-chain-mgr.pdf

[4] Balakrishnan, Mahesh et al. CORFU: A Dis-
tributed Shared Log ACM Transactions on Com-
puter Systems, Vol. 31, No. 4, Article 10, Decem-
ber 2013. http://www.snookles.com/scottmp/corfu/
corfu.a10-balakrishnan.pdf

[5] Calder, Brad et al. Windows Azure Storage: A
Highly Available Cloud Storage Service with Strong
Consistency Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP’11),
2011. http://sigops.org/sosp/sosp11/current/

2011-Cascais/printable/11-calder.pdf

[6] Fritchie, Scott Lystig. Chain Replication in The-
ory and in Practice. Proceedings of the 9th ACM
SIGPLAN Workshop on Erlang (Erlang’10), 2010.
http://www.snookles.com/scott/publications/

erlang2010-slf.pdf

[7] Kreps, Jay. The Log: What every software engineer
should know about real-time data’s unifying abstrac-
tion http://engineering.linkedin.com/distributed-

systems/log-what-every-software-engineer-should-

know-about-real-time-datas-unifying

[8] Kreps, Jay et al. Kafka: a distributed mes-
saging system for log processing. NetDB11.
http://research.microsoft.com/en-us/UM/people/

srikanth/netdb11/netdb11papers/netdb11-final12.pdf

[9] Lamport, Leslie. Paxos Made Simple. In SIGACT News
#4, Dec, 2001. http://research.microsoft.com/users/
lamport/pubs/paxos-simple.pdf

[10] Miranda, Alberto et al. Random Slicing: Efficient and Scal-
able Data Placement for Large-Scale Storage Systems. ACM
Transactions on Storage, Vol. 10, No. 3, Article 9, July 2014.

Draft #1, April 2014 12 2015/4/20

http://www.snookles.com/scottmp/corfu/random-

slicing.a9-miranda.pdf

[11] Saito, Yasushi et al. Manageability, availability and perfor-
mance in Porcupine: a highly scalable, cluster-based mail ser-
vice. 7th ACM Symposium on Operating System Principles
(SOSP99). http://homes.cs.washington.edu/%7Elevy/
porcupine.pdf

[12] Jeff Terrace and Michael J. Freedman Ob-
ject Storage on CRAQ. In Usenix ATC 2009.
https://www.usenix.org/legacy/event/usenix09/

tech/full papers/terrace/terrace.pdf

[13] van Renesse, Robbert et al. Chain Replication for Sup-
porting High Throughput and Availability. Proceedings
of the 6th Conference on Symposium on Operating Sys-
tems Design & Implementation (OSDI’04) - Volume 6,
2004. http://www.cs.cornell.edu/home/rvr/papers/
osdi04.pdf

Draft #1, April 2014 13 2015/4/20

client Projection ProjStore_A Sequencer_A FLU_A FLU_B FLU_C

get current

ok, #12...

Req. 123 bytes, prefix="foo", epoch=12

bad_epoch, 13

get epoch #13

ok, #13...

Req. 123 bytes, prefix="foo", epoch=13

ok, "foo.seq_a.009" offset=447

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

ok

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

ok

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

ok

Figure 7. MSC diagram: append 123 bytes onto a file with prefix "foo". In error-free cases and with a correct cached
projection, the number of network messages is 2 + 2N where N is chain length.

client Projection ProjStore_C FLU_C

get current

ok, #12...

read "foo.seq_a.009" offset=447 bytes=123 epoch=12

bad_epoch, 13

get epoch #13

ok, #13...

read "foo.seq_a.009" offset=447 bytes=123 epoch=13

ok, <<...123...>>

Figure 8. MSC diagram: read 123 bytes from a file

Draft #1, April 2014 14 2015/4/20

client Projection ProjStore_A Sequencer_A FLU_A FLU_B FLU_C

get current

ok, #12...

append prefix="foo" <<123 bytes...>> epoch=12

bad_epoch, 13

get epoch #13

ok, #13...

append prefix="foo" <<123 bytes...>> epoch=13

Co-located on same box

Req. 123 bytes, prefix="foo", epoch=13

ok, "foo.seq_a.009" offset=447

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

write "foo.seq_a.009" offset=447 <<123 bytes...>> epoch=13

ok, "foo.seq_a.009" offset=447

The above is "fast path" for FLU->FLU forwarding.

If, in an alternate scenario, FLU_C has an error...

bad_epoch, 15

... then repair becomes the client’s responsibility ("slow path").

Figure 9. MSC diagram: append 123 bytes onto a file with prefix "foo", using the append() API function and also using
FLU→FLU direct communication (i.e., the original Chain Replication’s messaging pattern). In error-free cases and with a
correct cached projection, the number of network messages is N + 1 where N is chain length.

Draft #1, April 2014 15 2015/4/20

