mentat/edn/src/namespaceable_name.rs

292 lines
9.1 KiB
Rust
Raw Normal View History

// Copyright 2018 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std::cmp::{
Ord,
Ordering,
PartialOrd,
};
use std::fmt;
#[cfg(feature = "serde_support")]
use serde::de::{
self,
Deserialize,
Deserializer
};
#[cfg(feature = "serde_support")]
use serde::ser::{
Serialize,
Serializer,
};
// Data storage for both NamespaceableKeyword and NamespaceableSymbol.
#[derive(Clone, Eq, Hash, PartialEq)]
pub struct NamespaceableName {
// The bytes that make up the namespace followed directly by those
// that make up the name.
components: String,
// The index (in bytes) into `components` where the namespace ends and
// name begins.
//
// If this is zero, it means that this is _not_ a namespaced value!
//
// Important: The following invariants around `boundary` must be maintained
// for memory safety.
//
// 1. `boundary` must always be less than or equal to `components.len()`.
// 2. `boundary` must be byte index that points to a character boundary,
// and not point into the middle of a utf8 codepoint. That is,
// `components.is_char_boundary(boundary)` must always be true.
//
// These invariants are enforced by `NamespaceableName::namespaced()`, and since
// we never mutate `NamespaceableName`s, that's the only place we need to
// worry about them.
boundary: usize,
}
impl NamespaceableName {
#[inline]
pub fn plain<T>(name: T) -> Self where T: Into<String> {
let n = name.into();
assert!(!n.is_empty(), "Symbols and keywords cannot be unnamed.");
NamespaceableName {
components: n,
boundary: 0,
}
}
#[inline]
pub fn namespaced<N, T>(namespace: N, name: T) -> Self where N: AsRef<str>, T: AsRef<str> {
let n = name.as_ref();
let ns = namespace.as_ref();
// Note: These invariants are not required for safety. That is, if we
// decide to allow these we can safely remove them.
assert!(!n.is_empty(), "Symbols and keywords cannot be unnamed.");
assert!(!ns.is_empty(), "Symbols and keywords cannot have an empty non-null namespace.");
let mut dest = String::with_capacity(n.len() + ns.len());
dest.push_str(ns);
dest.push_str(n);
let boundary = ns.len();
NamespaceableName {
components: dest,
boundary: boundary,
}
}
fn new<N, T>(namespace: Option<N>, name: T) -> Self where N: AsRef<str>, T: AsRef<str> {
if let Some(ns) = namespace {
Self::namespaced(ns, name)
} else {
Self::plain(name.as_ref())
}
}
pub fn is_namespaced(&self) -> bool {
self.boundary > 0
}
#[inline]
pub fn is_backward(&self) -> bool {
self.name().starts_with('_')
}
#[inline]
pub fn is_forward(&self) -> bool {
!self.is_backward()
}
pub fn to_reversed(&self) -> NamespaceableName {
let name = self.name();
if name.starts_with('_') {
Self::new(self.namespace(), &name[1..])
} else {
Self::new(self.namespace(), &format!("_{}", name))
}
}
#[inline]
pub fn namespace(&self) -> Option<&str> {
if self.boundary > 0 {
Some(&self.components[0..self.boundary])
} else {
None
}
}
#[inline]
pub fn name(&self) -> &str {
if self.boundary == 0 {
&self.components
} else {
&self.components[self.boundary..]
}
}
#[inline]
pub fn components<'a>(&'a self) -> (&'a str, &'a str) {
self.components.split_at(self.boundary)
}
}
// We order by namespace then by name.
// Non-namespaced values always sort before.
impl PartialOrd for NamespaceableName {
fn partial_cmp(&self, other: &NamespaceableName) -> Option<Ordering> {
match (self.boundary, other.boundary) {
(0, 0) => self.components.partial_cmp(&other.components),
(0, _) => Some(Ordering::Less),
(_, 0) => Some(Ordering::Greater),
(_, _) => {
// Just use a lexicographic ordering.
self.components().partial_cmp(&other.components())
},
}
}
}
impl Ord for NamespaceableName {
fn cmp(&self, other: &NamespaceableName) -> Ordering {
self.components().cmp(&other.components())
}
}
// We could derive this, but it's really hard to make sense of as-is.
impl fmt::Debug for NamespaceableName {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("NamespaceableName")
.field("namespace", &self.namespace())
.field("name", &self.name())
.finish()
}
}
// This is convoluted, but the basic idea is that since we don't want to rely on our input being
// correct, we'll need to implement a custom serializer no matter what (e.g. we can't just
// `derive(Deserialize)` since `unsafe` code depends on `self.boundary` being a valid index).
//
// We'd also like for users consuming our serialized data as e.g. JSON not to have to learn how we
// store NamespaceableName internally, since it's very much an implementation detail.
//
// We achieve both of these by implemeting a type that can serialize in way that's both user-
// friendly and automatic (e.g. `derive`d), and just pass all work off to it in our custom
// implementation of Serialize and Deserialize.
#[cfg(feature = "serde_support")]
#[cfg_attr(feature = "serde_support", serde(rename = "NamespaceableName"))]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
struct SerializedNamespaceableName<'a> {
namespace: Option<&'a str>,
name: &'a str,
}
#[cfg(feature = "serde_support")]
impl<'de> Deserialize<'de> for NamespaceableName {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de> {
let separated = SerializedNamespaceableName::deserialize(deserializer)?;
if separated.name.len() == 0 {
return Err(de::Error::custom("Empty name in keyword or symbol"));
}
if let Some(ns) = separated.namespace {
if ns.len() == 0 {
Err(de::Error::custom("Empty but present namespace in keyword or symbol"))
} else {
Ok(NamespaceableName::namespaced(ns, separated.name))
}
} else {
Ok(NamespaceableName::plain(separated.name))
}
}
}
#[cfg(feature = "serde_support")]
impl Serialize for NamespaceableName {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
let ser = SerializedNamespaceableName {
namespace: self.namespace(),
name: self.name(),
};
ser.serialize(serializer)
}
}
#[cfg(test)]
mod test {
use super::*;
use std::panic;
#[test]
fn test_new_invariants_maintained() {
assert!(panic::catch_unwind(|| NamespaceableName::namespaced("", "foo")).is_err(),
"Empty namespace should panic");
assert!(panic::catch_unwind(|| NamespaceableName::namespaced("foo", "")).is_err(),
"Empty name should panic");
assert!(panic::catch_unwind(|| NamespaceableName::namespaced("", "")).is_err(),
"Should panic if both fields are empty");
}
#[test]
fn test_basic() {
let s = NamespaceableName::namespaced("aaaaa", "b");
assert_eq!(s.namespace(), Some("aaaaa"));
assert_eq!(s.name(), "b");
assert_eq!(s.components(), ("aaaaa", "b"));
let s = NamespaceableName::namespaced("b", "aaaaa");
assert_eq!(s.namespace(), Some("b"));
assert_eq!(s.name(), "aaaaa");
assert_eq!(s.components(), ("b", "aaaaa"));
}
#[test]
fn test_order() {
let n0 = NamespaceableName::namespaced("a", "aa");
let n1 = NamespaceableName::namespaced("aa", "a");
let n2 = NamespaceableName::namespaced("a", "ab");
let n3 = NamespaceableName::namespaced("aa", "b");
let n4 = NamespaceableName::namespaced("b", "ab");
let n5 = NamespaceableName::namespaced("ba", "b");
let n6 = NamespaceableName::namespaced("z", "zz");
let mut arr = [
n5.clone(),
n6.clone(),
n0.clone(),
n3.clone(),
n2.clone(),
n1.clone(),
n4.clone()
];
arr.sort();
assert_eq!(arr, [
n0.clone(),
n2.clone(),
n1.clone(),
n3.clone(),
n4.clone(),
n5.clone(),
n6.clone(),
]);
}
}