2017-02-22 03:57:00 +00:00
|
|
|
// Copyright 2016 Mozilla
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
|
|
|
|
// this file except in compliance with the License. You may obtain a copy of the
|
|
|
|
// License at http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
|
2017-03-07 04:18:38 +00:00
|
|
|
use mentat_core::{
|
|
|
|
SQLValueType,
|
|
|
|
TypedValue,
|
|
|
|
ValueType,
|
|
|
|
};
|
|
|
|
|
2017-04-19 23:16:19 +00:00
|
|
|
use mentat_query::Limit;
|
|
|
|
|
2017-02-22 03:57:00 +00:00
|
|
|
use mentat_query_algebrizer::{
|
|
|
|
AlgebraicQuery,
|
2017-03-28 02:35:39 +00:00
|
|
|
ColumnAlternation,
|
2017-02-22 03:57:00 +00:00
|
|
|
ColumnConstraint,
|
2017-03-28 02:35:39 +00:00
|
|
|
ColumnConstraintOrAlternation,
|
|
|
|
ColumnIntersection,
|
2017-04-11 17:31:31 +00:00
|
|
|
ColumnName,
|
2017-04-08 00:23:41 +00:00
|
|
|
ComputedTable,
|
2017-02-22 03:57:00 +00:00
|
|
|
ConjoiningClauses,
|
|
|
|
DatomsColumn,
|
2017-04-08 00:23:41 +00:00
|
|
|
DatomsTable,
|
Implement :order. (#415) (#416) r=nalexander
This adds an `:order` keyword to `:find`.
If present, the results of the query will be an ordered set, rather than
an unordered set; rows will appear in an ordered defined by each
`:order` entry.
Each can be one of three things:
- A var, `?x`, meaning "order by ?x ascending".
- A pair, `(asc ?x)`, meaning "order by ?x ascending".
- A pair, `(desc ?x)`, meaning "order by ?x descending".
Values will be ordered in this sequence for asc, and in reverse for desc:
1. Entity IDs, in ascending numerical order.
2. Booleans, false then true.
3. Timestamps, in ascending numerical order.
4. Longs and doubles, intermixed, in ascending numerical order.
5. Strings, in ascending lexicographic order.
6. Keywords, in ascending lexicographic order, considering the entire
ns/name pair as a single string separated by '/'.
Subcommits:
Pre: make bound_value public.
Pre: generalize ErrorKind::UnboundVariable for use in order.
Part 1: parse (direction, var) pairs.
Part 2: parse :order clause into FindQuery.
Part 3: include order variables in algebrized query.
We add order variables to :with, so we can reuse its type tag projection
logic, and so that we can phrase ordering in terms of variables rather
than datoms columns.
Part 4: produce SQL for order clauses.
2017-04-14 23:10:56 +00:00
|
|
|
OrderBy,
|
2017-02-22 03:57:00 +00:00
|
|
|
QualifiedAlias,
|
2017-03-16 19:23:48 +00:00
|
|
|
QueryValue,
|
2017-04-08 00:23:41 +00:00
|
|
|
SourceAlias,
|
|
|
|
TableAlias,
|
2017-04-11 17:31:31 +00:00
|
|
|
VariableColumn,
|
2017-02-22 03:57:00 +00:00
|
|
|
};
|
|
|
|
|
2017-03-06 22:40:10 +00:00
|
|
|
use mentat_query_projector::{
|
|
|
|
CombinedProjection,
|
|
|
|
Projector,
|
2017-06-07 17:59:25 +00:00
|
|
|
projected_column_for_var,
|
2017-03-06 22:40:10 +00:00
|
|
|
query_projection,
|
|
|
|
};
|
|
|
|
|
|
|
|
use mentat_query_sql::{
|
2017-02-22 03:57:00 +00:00
|
|
|
ColumnOrExpression,
|
|
|
|
Constraint,
|
|
|
|
FromClause,
|
2017-03-16 19:23:48 +00:00
|
|
|
Op,
|
2017-04-08 00:23:41 +00:00
|
|
|
ProjectedColumn,
|
2017-02-22 03:57:00 +00:00
|
|
|
Projection,
|
|
|
|
SelectQuery,
|
|
|
|
TableList,
|
2017-04-08 00:23:41 +00:00
|
|
|
TableOrSubquery,
|
2017-04-26 22:50:17 +00:00
|
|
|
Values,
|
2017-02-22 03:57:00 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
trait ToConstraint {
|
|
|
|
fn to_constraint(self) -> Constraint;
|
|
|
|
}
|
|
|
|
|
|
|
|
trait ToColumn {
|
|
|
|
fn to_column(self) -> ColumnOrExpression;
|
|
|
|
}
|
|
|
|
|
|
|
|
impl ToColumn for QualifiedAlias {
|
|
|
|
fn to_column(self) -> ColumnOrExpression {
|
|
|
|
ColumnOrExpression::Column(self)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-28 02:35:39 +00:00
|
|
|
impl ToConstraint for ColumnIntersection {
|
|
|
|
fn to_constraint(self) -> Constraint {
|
|
|
|
Constraint::And {
|
|
|
|
constraints: self.into_iter().map(|x| x.to_constraint()).collect()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl ToConstraint for ColumnAlternation {
|
|
|
|
fn to_constraint(self) -> Constraint {
|
|
|
|
Constraint::Or {
|
|
|
|
constraints: self.into_iter().map(|x| x.to_constraint()).collect()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl ToConstraint for ColumnConstraintOrAlternation {
|
|
|
|
fn to_constraint(self) -> Constraint {
|
|
|
|
use self::ColumnConstraintOrAlternation::*;
|
|
|
|
match self {
|
|
|
|
Alternation(alt) => alt.to_constraint(),
|
|
|
|
Constraint(c) => c.to_constraint(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-02-22 03:57:00 +00:00
|
|
|
impl ToConstraint for ColumnConstraint {
|
|
|
|
fn to_constraint(self) -> Constraint {
|
|
|
|
use self::ColumnConstraint::*;
|
|
|
|
match self {
|
2017-03-16 19:23:48 +00:00
|
|
|
Equals(qa, QueryValue::Entid(entid)) =>
|
2017-02-22 03:57:00 +00:00
|
|
|
Constraint::equal(qa.to_column(), ColumnOrExpression::Entid(entid)),
|
2017-03-07 04:18:38 +00:00
|
|
|
|
2017-03-16 19:23:48 +00:00
|
|
|
Equals(qa, QueryValue::TypedValue(tv)) =>
|
2017-02-22 03:57:00 +00:00
|
|
|
Constraint::equal(qa.to_column(), ColumnOrExpression::Value(tv)),
|
2017-03-07 04:18:38 +00:00
|
|
|
|
2017-03-16 19:23:48 +00:00
|
|
|
Equals(left, QueryValue::Column(right)) =>
|
2017-02-22 03:57:00 +00:00
|
|
|
Constraint::equal(left.to_column(), right.to_column()),
|
2017-03-07 04:18:38 +00:00
|
|
|
|
2017-03-16 19:23:48 +00:00
|
|
|
Equals(qa, QueryValue::PrimitiveLong(value)) => {
|
|
|
|
let tag_column = qa.for_type_tag().to_column();
|
|
|
|
let value_column = qa.to_column();
|
2017-03-07 04:18:38 +00:00
|
|
|
|
|
|
|
/// A bare long in a query might match a ref, an instant, a long (obviously), or a
|
|
|
|
/// double. If it's negative, it can't match a ref, but that's OK -- it won't!
|
|
|
|
///
|
|
|
|
/// However, '1' and '0' are used to represent booleans, and some integers are also
|
|
|
|
/// used to represent FTS values. We don't want to accidentally match those.
|
|
|
|
///
|
|
|
|
/// We ask `SQLValueType` whether this value is in range for how booleans are
|
|
|
|
/// represented in the database.
|
|
|
|
///
|
|
|
|
/// We only hit this code path when the attribute is unknown, so we're querying
|
|
|
|
/// `all_datoms`. That means we don't see FTS IDs at all -- they're transparently
|
|
|
|
/// replaced by their strings. If that changes, then you should also exclude the
|
|
|
|
/// string type code (10) here.
|
|
|
|
let must_exclude_boolean = ValueType::Boolean.accommodates_integer(value);
|
|
|
|
if must_exclude_boolean {
|
|
|
|
Constraint::And {
|
|
|
|
constraints: vec![
|
|
|
|
Constraint::equal(value_column,
|
|
|
|
ColumnOrExpression::Value(TypedValue::Long(value))),
|
|
|
|
Constraint::not_equal(tag_column,
|
|
|
|
ColumnOrExpression::Integer(ValueType::Boolean.value_type_tag())),
|
|
|
|
],
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Constraint::equal(value_column, ColumnOrExpression::Value(TypedValue::Long(value)))
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
2017-03-16 19:23:48 +00:00
|
|
|
NumericInequality { operator, left, right } => {
|
|
|
|
Constraint::Infix {
|
|
|
|
op: Op(operator.to_sql_operator()),
|
|
|
|
left: left.into(),
|
|
|
|
right: right.into(),
|
2017-06-12 21:24:56 +00:00
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
Matches(left, right) => {
|
|
|
|
Constraint::Infix {
|
|
|
|
op: Op("MATCH"),
|
|
|
|
left: ColumnOrExpression::Column(left),
|
|
|
|
right: right.into(),
|
2017-03-16 19:23:48 +00:00
|
|
|
}
|
|
|
|
},
|
|
|
|
|
2017-03-07 04:18:38 +00:00
|
|
|
HasType(table, value_type) => {
|
2017-04-08 00:23:41 +00:00
|
|
|
let column = QualifiedAlias::new(table, DatomsColumn::ValueTypeTag).to_column();
|
2017-03-07 04:18:38 +00:00
|
|
|
Constraint::equal(column, ColumnOrExpression::Integer(value_type.value_type_tag()))
|
|
|
|
},
|
2017-04-28 09:44:11 +00:00
|
|
|
|
|
|
|
NotExists(computed_table) => {
|
|
|
|
let subquery = table_for_computed(computed_table, TableAlias::new());
|
|
|
|
Constraint::NotExists {
|
|
|
|
subquery: subquery,
|
|
|
|
}
|
|
|
|
},
|
2017-02-22 03:57:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-07 04:18:38 +00:00
|
|
|
pub struct ProjectedSelect{
|
2017-03-06 22:40:10 +00:00
|
|
|
pub query: SelectQuery,
|
|
|
|
pub projector: Box<Projector>,
|
|
|
|
}
|
2017-02-22 03:57:00 +00:00
|
|
|
|
2017-04-08 00:23:41 +00:00
|
|
|
// Nasty little hack to let us move out of indexed context.
|
|
|
|
struct ConsumableVec<T> {
|
|
|
|
inner: Vec<Option<T>>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> From<Vec<T>> for ConsumableVec<T> {
|
|
|
|
fn from(vec: Vec<T>) -> ConsumableVec<T> {
|
|
|
|
ConsumableVec { inner: vec.into_iter().map(|x| Some(x)).collect() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> ConsumableVec<T> {
|
|
|
|
fn take_dangerously(&mut self, i: usize) -> T {
|
|
|
|
::std::mem::replace(&mut self.inner[i], None).expect("each value to only be fetched once")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn table_for_computed(computed: ComputedTable, alias: TableAlias) -> TableOrSubquery {
|
|
|
|
match computed {
|
|
|
|
ComputedTable::Union {
|
|
|
|
projection, type_extraction, arms,
|
|
|
|
} => {
|
|
|
|
// The projection list for each CC must have the same shape and the same names.
|
2017-04-11 17:31:31 +00:00
|
|
|
// The values we project might be fixed or they might be columns.
|
|
|
|
TableOrSubquery::Union(
|
|
|
|
arms.into_iter()
|
|
|
|
.map(|cc| {
|
|
|
|
// We're going to end up with the variables being projected and also some
|
|
|
|
// type tag columns.
|
|
|
|
let mut columns: Vec<ProjectedColumn> = Vec::with_capacity(projection.len() + type_extraction.len());
|
|
|
|
|
|
|
|
// For each variable, find out which column it maps to within this arm, and
|
|
|
|
// project it as the variable name.
|
|
|
|
// E.g., SELECT datoms03.v AS `?x`.
|
|
|
|
for var in projection.iter() {
|
2017-06-07 17:59:25 +00:00
|
|
|
let (projected_column, maybe_type) = projected_column_for_var(var, &cc);
|
|
|
|
columns.push(projected_column);
|
|
|
|
|
|
|
|
// Similarly, project type tags if they're not known conclusively in the
|
|
|
|
// outer query.
|
|
|
|
// Assumption: we'll never need to project a tag without projecting the value of a variable.
|
|
|
|
if type_extraction.contains(var) {
|
|
|
|
let expression =
|
|
|
|
if let Some(ty) = maybe_type {
|
|
|
|
// If we know the type for sure, just project the constant.
|
|
|
|
// SELECT datoms03.v AS `?x`, 10 AS `?x_value_type_tag`
|
|
|
|
ColumnOrExpression::Integer(ty.value_type_tag())
|
|
|
|
} else {
|
|
|
|
// Otherwise, we'll have an established type binding! This'll be
|
|
|
|
// either a datoms table or, recursively, a subquery. Project
|
|
|
|
// this:
|
|
|
|
// SELECT datoms03.v AS `?x`,
|
|
|
|
// datoms03.value_type_tag AS `?x_value_type_tag`
|
|
|
|
let extract = cc.extracted_types
|
|
|
|
.get(var)
|
|
|
|
.expect("Expected variable to have a known type or an extracted type");
|
|
|
|
ColumnOrExpression::Column(extract.clone())
|
|
|
|
};
|
|
|
|
let type_column = VariableColumn::VariableTypeTag(var.clone());
|
|
|
|
let proj = ProjectedColumn(expression, type_column.column_name());
|
|
|
|
columns.push(proj);
|
|
|
|
}
|
2017-04-11 17:31:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Each arm simply turns into a subquery.
|
|
|
|
// The SQL translation will stuff "UNION" between each arm.
|
|
|
|
let projection = Projection::Columns(columns);
|
2017-04-19 23:16:19 +00:00
|
|
|
cc_to_select_query(projection, cc, false, None, Limit::None)
|
2017-04-11 17:31:31 +00:00
|
|
|
}).collect(),
|
|
|
|
alias)
|
2017-04-08 00:23:41 +00:00
|
|
|
},
|
2017-04-28 09:44:11 +00:00
|
|
|
ComputedTable::Subquery(subquery) => {
|
|
|
|
TableOrSubquery::Subquery(Box::new(cc_to_exists(subquery)))
|
2017-04-26 22:50:17 +00:00
|
|
|
},
|
|
|
|
ComputedTable::NamedValues {
|
|
|
|
names, values,
|
|
|
|
} => {
|
|
|
|
// We assume column homogeneity, so we won't have any type tag columns.
|
|
|
|
TableOrSubquery::Values(Values::Named(names, values), alias)
|
|
|
|
},
|
2017-04-08 00:23:41 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-07 04:18:38 +00:00
|
|
|
/// Returns a `SelectQuery` that queries for the provided `cc`. Note that this _always_ returns a
|
|
|
|
/// query that runs SQL. The next level up the call stack can check for known-empty queries if
|
|
|
|
/// needed.
|
2017-04-19 23:16:19 +00:00
|
|
|
fn cc_to_select_query(projection: Projection,
|
|
|
|
cc: ConjoiningClauses,
|
|
|
|
distinct: bool,
|
|
|
|
order: Option<Vec<OrderBy>>,
|
|
|
|
limit: Limit) -> SelectQuery {
|
2017-03-07 04:18:38 +00:00
|
|
|
let from = if cc.from.is_empty() {
|
|
|
|
FromClause::Nothing
|
|
|
|
} else {
|
2017-04-08 00:23:41 +00:00
|
|
|
// Move these out of the CC.
|
|
|
|
let from = cc.from;
|
|
|
|
let mut computed: ConsumableVec<_> = cc.computed_tables.into();
|
|
|
|
|
2017-04-11 17:31:31 +00:00
|
|
|
// Why do we put computed tables directly into the `FROM` clause? The alternative is to use
|
|
|
|
// a CTE (`WITH`). They're typically equivalent, but some SQL systems (notably Postgres)
|
|
|
|
// treat CTEs as optimization barriers, so a `WITH` can be significantly slower. Given that
|
|
|
|
// this is easy enough to change later, we'll opt for using direct inclusion in `FROM`.
|
2017-04-08 00:23:41 +00:00
|
|
|
let tables =
|
|
|
|
from.into_iter().map(|source_alias| {
|
|
|
|
match source_alias {
|
|
|
|
SourceAlias(DatomsTable::Computed(i), alias) => {
|
|
|
|
let comp = computed.take_dangerously(i);
|
|
|
|
table_for_computed(comp, alias)
|
|
|
|
},
|
|
|
|
_ => {
|
|
|
|
TableOrSubquery::Table(source_alias)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
FromClause::TableList(TableList(tables.collect()))
|
2017-03-07 04:18:38 +00:00
|
|
|
};
|
2017-03-22 21:02:00 +00:00
|
|
|
|
Implement :order. (#415) (#416) r=nalexander
This adds an `:order` keyword to `:find`.
If present, the results of the query will be an ordered set, rather than
an unordered set; rows will appear in an ordered defined by each
`:order` entry.
Each can be one of three things:
- A var, `?x`, meaning "order by ?x ascending".
- A pair, `(asc ?x)`, meaning "order by ?x ascending".
- A pair, `(desc ?x)`, meaning "order by ?x descending".
Values will be ordered in this sequence for asc, and in reverse for desc:
1. Entity IDs, in ascending numerical order.
2. Booleans, false then true.
3. Timestamps, in ascending numerical order.
4. Longs and doubles, intermixed, in ascending numerical order.
5. Strings, in ascending lexicographic order.
6. Keywords, in ascending lexicographic order, considering the entire
ns/name pair as a single string separated by '/'.
Subcommits:
Pre: make bound_value public.
Pre: generalize ErrorKind::UnboundVariable for use in order.
Part 1: parse (direction, var) pairs.
Part 2: parse :order clause into FindQuery.
Part 3: include order variables in algebrized query.
We add order variables to :with, so we can reuse its type tag projection
logic, and so that we can phrase ordering in terms of variables rather
than datoms columns.
Part 4: produce SQL for order clauses.
2017-04-14 23:10:56 +00:00
|
|
|
let order = order.map_or(vec![], |vec| { vec.into_iter().map(|o| o.into()).collect() });
|
2017-04-19 23:16:19 +00:00
|
|
|
let limit = if cc.empty_because.is_some() { Limit::Fixed(0) } else { limit };
|
2017-02-22 03:57:00 +00:00
|
|
|
SelectQuery {
|
2017-03-22 21:02:00 +00:00
|
|
|
distinct: distinct,
|
2017-02-22 03:57:00 +00:00
|
|
|
projection: projection,
|
2017-03-07 04:18:38 +00:00
|
|
|
from: from,
|
2017-02-22 03:57:00 +00:00
|
|
|
constraints: cc.wheres
|
|
|
|
.into_iter()
|
|
|
|
.map(|c| c.to_constraint())
|
|
|
|
.collect(),
|
Implement :order. (#415) (#416) r=nalexander
This adds an `:order` keyword to `:find`.
If present, the results of the query will be an ordered set, rather than
an unordered set; rows will appear in an ordered defined by each
`:order` entry.
Each can be one of three things:
- A var, `?x`, meaning "order by ?x ascending".
- A pair, `(asc ?x)`, meaning "order by ?x ascending".
- A pair, `(desc ?x)`, meaning "order by ?x descending".
Values will be ordered in this sequence for asc, and in reverse for desc:
1. Entity IDs, in ascending numerical order.
2. Booleans, false then true.
3. Timestamps, in ascending numerical order.
4. Longs and doubles, intermixed, in ascending numerical order.
5. Strings, in ascending lexicographic order.
6. Keywords, in ascending lexicographic order, considering the entire
ns/name pair as a single string separated by '/'.
Subcommits:
Pre: make bound_value public.
Pre: generalize ErrorKind::UnboundVariable for use in order.
Part 1: parse (direction, var) pairs.
Part 2: parse :order clause into FindQuery.
Part 3: include order variables in algebrized query.
We add order variables to :with, so we can reuse its type tag projection
logic, and so that we can phrase ordering in terms of variables rather
than datoms columns.
Part 4: produce SQL for order clauses.
2017-04-14 23:10:56 +00:00
|
|
|
order: order,
|
2017-03-22 21:02:00 +00:00
|
|
|
limit: limit,
|
2017-03-07 04:18:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return a query that projects `1` if the `cc` matches the store, and returns no results
|
|
|
|
/// if it doesn't.
|
|
|
|
pub fn cc_to_exists(cc: ConjoiningClauses) -> SelectQuery {
|
2017-04-06 00:20:13 +00:00
|
|
|
if cc.is_known_empty() {
|
2017-03-07 04:18:38 +00:00
|
|
|
// In this case we can produce a very simple query that returns no results.
|
|
|
|
SelectQuery {
|
2017-03-22 21:02:00 +00:00
|
|
|
distinct: false,
|
2017-03-07 04:18:38 +00:00
|
|
|
projection: Projection::One,
|
|
|
|
from: FromClause::Nothing,
|
|
|
|
constraints: vec![],
|
Implement :order. (#415) (#416) r=nalexander
This adds an `:order` keyword to `:find`.
If present, the results of the query will be an ordered set, rather than
an unordered set; rows will appear in an ordered defined by each
`:order` entry.
Each can be one of three things:
- A var, `?x`, meaning "order by ?x ascending".
- A pair, `(asc ?x)`, meaning "order by ?x ascending".
- A pair, `(desc ?x)`, meaning "order by ?x descending".
Values will be ordered in this sequence for asc, and in reverse for desc:
1. Entity IDs, in ascending numerical order.
2. Booleans, false then true.
3. Timestamps, in ascending numerical order.
4. Longs and doubles, intermixed, in ascending numerical order.
5. Strings, in ascending lexicographic order.
6. Keywords, in ascending lexicographic order, considering the entire
ns/name pair as a single string separated by '/'.
Subcommits:
Pre: make bound_value public.
Pre: generalize ErrorKind::UnboundVariable for use in order.
Part 1: parse (direction, var) pairs.
Part 2: parse :order clause into FindQuery.
Part 3: include order variables in algebrized query.
We add order variables to :with, so we can reuse its type tag projection
logic, and so that we can phrase ordering in terms of variables rather
than datoms columns.
Part 4: produce SQL for order clauses.
2017-04-14 23:10:56 +00:00
|
|
|
order: vec![],
|
2017-04-28 09:44:11 +00:00
|
|
|
limit: Limit::None,
|
2017-03-07 04:18:38 +00:00
|
|
|
}
|
|
|
|
} else {
|
2017-04-28 09:44:11 +00:00
|
|
|
cc_to_select_query(Projection::One, cc, false, None, Limit::None)
|
2017-03-06 22:40:10 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-07 04:18:38 +00:00
|
|
|
/// Consume a provided `AlgebraicQuery` to yield a new
|
|
|
|
/// `ProjectedSelect`.
|
|
|
|
pub fn query_to_select(query: AlgebraicQuery) -> ProjectedSelect {
|
2017-03-22 21:02:00 +00:00
|
|
|
// TODO: we can't pass `query.limit` here if we aggregate during projection.
|
|
|
|
// SQL-based aggregation -- `SELECT SUM(datoms00.e)` -- is fine.
|
|
|
|
let CombinedProjection { sql_projection, datalog_projector, distinct } = query_projection(&query);
|
|
|
|
ProjectedSelect {
|
Implement :order. (#415) (#416) r=nalexander
This adds an `:order` keyword to `:find`.
If present, the results of the query will be an ordered set, rather than
an unordered set; rows will appear in an ordered defined by each
`:order` entry.
Each can be one of three things:
- A var, `?x`, meaning "order by ?x ascending".
- A pair, `(asc ?x)`, meaning "order by ?x ascending".
- A pair, `(desc ?x)`, meaning "order by ?x descending".
Values will be ordered in this sequence for asc, and in reverse for desc:
1. Entity IDs, in ascending numerical order.
2. Booleans, false then true.
3. Timestamps, in ascending numerical order.
4. Longs and doubles, intermixed, in ascending numerical order.
5. Strings, in ascending lexicographic order.
6. Keywords, in ascending lexicographic order, considering the entire
ns/name pair as a single string separated by '/'.
Subcommits:
Pre: make bound_value public.
Pre: generalize ErrorKind::UnboundVariable for use in order.
Part 1: parse (direction, var) pairs.
Part 2: parse :order clause into FindQuery.
Part 3: include order variables in algebrized query.
We add order variables to :with, so we can reuse its type tag projection
logic, and so that we can phrase ordering in terms of variables rather
than datoms columns.
Part 4: produce SQL for order clauses.
2017-04-14 23:10:56 +00:00
|
|
|
query: cc_to_select_query(sql_projection, query.cc, distinct, query.order, query.limit),
|
2017-03-22 21:02:00 +00:00
|
|
|
projector: datalog_projector,
|
|
|
|
}
|
2017-03-06 22:40:10 +00:00
|
|
|
}
|