Part 2: implement simple or.

This commit is contained in:
Richard Newman 2017-04-04 14:54:08 -07:00
parent 9df18e4286
commit 0639c94468
10 changed files with 748 additions and 188 deletions

View file

@ -8,11 +8,6 @@
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std::fmt::{
Debug,
Formatter,
};
use std::collections::{
BTreeMap,
BTreeSet,
@ -21,6 +16,11 @@ use std::collections::{
use std::collections::btree_map::Entry;
use std::fmt::{
Debug,
Formatter,
};
use mentat_core::{
Attribute,
Entid,
@ -91,6 +91,33 @@ fn unit_type_set(t: ValueType) -> HashSet<ValueType> {
s
}
trait Contains<K, T> {
fn when_contains<F: FnOnce() -> T>(&self, k: &K, f: F) -> Option<T>;
}
trait Intersection<K> {
fn with_intersected_keys(&self, ks: &BTreeSet<K>) -> Self;
}
impl<K: Ord, T> Contains<K, T> for BTreeSet<K> {
fn when_contains<F: FnOnce() -> T>(&self, k: &K, f: F) -> Option<T> {
if self.contains(k) {
Some(f())
} else {
None
}
}
}
impl<K: Clone + Ord, V: Clone> Intersection<K> for BTreeMap<K, V> {
/// Return a clone of the map with only keys that are present in `ks`.
fn with_intersected_keys(&self, ks: &BTreeSet<K>) -> Self {
self.iter()
.filter_map(|(k, v)| ks.when_contains(k, || (k.clone(), v.clone())))
.collect()
}
}
/// A `ConjoiningClauses` (CC) is a collection of clauses that are combined with `JOIN`.
/// The topmost form in a query is a `ConjoiningClauses`.
///
@ -191,6 +218,38 @@ impl Default for ConjoiningClauses {
}
}
/// Cloning.
impl ConjoiningClauses {
fn make_receptacle(&self) -> ConjoiningClauses {
let mut concrete = ConjoiningClauses::default();
concrete.is_known_empty = self.is_known_empty;
concrete.empty_because = self.empty_because.clone();
concrete.input_variables = self.input_variables.clone();
concrete.value_bindings = self.value_bindings.clone();
concrete.known_types = self.known_types.clone();
concrete.extracted_types = self.extracted_types.clone();
concrete
}
/// Make a new CC populated with the relevant variable associations in this CC.
/// Note that the CC's table aliaser is not yet usable. That's not a problem for templating for
/// simple `or`.
fn use_as_template(&self, vars: &BTreeSet<Variable>) -> ConjoiningClauses {
let mut template = ConjoiningClauses::default();
template.is_known_empty = self.is_known_empty;
template.empty_because = self.empty_because.clone();
template.input_variables = self.input_variables.intersection(vars).cloned().collect();
template.value_bindings = self.value_bindings.with_intersected_keys(&vars);
template.known_types = self.known_types.with_intersected_keys(&vars);
template.extracted_types = self.extracted_types.with_intersected_keys(&vars);
template
}
}
impl ConjoiningClauses {
#[allow(dead_code)]
fn with_value_bindings(bindings: BTreeMap<Variable, TypedValue>) -> ConjoiningClauses {
@ -201,7 +260,8 @@ impl ConjoiningClauses {
// Pre-fill our type mappings with the types of the input bindings.
cc.known_types
.extend(cc.value_bindings.iter()
.extend(cc.value_bindings
.iter()
.map(|(k, v)| (k.clone(), unit_type_set(v.value_type()))));
cc
}
@ -311,18 +371,6 @@ impl ConjoiningClauses {
/// Marks as known-empty if it's impossible for this type to apply because there's a conflicting
/// type already known.
fn constrain_var_to_type(&mut self, variable: Variable, this_type: ValueType) {
// If this variable now has a known attribute, we can unhook extracted types for
// any other instances of that variable.
// For example, given
//
// ```edn
// [:find ?v :where [?x ?a ?v] [?y :foo/int ?v]]
// ```
//
// we will initially choose to extract the type tag for `?v`, but on encountering
// the second pattern we can avoid that.
self.extracted_types.remove(&variable);
// Is there an existing mapping for this variable?
// Any known inputs have already been added to known_types, and so if they conflict we'll
// spot it here.
@ -336,7 +384,12 @@ impl ConjoiningClauses {
/// Like `constrain_var_to_type` but in reverse: this expands the set of types
/// with which a variable is associated.
fn broaden_types(&mut self, additional_types: BTreeMap<Variable, HashSet<ValueType>>) {
///
/// N.B.,: if we ever call `broaden_types` after `is_known_empty` has been set, we might
/// actually move from a state in which a variable can have no type to one that can
/// yield results! We never do so at present -- we carefully set-union types before we
/// set-intersect them -- but this is worth bearing in mind.
pub fn broaden_types(&mut self, additional_types: BTreeMap<Variable, HashSet<ValueType>>) {
for (var, new_types) in additional_types {
match self.known_types.entry(var) {
Entry::Vacant(e) => {
@ -346,12 +399,20 @@ impl ConjoiningClauses {
e.insert(new_types);
},
Entry::Occupied(mut e) => {
if e.get().is_empty() && self.is_known_empty {
panic!("Uh oh: we failed this pattern, probably because {:?} couldn't match, but now we're broadening its type.",
e.get());
}
e.get_mut().extend(new_types.into_iter());
},
}
}
}
/// Restrict the known types for `var` to intersect with `types`.
/// If no types are already known -- `var` could have any type -- then this is equivalent to
/// simply setting the known types to `types`.
/// If the known types don't intersect with `types`, mark the pattern as known-empty.
fn narrow_types_for_var(&mut self, var: Variable, types: HashSet<ValueType>) {
if types.is_empty() {
// We hope this never occurs; we should catch this case earlier.
@ -359,10 +420,7 @@ impl ConjoiningClauses {
return;
}
if types.len() == 1 {
self.extracted_types.remove(&var);
}
// We can't mutate `empty_because` while we're working with the `Entry`, so do this instead.
let mut empty_because: Option<EmptyBecause> = None;
match self.known_types.entry(var) {
Entry::Vacant(e) => {
@ -372,15 +430,14 @@ impl ConjoiningClauses {
// TODO: we shouldn't need to clone here.
let intersected: HashSet<_> = types.intersection(e.get()).cloned().collect();
if intersected.is_empty() {
empty_because = Some(EmptyBecause::TypeMismatch(e.key().clone(),
let mismatching_type = types.iter().next().unwrap().clone();
let reason = EmptyBecause::TypeMismatch(e.key().clone(),
e.get().clone(),
types.iter()
.next()
.cloned()
.unwrap()));
} else {
e.insert(intersected);
mismatching_type);
empty_because = Some(reason);
}
// Always insert, even if it's empty!
e.insert(intersected);
},
}
@ -389,15 +446,14 @@ impl ConjoiningClauses {
}
}
fn narrow_types(&mut self, additional_types: BTreeMap<Variable, HashSet<ValueType>>) {
/// Restrict the sets of types for the provided vars to the provided types.
/// See `narrow_types_for_var`.
pub fn narrow_types(&mut self, additional_types: BTreeMap<Variable, HashSet<ValueType>>) {
if additional_types.is_empty() {
return;
}
for (var, new_types) in additional_types {
self.narrow_types_for_var(var, new_types);
if self.is_known_empty {
return;
}
}
}
@ -628,9 +684,8 @@ impl ConjoiningClauses {
self.apply_predicate(schema, p)
},
WhereClause::OrJoin(o) => {
validate_or_join(&o)
//?;
//self.apply_or_join(schema, o)
validate_or_join(&o)?;
self.apply_or_join(schema, o)
},
_ => unimplemented!(),
}

View file

@ -8,27 +8,21 @@
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// WIP
#![allow(dead_code, unused_imports, unused_variables)]
use std::collections::btree_map::Entry;
use std::collections::BTreeSet;
use mentat_core::{
Entid,
Schema,
TypedValue,
ValueType,
};
use mentat_query::{
NonIntegerConstant,
OrJoin,
OrWhereClause,
Pattern,
PatternValuePlace,
PatternNonValuePlace,
PlainSymbol,
Predicate,
SrcVar,
UnifyVars,
Variable,
WhereClause,
};
@ -36,21 +30,14 @@ use clauses::ConjoiningClauses;
use errors::{
Result,
Error,
ErrorKind,
};
use types::{
ColumnConstraint,
ColumnConstraintOrAlternation,
ColumnAlternation,
ColumnIntersection,
DatomsColumn,
DatomsTable,
EmptyBecause,
NumericComparison,
QualifiedAlias,
QueryValue,
SourceAlias,
TableAlias,
};
/// Return true if both left and right are the same variable or both are non-variable.
@ -84,7 +71,7 @@ pub enum DeconstructedOrJoin {
KnownEmpty(EmptyBecause),
Unit(OrWhereClause),
UnitPattern(Pattern),
Simple(Vec<Pattern>),
Simple(Vec<Pattern>, BTreeSet<Variable>),
Complex(OrJoin),
}
@ -106,12 +93,26 @@ impl ConjoiningClauses {
}
}
fn apply_or_join(&mut self, schema: &Schema, mut or_join: OrJoin) -> Result<()> {
pub fn apply_or_join(&mut self, schema: &Schema, mut or_join: OrJoin) -> Result<()> {
// Simple optimization. Empty `or` clauses disappear. Unit `or` clauses
// are equivalent to just the inner clause.
// Pre-cache mentioned variables. We use these in a few places.
or_join.mentioned_variables();
match or_join.clauses.len() {
0 => Ok(()),
1 => self.apply_or_where_clause(schema, or_join.clauses.pop().unwrap()),
1 if or_join.is_fully_unified() => {
let clause = or_join.clauses.pop().expect("there's a clause");
self.apply_or_where_clause(schema, clause)
},
// Either there's only one clause pattern, and it's not fully unified, or we
// have multiple clauses.
// In the former case we can't just apply it: it includes a variable that we don't want
// to join with the rest of the query.
// Notably, this clause might be an `and`, making this a complex pattern, so we can't
// necessarily rewrite it in place.
// In the latter case, we still need to do a bit more work.
_ => self.apply_non_trivial_or_join(schema, or_join),
}
}
@ -175,7 +176,7 @@ impl ConjoiningClauses {
/// to be called _only_ by `deconstruct_or_join`.
fn _deconstruct_or_join(&self, schema: &Schema, or_join: OrJoin) -> DeconstructedOrJoin {
// Preconditions enforced by `deconstruct_or_join`.
assert_eq!(or_join.unify_vars, UnifyVars::Implicit);
assert!(or_join.is_fully_unified());
assert!(or_join.clauses.len() >= 2);
// We're going to collect into this.
@ -192,7 +193,8 @@ impl ConjoiningClauses {
let mut empty_because: Option<EmptyBecause> = None;
// Walk each clause in turn, bailing as soon as we know this can't be simple.
let mut clauses = or_join.clauses.into_iter();
let (join_clauses, mentioned_vars) = or_join.dismember();
let mut clauses = join_clauses.into_iter();
while let Some(clause) = clauses.next() {
// If we fail half-way through processing, we want to reconstitute the input.
// Keep a handle to the clause itself here to smooth over the moved `if let` below.
@ -259,10 +261,10 @@ impl ConjoiningClauses {
.chain(clauses)
.collect();
return DeconstructedOrJoin::Complex(OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: reconstructed,
});
return DeconstructedOrJoin::Complex(OrJoin::new(
UnifyVars::Implicit,
reconstructed,
));
}
// If we got here without returning, then `patterns` is what we're working with.
@ -273,14 +275,11 @@ impl ConjoiningClauses {
DeconstructedOrJoin::KnownEmpty(empty_because.unwrap())
},
1 => DeconstructedOrJoin::UnitPattern(patterns.pop().unwrap()),
_ => DeconstructedOrJoin::Simple(patterns),
_ => DeconstructedOrJoin::Simple(patterns, mentioned_vars),
}
}
/// Only call this with an `or_join` with 2 or more patterns.
fn apply_non_trivial_or_join(&mut self, schema: &Schema, or_join: OrJoin) -> Result<()> {
assert!(or_join.clauses.len() >= 2);
match self.deconstruct_or_join(schema, or_join) {
DeconstructedOrJoin::KnownSuccess => {
// The pattern came to us empty -- `(or)`. Do nothing.
@ -301,12 +300,11 @@ impl ConjoiningClauses {
self.apply_pattern(schema, pattern);
Ok(())
},
DeconstructedOrJoin::Simple(patterns) => {
DeconstructedOrJoin::Simple(patterns, mentioned_vars) => {
// Hooray! Fully unified and plain ol' patterns that all use the same table.
// Go right ahead and produce a set of constraint alternations that we can collect,
// using a single table alias.
// TODO
self.apply_simple_or_join(schema, patterns)
self.apply_simple_or_join(schema, patterns, mentioned_vars)
},
DeconstructedOrJoin::Complex(_) => {
// Do this the hard way. TODO
@ -343,15 +341,35 @@ impl ConjoiningClauses {
/// OR (datoms00.a = 98 AND datoms00.v = 'Peter')
/// ```
///
fn apply_simple_or_join(&mut self, schema: &Schema, patterns: Vec<Pattern>) -> Result<()> {
fn apply_simple_or_join(&mut self, schema: &Schema, patterns: Vec<Pattern>, mentioned_vars: BTreeSet<Variable>) -> Result<()> {
if self.is_known_empty {
return Ok(())
}
assert!(patterns.len() >= 2);
// Each constant attribute might _expand_ the set of possible types of the value-place
// variable. We thus generate a set of possible types, and we intersect it with the
// types already possible in the CC. If the resultant set is empty, the pattern cannot match.
// If the final set isn't unit, we must project a type tag column.
// If one of the alternations requires a type that is impossible in the CC, then we can
// discard that alternate:
// Begin by building a base CC that we'll use to produce constraints from each pattern.
// Populate this base CC with whatever variables are already known from the CC to which
// we're applying this `or`.
// This will give us any applicable type constraints or column mappings.
// Then generate a single table alias, based on the first pattern, and use that to make any
// new variable mappings we will need to extract values.
let template = self.use_as_template(&mentioned_vars);
// We expect this to always work: if it doesn't, it means we should never have got to this
// point.
let source_alias = self.alias_table(schema, &patterns[0]).expect("couldn't get table");
// This is where we'll collect everything we eventually add to the destination CC.
let mut folded = ConjoiningClauses::default();
// Scoped borrow of source_alias.
{
// Clone this CC once for each pattern.
// Apply each pattern to its CC with the _same_ table alias.
// Each pattern's derived types are intersected with any type constraints in the
// template, sourced from the destination CC. If a variable cannot satisfy both type
// constraints, the new CC cannot match. This prunes the 'or' arms:
//
// ```edn
// [:find ?x
@ -367,17 +385,457 @@ impl ConjoiningClauses {
// :where [?a :some/int ?x]
// [_ :some/otherint ?x]]
// ```
//
// Similarly, if the value place is constant, it must be of a type that doesn't determine
// a different table for any of the patterns.
// TODO
let mut receptacles =
patterns.into_iter()
.filter_map(|pattern| {
let mut receptacle = template.make_receptacle();
println!("Applying pattern with attribute {:?}", pattern.attribute);
receptacle.apply_pattern_clause_for_alias(schema, &pattern, &source_alias);
if receptacle.is_known_empty {
println!("Receptacle is empty.");
let reason = receptacle.empty_because;
None
} else {
Some(receptacle)
}
})
.peekable();
// Begin by building a base CC that we'll use to produce constraints from each pattern.
// Populate this base CC with whatever variables are already known from the CC to which
// we're applying this `or`.
// This will give us any applicable type constraints or column mappings.
// Then generate a single table alias, based on the first pattern, and use that to make any
// new variable mappings we will need to extract values.
// We need to copy the column bindings from one of the receptacles. Because this is a simple
// or, we know that they're all the same.
// Because we just made an empty template, and created a new alias from the destination CC,
// we know that we can blindly merge: collisions aren't possible.
if let Some(first) = receptacles.peek() {
for (v, cols) in &first.column_bindings {
println!("Adding {:?}: {:?}", v, cols);
match self.column_bindings.entry(v.clone()) {
Entry::Vacant(e) => {
e.insert(cols.clone());
},
Entry::Occupied(mut e) => {
e.get_mut().append(&mut cols.clone());
},
}
}
} else {
// No non-empty receptacles? The destination CC is known-empty, because or([]) is false.
// TODO: get the reason out.
self.mark_known_empty(EmptyBecause::AttributeLookupFailed);
return Ok(());
}
// Otherwise, we fold together the receptacles.
//
// Merge together the constraints from each receptacle. Each bundle of constraints is
// combined into a `ConstraintIntersection`, and the collection of intersections is
// combined into a `ConstraintAlternation`. (As an optimization, this collection can be
// simplified.)
//
// Each receptacle's known types are _unioned_. Strictly speaking this is a weakening:
// we might know that if `?x` is an integer then `?y` is a string, or vice versa, but at
// this point we'll simply state that `?x` and `?y` can both be integers or strings.
fn vec_for_iterator<T, I, U>(iter: &I) -> Vec<T> where I: Iterator<Item=U> {
match iter.size_hint().1 {
None => Vec::new(),
Some(expected) => Vec::with_capacity(expected),
}
}
let mut alternates: Vec<ColumnIntersection> = vec_for_iterator(&receptacles);
for r in receptacles {
folded.broaden_types(r.known_types);
alternates.push(r.wheres);
}
if alternates.len() == 1 {
// Simplify.
folded.wheres = alternates.pop().unwrap();
} else {
let alternation = ColumnAlternation(alternates);
let mut container = ColumnIntersection::default();
container.add(ColumnConstraintOrAlternation::Alternation(alternation));
folded.wheres = container;
}
}
// Collect the source alias: we use a single table join to represent the entire `or`.
self.from.push(source_alias);
// Add in the known types and constraints.
// Each constant attribute might _expand_ the set of possible types of the value-place
// variable. We thus generate a set of possible types, and we intersect it with the
// types already possible in the CC. If the resultant set is empty, the pattern cannot
// match. If the final set isn't unit, we must project a type tag column.
self.intersect(folded)
}
fn intersect(&mut self, mut cc: ConjoiningClauses) -> Result<()> {
if cc.is_known_empty {
self.is_known_empty = true;
self.empty_because = cc.empty_because;
}
self.wheres.append(&mut cc.wheres);
self.narrow_types(cc.known_types);
Ok(())
}
}
#[cfg(test)]
mod testing {
extern crate mentat_query_parser;
use super::*;
use mentat_core::{
Attribute,
TypedValue,
ValueType,
};
use mentat_query::{
NamespacedKeyword,
Variable,
};
use self::mentat_query_parser::{
parse_find_string,
};
use clauses::{
add_attribute,
associate_ident,
};
use types::{
ColumnConstraint,
DatomsColumn,
DatomsTable,
NumericComparison,
QualifiedAlias,
QueryValue,
SourceAlias,
};
use algebrize;
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("parse failed");
algebrize(schema.into(), parsed).expect("algebrize failed").cc
}
fn compare_ccs(left: ConjoiningClauses, right: ConjoiningClauses) {
assert_eq!(left.wheres, right.wheres);
assert_eq!(left.from, right.from);
}
fn prepopulated_schema() -> Schema {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "name"), 65);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "knows"), 66);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "parent"), 67);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "age"), 68);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "height"), 69);
add_attribute(&mut schema, 65, Attribute {
value_type: ValueType::String,
multival: false,
..Default::default()
});
add_attribute(&mut schema, 66, Attribute {
value_type: ValueType::String,
multival: true,
..Default::default()
});
add_attribute(&mut schema, 67, Attribute {
value_type: ValueType::String,
multival: true,
..Default::default()
});
add_attribute(&mut schema, 68, Attribute {
value_type: ValueType::Long,
multival: false,
..Default::default()
});
add_attribute(&mut schema, 69, Attribute {
value_type: ValueType::Long,
multival: false,
..Default::default()
});
schema
}
/// Test that if all the attributes in an `or` fail to resolve, the entire thing fails.
#[test]
fn test_schema_based_failure() {
let schema = Schema::default();
let query = r#"
[:find ?x
:where (or [?x :foo/nope1 "John"]
[?x :foo/nope2 "Ámbar"]
[?x :foo/nope3 "Daphne"])]"#;
let cc = alg(&schema, query);
assert!(cc.is_known_empty);
assert_eq!(cc.empty_because, Some(EmptyBecause::InvalidAttributeIdent(NamespacedKeyword::new("foo", "nope3"))));
}
/// Test that if only one of the attributes in an `or` resolves, it's equivalent to a simple query.
#[test]
fn test_only_one_arm_succeeds() {
let schema = prepopulated_schema();
let query = r#"
[:find ?x
:where (or [?x :foo/nope "John"]
[?x :foo/parent "Ámbar"]
[?x :foo/nope "Daphne"])]"#;
let cc = alg(&schema, query);
assert!(!cc.is_known_empty);
compare_ccs(cc, alg(&schema, r#"[:find ?x :where [?x :foo/parent "Ámbar"]]"#));
}
// Simple alternation.
#[test]
fn test_simple_alternation() {
let schema = prepopulated_schema();
let query = r#"
[:find ?x
:where (or [?x :foo/knows "John"]
[?x :foo/parent "Ámbar"]
[?x :foo/knows "Daphne"])]"#;
let cc = alg(&schema, query);
let vx = Variable::from_valid_name("?x");
let d0 = "datoms00".to_string();
let d0e = QualifiedAlias(d0.clone(), DatomsColumn::Entity);
let d0a = QualifiedAlias(d0.clone(), DatomsColumn::Attribute);
let d0v = QualifiedAlias(d0.clone(), DatomsColumn::Value);
let knows = QueryValue::Entid(66);
let parent = QueryValue::Entid(67);
let john = QueryValue::TypedValue(TypedValue::typed_string("John"));
let ambar = QueryValue::TypedValue(TypedValue::typed_string("Ámbar"));
let daphne = QueryValue::TypedValue(TypedValue::typed_string("Daphne"));
assert!(!cc.is_known_empty);
assert_eq!(cc.wheres, ColumnIntersection(vec![
ColumnConstraintOrAlternation::Alternation(
ColumnAlternation(vec![
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), knows.clone())),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0v.clone(), john))]),
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), parent)),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0v.clone(), ambar))]),
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), knows)),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0v.clone(), daphne))]),
]))]));
assert_eq!(cc.column_bindings.get(&vx), Some(&vec![d0e]));
assert_eq!(cc.from, vec![SourceAlias(DatomsTable::Datoms, d0)]);
}
// Alternation with a pattern.
#[test]
fn test_alternation_with_pattern() {
let schema = prepopulated_schema();
let query = r#"
[:find [?x ?name]
:where
[?x :foo/name ?name]
(or [?x :foo/knows "John"]
[?x :foo/parent "Ámbar"]
[?x :foo/knows "Daphne"])]"#;
let cc = alg(&schema, query);
let vx = Variable::from_valid_name("?x");
let d0 = "datoms00".to_string();
let d1 = "datoms01".to_string();
let d0e = QualifiedAlias(d0.clone(), DatomsColumn::Entity);
let d0a = QualifiedAlias(d0.clone(), DatomsColumn::Attribute);
let d1e = QualifiedAlias(d1.clone(), DatomsColumn::Entity);
let d1a = QualifiedAlias(d1.clone(), DatomsColumn::Attribute);
let d1v = QualifiedAlias(d1.clone(), DatomsColumn::Value);
let name = QueryValue::Entid(65);
let knows = QueryValue::Entid(66);
let parent = QueryValue::Entid(67);
let john = QueryValue::TypedValue(TypedValue::typed_string("John"));
let ambar = QueryValue::TypedValue(TypedValue::typed_string("Ámbar"));
let daphne = QueryValue::TypedValue(TypedValue::typed_string("Daphne"));
assert!(!cc.is_known_empty);
assert_eq!(cc.wheres, ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), name.clone())),
ColumnConstraintOrAlternation::Alternation(
ColumnAlternation(vec![
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), knows.clone())),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1v.clone(), john))]),
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), parent)),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1v.clone(), ambar))]),
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), knows)),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1v.clone(), daphne))]),
])),
// The outer pattern joins against the `or`.
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0e.clone(), QueryValue::Column(d1e.clone()))),
]));
assert_eq!(cc.column_bindings.get(&vx), Some(&vec![d0e, d1e]));
assert_eq!(cc.from, vec![SourceAlias(DatomsTable::Datoms, d0),
SourceAlias(DatomsTable::Datoms, d1)]);
}
// Alternation with a pattern and a predicate.
#[test]
fn test_alternation_with_pattern_and_predicate() {
let schema = prepopulated_schema();
let query = r#"
[:find ?x ?age
:where
[?x :foo/age ?age]
[[< ?age 30]]
(or [?x :foo/knows "John"]
[?x :foo/knows "Daphne"])]"#;
let cc = alg(&schema, query);
let vx = Variable::from_valid_name("?x");
let d0 = "datoms00".to_string();
let d1 = "datoms01".to_string();
let d0e = QualifiedAlias(d0.clone(), DatomsColumn::Entity);
let d0a = QualifiedAlias(d0.clone(), DatomsColumn::Attribute);
let d0v = QualifiedAlias(d0.clone(), DatomsColumn::Value);
let d1e = QualifiedAlias(d1.clone(), DatomsColumn::Entity);
let d1a = QualifiedAlias(d1.clone(), DatomsColumn::Attribute);
let d1v = QualifiedAlias(d1.clone(), DatomsColumn::Value);
let knows = QueryValue::Entid(66);
let age = QueryValue::Entid(68);
let john = QueryValue::TypedValue(TypedValue::typed_string("John"));
let daphne = QueryValue::TypedValue(TypedValue::typed_string("Daphne"));
assert!(!cc.is_known_empty);
assert_eq!(cc.wheres, ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), age.clone())),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::NumericInequality {
operator: NumericComparison::LessThan,
left: QueryValue::Column(d0v.clone()),
right: QueryValue::TypedValue(TypedValue::Long(30)),
}),
ColumnConstraintOrAlternation::Alternation(
ColumnAlternation(vec![
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), knows.clone())),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1v.clone(), john))]),
ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), knows)),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1v.clone(), daphne))]),
])),
// The outer pattern joins against the `or`.
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0e.clone(), QueryValue::Column(d1e.clone()))),
]));
assert_eq!(cc.column_bindings.get(&vx), Some(&vec![d0e, d1e]));
assert_eq!(cc.from, vec![SourceAlias(DatomsTable::Datoms, d0),
SourceAlias(DatomsTable::Datoms, d1)]);
}
// These two are not equivalent:
// [:find ?x :where [?x :foo/bar ?y] (or-join [?x] [?x :foo/baz ?y])]
// [:find ?x :where [?x :foo/bar ?y] [?x :foo/baz ?y]]
#[test]
#[should_panic(expected = "not yet implemented")]
fn test_unit_or_join_doesnt_flatten() {
let schema = prepopulated_schema();
let query = r#"[:find ?x
:where [?x :foo/knows ?y]
(or-join [?x] [?x :foo/parent ?y])]"#;
let cc = alg(&schema, query);
let vx = Variable::from_valid_name("?x");
let vy = Variable::from_valid_name("?y");
let d0 = "datoms00".to_string();
let d1 = "datoms01".to_string();
let d0e = QualifiedAlias(d0.clone(), DatomsColumn::Entity);
let d0a = QualifiedAlias(d0.clone(), DatomsColumn::Attribute);
let d0v = QualifiedAlias(d0.clone(), DatomsColumn::Value);
let d1e = QualifiedAlias(d1.clone(), DatomsColumn::Entity);
let d1a = QualifiedAlias(d1.clone(), DatomsColumn::Attribute);
let knows = QueryValue::Entid(66);
let parent = QueryValue::Entid(67);
assert!(!cc.is_known_empty);
assert_eq!(cc.wheres, ColumnIntersection(vec![
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0a.clone(), knows.clone())),
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d1a.clone(), parent.clone())),
// The outer pattern joins against the `or` on the entity, but not value -- ?y means
// different things in each place.
ColumnConstraintOrAlternation::Constraint(ColumnConstraint::Equals(d0e.clone(), QueryValue::Column(d1e.clone()))),
]));
assert_eq!(cc.column_bindings.get(&vx), Some(&vec![d0e, d1e]));
// ?y does not have a binding in the `or-join` pattern.
assert_eq!(cc.column_bindings.get(&vy), Some(&vec![d0v]));
assert_eq!(cc.from, vec![SourceAlias(DatomsTable::Datoms, d0),
SourceAlias(DatomsTable::Datoms, d1)]);
}
// These two are equivalent:
// [:find ?x :where [?x :foo/bar ?y] (or [?x :foo/baz ?y])]
// [:find ?x :where [?x :foo/bar ?y] [?x :foo/baz ?y]]
#[test]
fn test_unit_or_does_flatten() {
let schema = prepopulated_schema();
let or_query = r#"[:find ?x
:where [?x :foo/knows ?y]
(or [?x :foo/parent ?y])]"#;
let flat_query = r#"[:find ?x
:where [?x :foo/knows ?y]
[?x :foo/parent ?y]]"#;
compare_ccs(alg(&schema, or_query),
alg(&schema, flat_query));
}
// Elision of `and`.
#[test]
fn test_unit_or_and_does_flatten() {
let schema = prepopulated_schema();
let or_query = r#"[:find ?x
:where (or (and [?x :foo/parent ?y]
[?x :foo/age 7]))]"#;
let flat_query = r#"[:find ?x
:where [?x :foo/parent ?y]
[?x :foo/age 7]]"#;
compare_ccs(alg(&schema, or_query),
alg(&schema, flat_query));
}
// Alternation with `and`.
/// [:find ?x
/// :where (or (and [?x :foo/knows "John"]
/// [?x :foo/parent "Ámbar"])
/// [?x :foo/knows "Daphne"])]
/// Strictly speaking this can be implemented with a `NOT EXISTS` clause for the second pattern,
/// but that would be a fair amount of analysis work, I think.
#[test]
#[should_panic(expected = "not yet implemented")]
#[allow(dead_code, unused_variables)]
fn test_alternation_with_and() {
let schema = prepopulated_schema();
let query = r#"
[:find ?x
:where (or (and [?x :foo/knows "John"]
[?x :foo/parent "Ámbar"])
[?x :foo/knows "Daphne"])]"#;
let cc = alg(&schema, query);
}
#[test]
fn test_type_based_or_pruning() {
let schema = prepopulated_schema();
// This simplifies to:
// [:find ?x
// :where [?a :some/int ?x]
// [_ :some/otherint ?x]]
let query = r#"
[:find ?x
:where [?a :foo/age ?x]
(or [_ :foo/height ?x]
[_ :foo/name ?x])]"#;
let simple = r#"
[:find ?x
:where [?a :foo/age ?x]
[_ :foo/height ?x]]"#;
compare_ccs(alg(&schema, query), alg(&schema, simple));
}
}

View file

@ -8,8 +8,6 @@
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std::rc::Rc;
use mentat_core::{
Schema,
TypedValue,
@ -70,7 +68,9 @@ impl ConjoiningClauses {
///
/// - A unique-valued attribute can sometimes be rewritten into an
/// existence subquery instead of a join.
fn apply_pattern_clause_for_alias<'s>(&mut self, schema: &'s Schema, pattern: &Pattern, alias: &SourceAlias) {
///
/// This method is only public for use from `or.rs`.
pub fn apply_pattern_clause_for_alias<'s>(&mut self, schema: &'s Schema, pattern: &Pattern, alias: &SourceAlias) {
if self.is_known_empty {
return;
}
@ -268,6 +268,7 @@ mod testing {
use super::*;
use std::collections::BTreeMap;
use std::rc::Rc;
use mentat_core::attribute::Unique;
use mentat_core::{

View file

@ -77,6 +77,7 @@ pub fn algebrize(schema: &Schema, parsed: FindQuery) -> Result<AlgebraicQuery> {
for where_clause in where_clauses {
cc.apply_clause(schema, where_clause)?;
}
cc.expand_column_bindings();
let limit = if parsed.find_spec.is_unit_limited() { Some(1) } else { None };
Ok(AlgebraicQuery {

View file

@ -100,7 +100,7 @@ impl QualifiedAlias {
}
}
#[derive(PartialEq, Eq)]
#[derive(PartialEq, Eq, Clone)]
pub enum QueryValue {
Column(QualifiedAlias),
Entid(Entid),
@ -233,16 +233,28 @@ impl IntoIterator for ColumnIntersection {
}
impl ColumnIntersection {
#[inline]
pub fn len(&self) -> usize {
self.0.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
#[inline]
pub fn add(&mut self, constraint: ColumnConstraintOrAlternation) {
self.0.push(constraint);
}
#[inline]
pub fn add_intersection(&mut self, constraint: ColumnConstraint) {
self.0.push(ColumnConstraintOrAlternation::Constraint(constraint));
self.add(ColumnConstraintOrAlternation::Constraint(constraint));
}
pub fn append(&mut self, other: &mut Self) {
self.0.append(&mut other.0)
}
}
@ -301,6 +313,7 @@ impl Debug for ColumnConstraint {
pub enum EmptyBecause {
// Var, existing, desired.
TypeMismatch(Variable, HashSet<ValueType>, ValueType),
NoValidTypes(Variable),
NonNumericArgument,
NonStringFulltextValue,
UnresolvedIdent(NamespacedKeyword),
@ -319,6 +332,9 @@ impl Debug for EmptyBecause {
write!(f, "Type mismatch: {:?} can't be {:?}, because it's already {:?}",
var, desired, existing)
},
&NoValidTypes(ref var) => {
write!(f, "Type mismatch: {:?} has no valid types", var)
},
&NonNumericArgument => {
write!(f, "Non-numeric argument in numeric place")
},

View file

@ -160,11 +160,7 @@ def_parser!(Where, or_clause, WhereClause, {
.of_exactly(Where::or()
.with(many1(Where::or_where_clause()))
.map(|clauses| {
WhereClause::OrJoin(
OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: clauses,
})
WhereClause::OrJoin(OrJoin::new(UnifyVars::Implicit, clauses))
}))
});
@ -174,11 +170,7 @@ def_parser!(Where, or_join_clause, WhereClause, {
.with(Where::rule_vars())
.and(many1(Where::or_where_clause()))
.map(|(vars, clauses)| {
WhereClause::OrJoin(
OrJoin {
unify_vars: UnifyVars::Explicit(vars),
clauses: clauses,
})
WhereClause::OrJoin(OrJoin::new(UnifyVars::Explicit(vars), clauses))
}))
});
@ -508,17 +500,15 @@ mod test {
edn::Value::PlainSymbol(v.clone())])].into_iter().collect());
assert_parses_to!(Where::or_clause, input,
WhereClause::OrJoin(
OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: vec![OrWhereClause::Clause(
OrJoin::new(UnifyVars::Implicit,
vec![OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
entity: PatternNonValuePlace::Variable(variable(e)),
attribute: PatternNonValuePlace::Variable(variable(a)),
value: PatternValuePlace::Variable(variable(v)),
tx: PatternNonValuePlace::Placeholder,
}))],
}));
}))])));
}
#[test]
@ -535,17 +525,15 @@ mod test {
edn::Value::PlainSymbol(v.clone())])].into_iter().collect());
assert_parses_to!(Where::or_join_clause, input,
WhereClause::OrJoin(
OrJoin {
unify_vars: UnifyVars::Explicit(vec![variable(e.clone())]),
clauses: vec![OrWhereClause::Clause(
OrJoin::new(UnifyVars::Explicit(vec![variable(e.clone())]),
vec![OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
entity: PatternNonValuePlace::Variable(variable(e)),
attribute: PatternNonValuePlace::Variable(variable(a)),
value: PatternValuePlace::Variable(variable(v)),
tx: PatternNonValuePlace::Placeholder,
}))],
}));
}))])));
}
#[test]

View file

@ -70,9 +70,9 @@ fn can_parse_simple_or() {
FindSpec::FindScalar(Element::Variable(Variable::from_valid_name("?x"))));
assert_eq!(p.where_clauses,
vec![
WhereClause::OrJoin(OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: vec![
WhereClause::OrJoin(OrJoin::new(
UnifyVars::Implicit,
vec![
OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
@ -90,7 +90,7 @@ fn can_parse_simple_or() {
tx: PatternNonValuePlace::Placeholder,
})),
],
}),
)),
]);
}
@ -103,9 +103,9 @@ fn can_parse_unit_or_join() {
FindSpec::FindScalar(Element::Variable(Variable::from_valid_name("?x"))));
assert_eq!(p.where_clauses,
vec![
WhereClause::OrJoin(OrJoin {
unify_vars: UnifyVars::Explicit(vec![Variable::from_valid_name("?x")]),
clauses: vec![
WhereClause::OrJoin(OrJoin::new(
UnifyVars::Explicit(vec![Variable::from_valid_name("?x")]),
vec![
OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
@ -115,7 +115,7 @@ fn can_parse_unit_or_join() {
tx: PatternNonValuePlace::Placeholder,
})),
],
}),
)),
]);
}
@ -128,9 +128,9 @@ fn can_parse_simple_or_join() {
FindSpec::FindScalar(Element::Variable(Variable::from_valid_name("?x"))));
assert_eq!(p.where_clauses,
vec![
WhereClause::OrJoin(OrJoin {
unify_vars: UnifyVars::Explicit(vec![Variable::from_valid_name("?x")]),
clauses: vec![
WhereClause::OrJoin(OrJoin::new(
UnifyVars::Explicit(vec![Variable::from_valid_name("?x")]),
vec![
OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
@ -148,7 +148,7 @@ fn can_parse_simple_or_join() {
tx: PatternNonValuePlace::Placeholder,
})),
],
}),
)),
]);
}
@ -166,9 +166,9 @@ fn can_parse_simple_or_and_join() {
FindSpec::FindScalar(Element::Variable(Variable::from_valid_name("?x"))));
assert_eq!(p.where_clauses,
vec![
WhereClause::OrJoin(OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: vec![
WhereClause::OrJoin(OrJoin::new(
UnifyVars::Implicit,
vec![
OrWhereClause::Clause(
WhereClause::Pattern(Pattern {
source: None,
@ -179,9 +179,9 @@ fn can_parse_simple_or_and_join() {
})),
OrWhereClause::And(
vec![
WhereClause::OrJoin(OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: vec![
WhereClause::OrJoin(OrJoin::new(
UnifyVars::Implicit,
vec![
OrWhereClause::Clause(WhereClause::Pattern(Pattern {
source: None,
entity: PatternNonValuePlace::Variable(Variable::from_valid_name("?x")),
@ -197,7 +197,7 @@ fn can_parse_simple_or_and_join() {
tx: PatternNonValuePlace::Placeholder,
})),
],
}),
)),
WhereClause::Pred(Predicate { operator: PlainSymbol::new("<"), args: vec![
FnArg::Variable(Variable::from_valid_name("?y")), FnArg::EntidOrInteger(1),
@ -205,6 +205,6 @@ fn can_parse_simple_or_and_join() {
],
)
],
}),
)),
]);
}

View file

@ -8,21 +8,12 @@
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#![allow(dead_code, unused_imports)]
use mentat_core::{
SQLValueType,
TypedValue,
ValueType,
};
use mentat_query::{
Element,
FindSpec,
PlainSymbol,
Variable,
};
use mentat_query_algebrizer::{
AlgebraicQuery,
ColumnAlternation,
@ -31,10 +22,8 @@ use mentat_query_algebrizer::{
ColumnIntersection,
ConjoiningClauses,
DatomsColumn,
DatomsTable,
QualifiedAlias,
QueryValue,
SourceAlias,
};
use mentat_query_projector::{
@ -47,10 +36,8 @@ use mentat_query_sql::{
ColumnOrExpression,
Constraint,
FromClause,
Name,
Op,
Projection,
ProjectedColumn,
SelectQuery,
TableList,
};

View file

@ -51,16 +51,20 @@ fn translate<T: Into<Option<u64>>>(schema: &Schema, input: &'static str, limit:
select.query.to_sql_query().unwrap()
}
fn prepopulated_schema() -> Schema {
fn prepopulated_typed_schema(foo_type: ValueType) -> Schema {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "bar"), 99);
add_attribute(&mut schema, 99, Attribute {
value_type: ValueType::String,
value_type: foo_type,
..Default::default()
});
schema
}
fn prepopulated_schema() -> Schema {
prepopulated_typed_schema(ValueType::String)
}
fn make_arg(name: &'static str, value: &'static str) -> (String, Rc<String>) {
(name.to_string(), Rc::new(value.to_string()))
}
@ -215,13 +219,7 @@ fn test_numeric_less_than_unknown_attribute() {
#[test]
fn test_numeric_gte_known_attribute() {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "bar"), 99);
add_attribute(&mut schema, 99, Attribute {
value_type: ValueType::Double,
..Default::default()
});
let schema = prepopulated_typed_schema(ValueType::Double);
let input = r#"[:find ?x :where [?x :foo/bar ?y] [(>= ?y 12.9)]]"#;
let SQLQuery { sql, args } = translate(&schema, input, None);
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.a = 99 AND `datoms00`.v >= 12.9");
@ -230,15 +228,34 @@ fn test_numeric_gte_known_attribute() {
#[test]
fn test_numeric_not_equals_known_attribute() {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "bar"), 99);
add_attribute(&mut schema, 99, Attribute {
value_type: ValueType::Long,
..Default::default()
});
let schema = prepopulated_typed_schema(ValueType::Long);
let input = r#"[:find ?x . :where [?x :foo/bar ?y] [(!= ?y 12)]]"#;
let SQLQuery { sql, args } = translate(&schema, input, None);
assert_eq!(sql, "SELECT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.a = 99 AND `datoms00`.v <> 12 LIMIT 1");
assert_eq!(args, vec![]);
}
#[test]
fn test_simple_or_join() {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("page", "url"), 97);
associate_ident(&mut schema, NamespacedKeyword::new("page", "title"), 98);
associate_ident(&mut schema, NamespacedKeyword::new("page", "description"), 99);
for x in 97..100 {
add_attribute(&mut schema, x, Attribute {
value_type: ValueType::String,
..Default::default()
});
}
let input = r#"[:find [?url ?description]
:where
(or-join [?page]
[?page :page/url "http://foo.com/"]
[?page :page/title "Foo"])
[?page :page/url ?url]
[?page :page/description ?description]]"#;
let SQLQuery { sql, args } = translate(&schema, input, None);
assert_eq!(sql, "SELECT `datoms01`.v AS `?url`, `datoms02`.v AS `?description` FROM `datoms` AS `datoms00`, `datoms` AS `datoms01`, `datoms` AS `datoms02` WHERE ((`datoms00`.a = 97 AND `datoms00`.v = $v0) OR (`datoms00`.a = 98 AND `datoms00`.v = $v1)) AND `datoms01`.a = 97 AND `datoms02`.a = 99 AND `datoms00`.e = `datoms01`.e AND `datoms00`.e = `datoms02`.e LIMIT 1");
assert_eq!(args, vec![make_arg("$v0", "http://foo.com/"), make_arg("$v1", "Foo")]);
}

View file

@ -568,6 +568,9 @@ impl OrWhereClause {
pub struct OrJoin {
pub unify_vars: UnifyVars,
pub clauses: Vec<OrWhereClause>,
/// Caches the result of `collect_mentioned_variables`.
mentioned_vars: Option<BTreeSet<Variable>>,
}
#[allow(dead_code)]
@ -595,6 +598,14 @@ pub struct FindQuery {
}
impl OrJoin {
pub fn new(unify_vars: UnifyVars, clauses: Vec<OrWhereClause>) -> OrJoin {
OrJoin {
unify_vars: unify_vars,
clauses: clauses,
mentioned_vars: None,
}
}
/// Return true if either the `OrJoin` is `UnifyVars::Implicit`, or if
/// every variable mentioned inside the join is also mentioned in the `UnifyVars` list.
pub fn is_fully_unified(&self) -> bool {
@ -605,8 +616,12 @@ impl OrJoin {
// it would have failed validation. That allows us to simply compare counts here.
// TODO: in debug mode, do a full intersection, and verify that our count check
// returns the same results.
let mentioned = self.collect_mentioned_variables();
// Use the cached list if we have one.
if let Some(ref mentioned) = self.mentioned_vars {
vars.len() == mentioned.len()
} else {
vars.len() == self.collect_mentioned_variables().len()
}
}
}
}
@ -654,6 +669,28 @@ impl ContainsVariables for OrJoin {
}
}
impl OrJoin {
pub fn dismember(self) -> (Vec<OrWhereClause>, BTreeSet<Variable>) {
let vars = match self.mentioned_vars {
Some(m) => m,
None => self.collect_mentioned_variables(),
};
(self.clauses, vars)
}
pub fn mentioned_variables<'a>(&'a mut self) -> &'a BTreeSet<Variable> {
if self.mentioned_vars.is_none() {
let m = self.collect_mentioned_variables();
self.mentioned_vars = Some(m);
}
if let Some(ref mentioned) = self.mentioned_vars {
mentioned
} else {
panic!()
}
}
}
impl ContainsVariables for Predicate {
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
for arg in &self.args {