Part 6: implement decision tree for processing simple alternation.

This commit is contained in:
Richard Newman 2017-03-28 16:17:25 -07:00
parent 74f188df9b
commit 2b2b5cf696

View file

@ -20,12 +20,16 @@ use mentat_core::{
use mentat_query::{
NonIntegerConstant,
OrJoin,
OrWhereClause,
Pattern,
PatternValuePlace,
PatternNonValuePlace,
PlainSymbol,
Predicate,
SrcVar,
UnifyVars,
WhereClause,
};
use clauses::ConjoiningClauses;
@ -43,16 +47,12 @@ use types::{
DatomsTable,
EmptyBecause,
NumericComparison,
OrJoinKind,
QualifiedAlias,
QueryValue,
SourceAlias,
TableAlias,
};
/// Return true if both left and right are the same variable or both are non-variable.
fn _simply_matches_place(left: &PatternNonValuePlace, right: &PatternNonValuePlace) -> bool {
match (left, right) {
@ -78,3 +78,306 @@ fn _simply_matches_value_place(left: &PatternValuePlace, right: &PatternValuePla
_ => true,
}
}
pub enum DeconstructedOrJoin {
KnownSuccess,
KnownEmpty(EmptyBecause),
Unit(OrWhereClause),
UnitPattern(Pattern),
Simple(Vec<Pattern>),
Complex(OrJoin),
}
/// Application of `or`. Note that this is recursive!
impl ConjoiningClauses {
fn apply_or_where_clause(&mut self, schema: &Schema, clause: OrWhereClause) -> Result<()> {
match clause {
OrWhereClause::Clause(clause) => self.apply_clause(schema, clause),
// A query might be:
// [:find ?x :where (or (and [?x _ 5] [?x :foo/bar 7]))]
// which is equivalent to dropping the `or` _and_ the `and`!
OrWhereClause::And(clauses) => {
for clause in clauses {
self.apply_clause(schema, clause)?;
}
Ok(())
},
}
}
fn apply_or_join(&mut self, schema: &Schema, mut or_join: OrJoin) -> Result<()> {
// Simple optimization. Empty `or` clauses disappear. Unit `or` clauses
// are equivalent to just the inner clause.
match or_join.clauses.len() {
0 => Ok(()),
1 => self.apply_or_where_clause(schema, or_join.clauses.pop().unwrap()),
_ => self.apply_non_trivial_or_join(schema, or_join),
}
}
/// Find out if the `OrJoin` is simple. A simple `or` is one in
/// which:
/// - Every arm is a pattern, so that we can use a single table alias for all.
/// - Each pattern should run against the same table, for the same reason.
/// - Each pattern uses the same variables. (That's checked by validation.)
/// - Each pattern has the same shape, so we can extract bindings from the same columns
/// regardless of which clause matched.
///
/// Like this:
///
/// ```edn
/// [:find ?x
/// :where (or [?x :foo/knows "John"]
/// [?x :foo/parent "Ámbar"]
/// [?x :foo/knows "Daphne"])]
/// ```
///
/// While we're doing this diagnosis, we'll also find out if:
/// - No patterns can match: the enclosing CC is known-empty.
/// - Some patterns can't match: they are discarded.
/// - Only one pattern can match: the `or` can be simplified away.
fn deconstruct_or_join(&self, schema: &Schema, or_join: OrJoin) -> DeconstructedOrJoin {
// If we have explicit non-maximal unify-vars, we *can't* simply run this as a
// single pattern --
// ```
// [:find ?x :where [?x :foo/bar ?y] (or-join [?x] [?x :foo/baz ?y])]
// ```
// is *not* equivalent to
// ```
// [:find ?x :where [?x :foo/bar ?y] [?x :foo/baz ?y]]
// ```
if !or_join.is_fully_unified() {
// It's complex because we need to make sure that non-unified vars
// mentioned in the body of the `or-join` do not unify with variables
// outside the `or-join`. We can't naïvely collect clauses into the
// same CC. TODO: pay attention to the unify list when generating
// constraints. Temporarily shadow variables within each `or` branch.
return DeconstructedOrJoin::Complex(or_join);
}
match or_join.clauses.len() {
0 => DeconstructedOrJoin::KnownSuccess,
// It's safe to simply 'leak' the entire clause, because we know every var in it is
// supposed to unify with the enclosing form.
1 => DeconstructedOrJoin::Unit(or_join.clauses.into_iter().next().unwrap()),
_ => self._deconstruct_or_join(schema, or_join),
}
}
/// This helper does the work of taking a known-non-trivial `or` or `or-join`,
/// walking the contained patterns to decide whether it can be translated simply
/// -- as a collection of constraints on a single table alias -- or if it needs to
/// be implemented as a `UNION`.
///
/// See the description of `deconstruct_or_join` for more details. This method expects
/// to be called _only_ by `deconstruct_or_join`.
fn _deconstruct_or_join(&self, schema: &Schema, or_join: OrJoin) -> DeconstructedOrJoin {
// Preconditions enforced by `deconstruct_or_join`.
assert_eq!(or_join.unify_vars, UnifyVars::Implicit);
assert!(or_join.clauses.len() >= 2);
// We're going to collect into this.
// If at any point we hit something that's not a suitable pattern, we'll
// reconstruct and return a complex `OrJoin`.
let mut patterns: Vec<Pattern> = Vec::with_capacity(or_join.clauses.len());
// Keep track of the table we need every pattern to use.
let mut expected_table: Option<DatomsTable> = None;
// Technically we might have several reasons, but we take the last -- that is, that's the
// reason we don't have at least one pattern!
// We'll return this as our reason if no pattern can return results.
let mut empty_because: Option<EmptyBecause> = None;
// Walk each clause in turn, bailing as soon as we know this can't be simple.
let mut clauses = or_join.clauses.into_iter();
while let Some(clause) = clauses.next() {
// If we fail half-way through processing, we want to reconstitute the input.
// Keep a handle to the clause itself here to smooth over the moved `if let` below.
let last: OrWhereClause;
if let OrWhereClause::Clause(WhereClause::Pattern(p)) = clause {
// Compute the table for the pattern. If we can't figure one out, it means
// the pattern cannot succeed; we drop it.
// Inside an `or` it's not a failure for a pattern to be unable to match, which
// manifests as a table being unable to be found.
let table = self.table_for_places(schema, &p.attribute, &p.value);
match table {
Err(e) => {
empty_because = Some(e);
// Do not accumulate this pattern at all. Add lightness!
continue;
},
Ok(table) => {
// Check the shape of the pattern against a previous pattern.
let same_shape =
if let Some(template) = patterns.get(0) {
template.source == p.source && // or-arms all use the same source anyway.
_simply_matches_place(&template.entity, &p.entity) &&
_simply_matches_place(&template.attribute, &p.attribute) &&
_simply_matches_value_place(&template.value, &p.value) &&
_simply_matches_place(&template.tx, &p.tx)
} else {
// No previous pattern.
true
};
// All of our clauses that _do_ yield a table -- that are possible --
// must use the same table in order for this to be a simple `or`!
if same_shape {
if expected_table == Some(table) {
patterns.push(p);
continue;
}
if expected_table.is_none() {
expected_table = Some(table);
patterns.push(p);
continue;
}
}
// Otherwise, we need to keep this pattern so we can reconstitute.
// We'll fall through to reconstruction.
}
}
last = OrWhereClause::Clause(WhereClause::Pattern(p));
} else {
last = clause;
}
// If we get here, it means one of our checks above failed. Reconstruct and bail.
let reconstructed: Vec<OrWhereClause> =
// Non-empty patterns already collected…
patterns.into_iter()
.map(|p| OrWhereClause::Clause(WhereClause::Pattern(p)))
// … then the clause we just considered…
.chain(::std::iter::once(last))
// … then the rest of the iterator.
.chain(clauses)
.collect();
return DeconstructedOrJoin::Complex(OrJoin {
unify_vars: UnifyVars::Implicit,
clauses: reconstructed,
});
}
// If we got here without returning, then `patterns` is what we're working with.
// If `patterns` is empty, it means _none_ of the clauses in the `or` could succeed.
match patterns.len() {
0 => {
assert!(empty_because.is_some());
DeconstructedOrJoin::KnownEmpty(empty_because.unwrap())
},
1 => DeconstructedOrJoin::UnitPattern(patterns.pop().unwrap()),
_ => DeconstructedOrJoin::Simple(patterns),
}
}
/// Only call this with an `or_join` with 2 or more patterns.
fn apply_non_trivial_or_join(&mut self, schema: &Schema, or_join: OrJoin) -> Result<()> {
assert!(or_join.clauses.len() >= 2);
match self.deconstruct_or_join(schema, or_join) {
DeconstructedOrJoin::KnownSuccess => {
// The pattern came to us empty -- `(or)`. Do nothing.
Ok(())
},
DeconstructedOrJoin::KnownEmpty(reason) => {
// There were no arms of the join that could be mapped to a table.
// The entire `or`, and thus the CC, cannot yield results.
self.mark_known_empty(reason);
Ok(())
},
DeconstructedOrJoin::Unit(clause) => {
// There was only one clause. We're unifying all variables, so we can just apply here.
self.apply_or_where_clause(schema, clause)
},
DeconstructedOrJoin::UnitPattern(pattern) => {
// Same, but simpler.
self.apply_pattern(schema, pattern);
Ok(())
},
DeconstructedOrJoin::Simple(patterns) => {
// Hooray! Fully unified and plain ol' patterns that all use the same table.
// Go right ahead and produce a set of constraint alternations that we can collect,
// using a single table alias.
// TODO
self.apply_simple_or_join(schema, patterns)
},
DeconstructedOrJoin::Complex(_) => {
// Do this the hard way. TODO
unimplemented!();
},
}
}
/// A simple `or` join is effectively a single pattern in which an individual column's bindings
/// are not a single value. Rather than a pattern like
///
/// ```edn
/// [?x :foo/knows "John"]
/// ```
///
/// we have
///
/// ```edn
/// (or [?x :foo/knows "John"]
/// [?x :foo/hates "Peter"])
/// ```
///
/// but the generated SQL is very similar: the former is
///
/// ```sql
/// WHERE datoms00.a = 99 AND datoms00.v = 'John'
/// ```
///
/// with the latter growing to
///
/// ```sql
/// WHERE (datoms00.a = 99 AND datoms00.v = 'John')
/// OR (datoms00.a = 98 AND datoms00.v = 'Peter')
/// ```
///
fn apply_simple_or_join(&mut self, schema: &Schema, patterns: Vec<Pattern>) -> Result<()> {
assert!(patterns.len() >= 2);
// Each constant attribute might _expand_ the set of possible types of the value-place
// variable. We thus generate a set of possible types, and we intersect it with the
// types already possible in the CC. If the resultant set is empty, the pattern cannot match.
// If the final set isn't unit, we must project a type tag column.
// If one of the alternations requires a type that is impossible in the CC, then we can
// discard that alternate:
//
// ```edn
// [:find ?x
// :where [?a :some/int ?x]
// (or [_ :some/otherint ?x]
// [_ :some/string ?x])]
// ```
//
// can simplify to
//
// ```edn
// [:find ?x
// :where [?a :some/int ?x]
// [_ :some/otherint ?x]]
// ```
//
// Similarly, if the value place is constant, it must be of a type that doesn't determine
// a different table for any of the patterns.
// TODO
// Begin by building a base CC that we'll use to produce constraints from each pattern.
// Populate this base CC with whatever variables are already known from the CC to which
// we're applying this `or`.
// This will give us any applicable type constraints or column mappings.
// Then generate a single table alias, based on the first pattern, and use that to make any
// new variable mappings we will need to extract values.
Ok(())
}
}