Part 1a: Add value_and_span for parsing nested edn::ValueAndSpan instances.

I wasn't able to abstract over `edn::Value` and `edn::ValueAndSpan`;
there are multiple obstacles.  I chose to roll with
`edn::ValueAndSpan` since it exposes the additional span information
that we will want to form good error messages in the future.
This commit is contained in:
Nick Alexander 2017-03-28 14:27:12 -07:00
parent f807b16db1
commit 8754cf224b
3 changed files with 313 additions and 6 deletions

View file

@ -81,7 +81,7 @@ impl ValueAndSpan {
pub fn new<I>(spanned_value: SpannedValue, span: I) -> ValueAndSpan where I: Into<Option<Span>> { pub fn new<I>(spanned_value: SpannedValue, span: I) -> ValueAndSpan where I: Into<Option<Span>> {
ValueAndSpan { ValueAndSpan {
inner: spanned_value, inner: spanned_value,
span: span.into().unwrap_or(Span(0, 0)), // Think about this. span: span.into().unwrap_or(Span(0, 0)), // TODO: consider if this has implications.
} }
} }
@ -99,6 +99,9 @@ impl ValueAndSpan {
} }
impl Value { impl Value {
/// For debug use only!
///
/// But right now, it's used in the bootstrapper. We'll fix that soon.
pub fn with_spans(self) -> ValueAndSpan { pub fn with_spans(self) -> ValueAndSpan {
let s = self.to_pretty(120).unwrap(); let s = self.to_pretty(120).unwrap();
use ::parse; use ::parse;

View file

@ -11,8 +11,16 @@
extern crate combine; extern crate combine;
extern crate edn; extern crate edn;
use combine::ParseResult; pub mod value_and_span;
use combine::combinator::{Expected, FnParser};
use combine::{
ParseResult,
Stream,
};
use combine::combinator::{
Expected,
FnParser,
};
/// A type definition for a function parser that either parses an `O` from an input stream of type /// A type definition for a function parser that either parses an `O` from an input stream of type
/// `I`, or fails with an "expected" failure. /// `I`, or fails with an "expected" failure.
@ -25,10 +33,10 @@ pub type ResultParser<O, I> = Expected<FnParser<I, fn(I) -> ParseResult<O, I>>>;
/// parser function against input and expecting a certain result. /// parser function against input and expecting a certain result.
#[macro_export] #[macro_export]
macro_rules! assert_parses_to { macro_rules! assert_parses_to {
( $parser: path, $input: expr, $expected: expr ) => {{ ( $parser: expr, $input: expr, $expected: expr ) => {{
let mut par = $parser(); let mut par = $parser();
let result = par.parse(&$input[..]); let result = par.parse($input.with_spans().into_atom_stream()).map(|x| x.0); // TODO: check remainder of stream.
assert_eq!(result, Ok(($expected, &[][..]))); assert_eq!(result, Ok($expected));
}} }}
} }
@ -82,6 +90,20 @@ macro_rules! def_parser_fn {
} }
} }
#[macro_export]
macro_rules! def_parser {
( $parser: ident, $name: ident, $result_type: ty, $body: block ) => {
impl $parser {
fn $name() -> ResultParser<$result_type, $crate::value_and_span::Stream> {
fn inner(input: $crate::value_and_span::Stream) -> ParseResult<$result_type, $crate::value_and_span::Stream> {
$body.parse_lazy(input).into()
}
parser(inner as fn($crate::value_and_span::Stream) -> ParseResult<$result_type, $crate::value_and_span::Stream>).expected(stringify!($name))
}
}
}
}
/// `def_value_parser_fn` is a short-cut to `def_parser_fn` with the input type /// `def_value_parser_fn` is a short-cut to `def_parser_fn` with the input type
/// being `edn::Value`. /// being `edn::Value`.
#[macro_export] #[macro_export]

View file

@ -0,0 +1,282 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std;
use std::fmt::{Display, Formatter};
use std::cmp::Ordering;
use combine::{
ConsumedResult,
ParseError,
Parser,
StreamOnce,
eof,
satisfy,
satisfy_map,
};
use combine::primitives;
use combine::primitives::{
FastResult,
};
use combine::combinator::{
Eof,
Skip,
};
use edn;
/// A wrapper to let us order `edn::Span` in whatever way is appropriate for parsing with `combine`.
#[derive(Clone, Debug)]
pub struct SpanPosition(edn::Span);
impl Display for SpanPosition {
fn fmt(&self, f: &mut Formatter) -> ::std::fmt::Result {
write!(f, "{:?}", self.0)
}
}
impl PartialEq for SpanPosition {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for SpanPosition { }
impl PartialOrd for SpanPosition {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for SpanPosition {
fn cmp(&self, other: &Self) -> Ordering {
(self.0).0.cmp(&(other.0).0)
}
}
/// An iterator specifically for iterating `edn::ValueAndSpan` instances in various ways.
///
/// Enumerating each iteration type allows us to have a single `combine::Stream` implementation
/// yielding `ValueAndSpan` items, which allows us to yield uniform `combine::ParseError` types from
/// disparate parsers.
#[derive(Clone)]
pub enum IntoIter {
Empty(std::iter::Empty<edn::ValueAndSpan>),
Atom(std::iter::Once<edn::ValueAndSpan>),
Vector(std::vec::IntoIter<edn::ValueAndSpan>),
List(std::collections::linked_list::IntoIter<edn::ValueAndSpan>),
/// Iterates via a single `flat_map` [k1, v1, k2, v2, ...].
Map(std::vec::IntoIter<edn::ValueAndSpan>),
// TODO: Support Set and Map more naturally. This is significantly more work because the
// existing BTreeSet and BTreeMap iterators do not implement Clone, and implementing Clone for
// them is involved. Since we don't really need to parse sets and maps at this time, this will
// do for now.
}
impl Iterator for IntoIter {
type Item = edn::ValueAndSpan;
fn next(&mut self) -> Option<Self::Item> {
match *self {
IntoIter::Empty(ref mut i) => i.next(),
IntoIter::Atom(ref mut i) => i.next(),
IntoIter::Vector(ref mut i) => i.next(),
IntoIter::List(ref mut i) => i.next(),
IntoIter::Map(ref mut i) => i.next(),
}
}
}
/// A single `combine::Stream` implementation iterating `edn::ValueAndSpan` instances. Equivalent
/// to `combine::IteratorStream` as produced by `combine::from_iter`, but specialized to
/// `edn::ValueAndSpan`.
#[derive(Clone)]
pub struct Stream(IntoIter, SpanPosition);
/// Things specific to parsing with `combine` and our `Stream` that need a trait to live outside of
/// the `edn` crate.
pub trait Item: Clone + PartialEq + Sized {
/// Position could be specialized to `SpanPosition`.
type Position: Clone + Ord + std::fmt::Display;
/// A slight generalization of `combine::Positioner` that allows to set the position based on
/// the `edn::ValueAndSpan` being iterated.
fn start(&self) -> Self::Position;
fn update_position(&self, &mut Self::Position);
fn into_child_stream_iter(self) -> IntoIter;
fn into_child_stream(self) -> Stream;
fn into_atom_stream_iter(self) -> IntoIter;
fn into_atom_stream(self) -> Stream;
}
impl Item for edn::ValueAndSpan {
type Position = SpanPosition;
fn start(&self) -> Self::Position {
SpanPosition(self.span.clone())
}
fn update_position(&self, position: &mut Self::Position) {
*position = SpanPosition(self.span.clone())
}
fn into_child_stream_iter(self) -> IntoIter {
match self.inner {
edn::SpannedValue::Vector(values) => IntoIter::Vector(values.into_iter()),
edn::SpannedValue::List(values) => IntoIter::List(values.into_iter()),
// Parsing pairs with `combine` is tricky; parsing sequences is easy.
edn::SpannedValue::Map(map) => IntoIter::Map(map.into_iter().flat_map(|(a, v)| std::iter::once(a).chain(std::iter::once(v))).collect::<Vec<_>>().into_iter()),
_ => IntoIter::Empty(std::iter::empty()),
}
}
fn into_child_stream(self) -> Stream {
let span = self.span.clone();
Stream(self.into_child_stream_iter(), SpanPosition(span))
}
fn into_atom_stream_iter(self) -> IntoIter {
IntoIter::Atom(std::iter::once(self))
}
fn into_atom_stream(self) -> Stream {
let span = self.span.clone();
Stream(self.into_atom_stream_iter(), SpanPosition(span))
}
}
/// `Of` and `of` allow us to express nested parsers naturally.
///
/// For example, `vector().of(many(list()))` parses a vector-of-lists, like [(1 2) (:a :b) ("test") ()].
///
/// The "outer" parser `P` and the "nested" parser `N` must be compatible: `P` must produce an
/// output `edn::ValueAndSpan` which can itself be turned into a stream of child elements; and `N`
/// must accept the resulting input `Stream`. This compatibility allows us to lift errors from the
/// nested parser to the outer parser, which is part of what has made parsing `&'a [edn::Value]`
/// difficult.
#[derive(Clone)]
pub struct Of<P, N>(P, N);
impl<P, N, O> Parser for Of<P, N>
where P: Parser<Input=Stream, Output=edn::ValueAndSpan>,
N: Parser<Input=Stream, Output=O>,
{
type Input = P::Input;
type Output = O;
#[inline]
fn parse_lazy(&mut self, input: Self::Input) -> ConsumedResult<Self::Output, Self::Input> {
use self::FastResult::*;
match self.0.parse_lazy(input) {
ConsumedOk((outer_value, outer_input)) => {
match self.1.parse_lazy(outer_value.into_child_stream()) {
ConsumedOk((inner_value, _)) | EmptyOk((inner_value, _)) => ConsumedOk((inner_value, outer_input)),
// TODO: Improve the error output to reference the nested value (or span) in
// some way. This seems surprisingly difficult to do, so we just surface the
// inner error message right now. See also the comment below.
EmptyErr(e) | ConsumedErr(e) => ConsumedErr(e),
}
},
EmptyOk((outer_value, outer_input)) => {
match self.1.parse_lazy(outer_value.into_child_stream()) {
ConsumedOk((inner_value, _)) | EmptyOk((inner_value, _)) => EmptyOk((inner_value, outer_input)),
// TODO: Improve the error output. See the comment above.
EmptyErr(e) | ConsumedErr(e) => EmptyErr(e),
}
},
ConsumedErr(e) => ConsumedErr(e),
EmptyErr(e) => EmptyErr(e),
}
}
fn add_error(&mut self, errors: &mut ParseError<Self::Input>) {
self.0.add_error(errors);
}
}
#[inline(always)]
pub fn of<P, N, O>(p: P, n: N) -> Of<P, Skip<N, Eof<Stream>>>
where P: Parser<Input=Stream, Output=edn::ValueAndSpan>,
N: Parser<Input=Stream, Output=O>,
{
Of(p, n.skip(eof()))
}
/// We need a trait to define `Parser.of` and have it live outside of the `combine` crate.
pub trait OfParsing: Parser + Sized {
fn of<N, O>(self, n: N) -> Of<Self, Skip<N, Eof<Self::Input>>>
where Self: Sized,
N: Parser<Input = Self::Input, Output=O>;
}
impl<P> OfParsing for P
where P: Parser<Input=Stream, Output=edn::ValueAndSpan>
{
fn of<N, O>(self, n: N) -> Of<P, Skip<N, Eof<Self::Input>>>
where N: Parser<Input = Self::Input, Output=O>
{
of(self, n)
}
}
/// Equivalent to `combine::IteratorStream`.
impl StreamOnce for Stream
{
type Item = edn::ValueAndSpan;
type Range = edn::ValueAndSpan;
type Position = SpanPosition;
#[inline]
fn uncons(&mut self) -> std::result::Result<Self::Item, primitives::Error<Self::Item, Self::Item>> {
match self.0.next() {
Some(x) => {
x.update_position(&mut self.1);
Ok(x)
},
None => Err(primitives::Error::end_of_input()),
}
}
#[inline(always)]
fn position(&self) -> Self::Position {
self.1.clone()
}
}
/// Shorthands, just enough to convert the `mentat_db` crate for now. Written using `Box` for now:
/// it's simple and we can address allocation issues if and when they surface.
pub fn vector() -> Box<Parser<Input=Stream, Output=edn::ValueAndSpan>> {
satisfy(|v: edn::ValueAndSpan| v.inner.is_vector()).boxed()
}
pub fn list() -> Box<Parser<Input=Stream, Output=edn::ValueAndSpan>> {
satisfy(|v: edn::ValueAndSpan| v.inner.is_list()).boxed()
}
pub fn map() -> Box<Parser<Input=Stream, Output=edn::ValueAndSpan>> {
satisfy(|v: edn::ValueAndSpan| v.inner.is_map()).boxed()
}
pub fn integer() -> Box<Parser<Input=Stream, Output=i64>> {
satisfy_map(|v: edn::ValueAndSpan| v.inner.as_integer()).boxed()
}
pub fn namespaced_keyword() -> Box<Parser<Input=Stream, Output=edn::NamespacedKeyword>> {
satisfy_map(|v: edn::ValueAndSpan| v.inner.as_namespaced_keyword().cloned()).boxed()
}
/// Like `combine::token()`, but compare an `edn::Value` to an `edn::ValueAndSpan`.
pub fn value(value: edn::Value) -> Box<Parser<Input=Stream, Output=edn::ValueAndSpan>> {
// TODO: make this comparison faster. Right now, we drop all the spans; if we walked the value
// trees together, we could avoid creating garbage.
satisfy(move |v: edn::ValueAndSpan| value == v.inner.into()).boxed()
}