Implement fulltext. (#477) r=nalexander

This commit is contained in:
Richard Newman 2017-06-15 10:32:40 -07:00
commit dd39f6df5b
19 changed files with 1475 additions and 567 deletions

View file

@ -56,4 +56,33 @@ impl<T> OptionEffect<T> for Option<T> {
}
self
}
}
}
#[derive(Clone, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub enum Either<L, R> {
Left(L),
Right(R),
}
// Cribbed from https://github.com/bluss/either/blob/f793721f3fdeb694f009e731b23a2858286bc0d6/src/lib.rs#L219-L259.
impl<L, R> Either<L, R> {
pub fn map_left<F, M>(self, f: F) -> Either<M, R>
where F: FnOnce(L) -> M
{
use self::Either::*;
match self {
Left(l) => Left(f(l)),
Right(r) => Right(r),
}
}
pub fn map_right<F, S>(self, f: F) -> Either<L, S>
where F: FnOnce(R) -> S
{
use self::Either::*;
match self {
Left(l) => Left(l),
Right(r) => Right(f(r)),
}
}
}

View file

@ -15,6 +15,8 @@
use std::collections::HashMap;
use std::rc::Rc;
use mentat_core::util::Either;
use errors;
use errors::ErrorKind;
use types::{
@ -33,33 +35,6 @@ pub enum Term<E, V> {
AddOrRetract(OpType, E, Entid, V),
}
#[derive(Clone, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub enum Either<L, R> {
Left(L),
Right(R),
}
// Cribbed from https://github.com/bluss/either/blob/f793721f3fdeb694f009e731b23a2858286bc0d6/src/lib.rs#L219-L259.
impl<L, R> Either<L, R> {
pub fn map_left<F, M>(self, f: F) -> Either<M, R>
where F: FnOnce(L) -> M
{
match self {
Left(l) => Left(f(l)),
Right(r) => Right(r),
}
}
pub fn map_right<F, S>(self, f: F) -> Either<L, S>
where F: FnOnce(R) -> S
{
match self {
Left(l) => Left(l),
Right(r) => Right(f(r)),
}
}
}
use self::Either::*;
/// An entid that's either already in the store, or newly allocated to a tempid.

View file

@ -64,7 +64,6 @@ use edn::{
use entids;
use errors::{ErrorKind, Result};
use internal_types::{
Either,
KnownEntid,
KnownEntidOr,
LookupRef,
@ -76,7 +75,10 @@ use internal_types::{
TermWithTempIdsAndLookupRefs,
TermWithoutTempIds,
TypedValueOr,
replace_lookup_ref};
replace_lookup_ref,
};
use mentat_core::util::Either;
use mentat_core::{
DateTime,

View file

@ -28,7 +28,9 @@ use internal_types::{
TermWithoutTempIds,
TermWithTempIds,
};
use internal_types::Either::*;
use mentat_core::util::Either::*;
use mentat_core::{
attribute,
Attribute,

View file

@ -0,0 +1,185 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std::rc::Rc;
use mentat_core::{
Schema,
SQLValueType,
TypedValue,
ValueType,
};
use mentat_query::{
FnArg,
NonIntegerConstant,
Variable,
};
use clauses::{
ConjoiningClauses,
};
use errors::{
ErrorKind,
Result,
};
use types::{
EmptyBecause,
ValueTypeSet,
};
macro_rules! coerce_to_typed_value {
($var: ident, $val: ident, $types: expr, $type: path, $constructor: path) => { {
Ok(if !$types.contains($type) {
Impossible(EmptyBecause::TypeMismatch {
var: $var.clone(),
existing: $types,
desired: ValueTypeSet::of_one($type),
})
} else {
Val($constructor($val).into())
})
} }
}
pub enum ValueConversion {
Val(TypedValue),
Impossible(EmptyBecause),
}
/// Conversion of FnArgs to TypedValues.
impl ConjoiningClauses {
/// Convert the provided `FnArg` to a `TypedValue`.
/// The conversion depends on, and can fail because of:
/// - Existing known types of a variable to which this arg will be bound.
/// - Existing bindings of a variable `FnArg`.
pub fn typed_value_from_arg<'s>(&self, schema: &'s Schema, var: &Variable, arg: FnArg, known_types: ValueTypeSet) -> Result<ValueConversion> {
use self::ValueConversion::*;
if known_types.is_empty() {
// If this happens, it likely means the pattern has already failed!
return Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::any(),
}));
}
match arg {
// Longs are potentially ambiguous: they might be longs or entids.
FnArg::EntidOrInteger(x) => {
match (ValueType::Ref.accommodates_integer(x),
known_types.contains(ValueType::Ref),
known_types.contains(ValueType::Long)) {
(true, true, true) => {
// Ambiguous: this arg could be an entid or a long.
// We default to long.
Ok(Val(TypedValue::Long(x)))
},
(true, true, false) => {
// This can only be a ref.
Ok(Val(TypedValue::Ref(x)))
},
(_, false, true) => {
// This can only be a long.
Ok(Val(TypedValue::Long(x)))
},
(false, true, _) => {
// This isn't a valid ref, but that's the type to which this must conform!
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_longs(),
}))
},
(_, false, false) => {
// Non-overlapping type sets.
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_longs(),
}))
},
}
},
// If you definitely want to look up an ident, do it before running the query.
FnArg::IdentOrKeyword(x) => {
match (known_types.contains(ValueType::Ref),
known_types.contains(ValueType::Keyword)) {
(true, true) => {
// Ambiguous: this could be a keyword or an ident.
// Default to keyword.
Ok(Val(TypedValue::Keyword(Rc::new(x))))
},
(true, false) => {
// This can only be an ident. Look it up!
match schema.get_entid(&x).map(TypedValue::Ref) {
Some(e) => Ok(Val(e)),
None => Ok(Impossible(EmptyBecause::UnresolvedIdent(x.clone()))),
}
},
(false, true) => {
Ok(Val(TypedValue::Keyword(Rc::new(x))))
},
(false, false) => {
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_keywords(),
}))
},
}
},
FnArg::Variable(in_var) => {
// TODO: technically you could ground an existing variable inside the query….
if !self.input_variables.contains(&in_var) {
bail!(ErrorKind::UnboundVariable((*in_var.0).clone()));
}
match self.bound_value(&in_var) {
// The type is already known if it's a bound variable….
Some(ref in_value) => Ok(Val(in_value.clone())),
None => {
// The variable is present in `:in`, but it hasn't yet been provided.
// This is a restriction we will eventually relax: we don't yet have a way
// to collect variables as part of a computed table or substitution.
bail!(ErrorKind::UnboundVariable((*in_var.0).clone()))
},
}
},
// This isn't implemented yet.
FnArg::Constant(NonIntegerConstant::BigInteger(_)) => unimplemented!(),
// These don't make sense here.
FnArg::Vector(_) |
FnArg::SrcVar(_) => bail!(ErrorKind::InvalidGroundConstant),
// These are all straightforward.
FnArg::Constant(NonIntegerConstant::Boolean(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Boolean, TypedValue::Boolean)
},
FnArg::Constant(NonIntegerConstant::Instant(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Instant, TypedValue::Instant)
},
FnArg::Constant(NonIntegerConstant::Uuid(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Uuid, TypedValue::Uuid)
},
FnArg::Constant(NonIntegerConstant::Float(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Double, TypedValue::Double)
},
FnArg::Constant(NonIntegerConstant::Text(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::String, TypedValue::String)
},
}
}
}

View file

@ -0,0 +1,348 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use mentat_core::{
Schema,
TypedValue,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
NonIntegerConstant,
SrcVar,
VariableOrPlaceholder,
WhereFn,
};
use clauses::{
ConjoiningClauses,
};
use errors::{
BindingError,
ErrorKind,
Result,
};
use types::{
Column,
ColumnConstraint,
DatomsColumn,
DatomsTable,
EmptyBecause,
FulltextColumn,
QualifiedAlias,
QueryValue,
SourceAlias,
};
impl ConjoiningClauses {
#[allow(unused_variables)]
pub fn apply_fulltext<'s>(&mut self, schema: &'s Schema, where_fn: WhereFn) -> Result<()> {
if where_fn.args.len() != 3 {
bail!(ErrorKind::InvalidNumberOfArguments(where_fn.operator.clone(), where_fn.args.len(), 3));
}
if where_fn.binding.is_empty() {
// The binding must introduce at least one bound variable.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::NoBoundVariable));
}
if !where_fn.binding.is_valid() {
// The binding must not duplicate bound variables.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::RepeatedBoundVariable));
}
// We should have exactly four bindings. Destructure them now.
let bindings = match where_fn.binding {
Binding::BindRel(bindings) => {
let bindings_count = bindings.len();
if bindings_count < 1 || bindings_count > 4 {
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(),
BindingError::InvalidNumberOfBindings {
number: bindings.len(),
expected: 4,
}));
}
bindings
},
Binding::BindScalar(_) |
Binding::BindTuple(_) |
Binding::BindColl(_) => bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::ExpectedBindRel)),
};
let mut bindings = bindings.into_iter();
let b_entity = bindings.next().unwrap();
let b_value = bindings.next().unwrap_or(VariableOrPlaceholder::Placeholder);
let b_tx = bindings.next().unwrap_or(VariableOrPlaceholder::Placeholder);
let b_score = bindings.next().unwrap_or(VariableOrPlaceholder::Placeholder);
let mut args = where_fn.args.into_iter();
// TODO: process source variables.
match args.next().unwrap() {
FnArg::SrcVar(SrcVar::DefaultSrc) => {},
_ => bail!(ErrorKind::InvalidArgument(where_fn.operator.clone(), "source variable".into(), 0)),
}
// TODO: accept placeholder and set of attributes. Alternately, consider putting the search
// term before the attribute arguments and collect the (variadic) attributes into a set.
// let a: Entid = self.resolve_attribute_argument(&where_fn.operator, 1, args.next().unwrap())?;
//
// TODO: improve the expression of this matching, possibly by using attribute_for_* uniformly.
let a = match args.next().unwrap() {
FnArg::IdentOrKeyword(i) => schema.get_entid(&i),
// Must be an entid.
FnArg::EntidOrInteger(e) => Some(e),
FnArg::Variable(v) => {
// If it's already bound, then let's expand the variable.
// TODO: allow non-constant attributes.
match self.bound_value(&v) {
Some(TypedValue::Ref(entid)) => Some(entid),
Some(tv) => {
bail!(ErrorKind::InputTypeDisagreement(v.name().clone(), ValueType::Ref, tv.value_type()));
},
None => {
bail!(ErrorKind::UnboundVariable((*v.0).clone()));
}
}
},
_ => None,
};
// An unknown ident, or an entity that isn't present in the store, or isn't a fulltext
// attribute, is likely enough to be a coding error that we choose to bail instead of
// marking the pattern as known-empty.
let a = a.ok_or(ErrorKind::InvalidArgument(where_fn.operator.clone(), "attribute".into(), 1))?;
let attribute = schema.attribute_for_entid(a).cloned().ok_or(ErrorKind::InvalidArgument(where_fn.operator.clone(), "attribute".into(), 1))?;
if !attribute.fulltext {
// We can never get results from a non-fulltext attribute!
println!("Can't run fulltext on non-fulltext attribute {}.", a);
self.mark_known_empty(EmptyBecause::InvalidAttributeEntid(a));
return Ok(());
}
let fulltext_values_alias = self.next_alias_for_table(DatomsTable::FulltextValues);
let datoms_table_alias = self.next_alias_for_table(DatomsTable::Datoms);
// We do a fulltext lookup by joining the fulltext values table against datoms -- just
// like applying a pattern, but two tables contribute instead of one.
self.from.push(SourceAlias(DatomsTable::FulltextValues, fulltext_values_alias.clone()));
self.from.push(SourceAlias(DatomsTable::Datoms, datoms_table_alias.clone()));
// TODO: constrain the type in the more general cases (e.g., `a` is a var).
self.constrain_attribute(datoms_table_alias.clone(), a);
// Join the datoms table to the fulltext values table.
self.wheres.add_intersection(ColumnConstraint::Equals(
QualifiedAlias(datoms_table_alias.clone(), Column::Fixed(DatomsColumn::Value)),
QueryValue::Column(QualifiedAlias(fulltext_values_alias.clone(), Column::Fulltext(FulltextColumn::Rowid)))));
// `search` is either text or a variable.
// If it's simple text, great.
// If it's a variable, it'll be in one of three states:
// - It's already bound, either by input or by a previous pattern like `ground`.
// - It's not already bound, but it's a defined input of type Text. Not yet implemented: TODO.
// - It's not bound. The query cannot be algebrized.
let search: TypedValue = match args.next().unwrap() {
FnArg::Constant(NonIntegerConstant::Text(s)) => {
TypedValue::String(s)
},
FnArg::Variable(in_var) => {
match self.bound_value(&in_var) {
Some(t @ TypedValue::String(_)) => t,
Some(_) => bail!(ErrorKind::InvalidArgument(where_fn.operator.clone(), "string".into(), 2)),
None => {
if self.input_variables.contains(&in_var) &&
self.known_type(&in_var) == Some(ValueType::String) {
// Sorry, we haven't implemented late binding.
}
bail!(ErrorKind::UnboundVariable((*in_var.0).clone()));
},
}
},
_ => bail!(ErrorKind::InvalidArgument(where_fn.operator.clone(), "string".into(), 2)),
};
let constraint = ColumnConstraint::Matches(QualifiedAlias(fulltext_values_alias.clone(),
Column::Fulltext(FulltextColumn::Text)),
QueryValue::TypedValue(search));
self.wheres.add_intersection(constraint);
if let VariableOrPlaceholder::Variable(ref var) = b_entity {
// It must be a ref.
self.constrain_var_to_type(var.clone(), ValueType::Ref);
if self.is_known_empty() {
return Ok(());
}
self.bind_column_to_var(schema, datoms_table_alias.clone(), DatomsColumn::Entity, var.clone());
}
if let VariableOrPlaceholder::Variable(ref var) = b_value {
// This'll be bound to strings.
self.constrain_var_to_type(var.clone(), ValueType::String);
if self.is_known_empty() {
return Ok(());
}
self.bind_column_to_var(schema, fulltext_values_alias.clone(), Column::Fulltext(FulltextColumn::Text), var.clone());
}
if let VariableOrPlaceholder::Variable(ref var) = b_tx {
// Txs must be refs.
self.constrain_var_to_type(var.clone(), ValueType::Ref);
if self.is_known_empty() {
return Ok(());
}
self.bind_column_to_var(schema, datoms_table_alias.clone(), DatomsColumn::Tx, var.clone());
}
if let VariableOrPlaceholder::Variable(ref var) = b_score {
// Scores are doubles.
self.constrain_var_to_type(var.clone(), ValueType::Double);
// We do not allow the score to be bound.
if self.value_bindings.contains_key(var) || self.input_variables.contains(var) {
bail!(ErrorKind::InvalidBinding(var.name(), BindingError::UnexpectedBinding));
}
// We bind the value ourselves. This handily takes care of substituting into existing uses.
// TODO: produce real scores using SQLite's matchinfo.
self.bind_value(var, TypedValue::Double(0.0.into()));
}
Ok(())
}
}
#[cfg(test)]
mod testing {
use super::*;
use std::rc::Rc;
use mentat_core::{
Attribute,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
NamespacedKeyword,
PlainSymbol,
Variable,
};
use clauses::{
add_attribute,
associate_ident,
};
#[test]
fn test_apply_fulltext() {
let mut cc = ConjoiningClauses::default();
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "bar"), 101);
add_attribute(&mut schema, 101, Attribute {
value_type: ValueType::String,
fulltext: false,
..Default::default()
});
associate_ident(&mut schema, NamespacedKeyword::new("foo", "fts"), 100);
add_attribute(&mut schema, 100, Attribute {
value_type: ValueType::String,
index: true,
fulltext: true,
..Default::default()
});
let op = PlainSymbol::new("fulltext");
cc.apply_fulltext(&schema, WhereFn {
operator: op,
args: vec![
FnArg::SrcVar(SrcVar::DefaultSrc),
FnArg::IdentOrKeyword(NamespacedKeyword::new("foo", "fts")),
FnArg::Constant(NonIntegerConstant::Text(Rc::new("needle".into()))),
],
binding: Binding::BindRel(vec![VariableOrPlaceholder::Variable(Variable::from_valid_name("?entity")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?value")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?tx")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?score"))]),
}).expect("to be able to apply_fulltext");
assert!(!cc.is_known_empty());
// Finally, expand column bindings.
cc.expand_column_bindings();
assert!(!cc.is_known_empty());
let clauses = cc.wheres;
assert_eq!(clauses.len(), 3);
assert_eq!(clauses.0[0], ColumnConstraint::Equals(QualifiedAlias("datoms01".to_string(), Column::Fixed(DatomsColumn::Attribute)),
QueryValue::Entid(100)).into());
assert_eq!(clauses.0[1], ColumnConstraint::Equals(QualifiedAlias("datoms01".to_string(), Column::Fixed(DatomsColumn::Value)),
QueryValue::Column(QualifiedAlias("fulltext_values00".to_string(), Column::Fulltext(FulltextColumn::Rowid)))).into());
assert_eq!(clauses.0[2], ColumnConstraint::Matches(QualifiedAlias("fulltext_values00".to_string(), Column::Fulltext(FulltextColumn::Text)),
QueryValue::TypedValue(TypedValue::String(Rc::new("needle".into())))).into());
let bindings = cc.column_bindings;
assert_eq!(bindings.len(), 3);
assert_eq!(bindings.get(&Variable::from_valid_name("?entity")).expect("column binding for ?entity").clone(),
vec![QualifiedAlias("datoms01".to_string(), Column::Fixed(DatomsColumn::Entity))]);
assert_eq!(bindings.get(&Variable::from_valid_name("?value")).expect("column binding for ?value").clone(),
vec![QualifiedAlias("fulltext_values00".to_string(), Column::Fulltext(FulltextColumn::Text))]);
assert_eq!(bindings.get(&Variable::from_valid_name("?tx")).expect("column binding for ?tx").clone(),
vec![QualifiedAlias("datoms01".to_string(), Column::Fixed(DatomsColumn::Tx))]);
// Score is a value binding.
let values = cc.value_bindings;
assert_eq!(values.get(&Variable::from_valid_name("?score")).expect("column binding for ?score").clone(),
TypedValue::Double(0.0.into()));
let known_types = cc.known_types;
assert_eq!(known_types.len(), 4);
assert_eq!(known_types.get(&Variable::from_valid_name("?entity")).expect("known types for ?entity").clone(),
vec![ValueType::Ref].into_iter().collect());
assert_eq!(known_types.get(&Variable::from_valid_name("?value")).expect("known types for ?value").clone(),
vec![ValueType::String].into_iter().collect());
assert_eq!(known_types.get(&Variable::from_valid_name("?tx")).expect("known types for ?tx").clone(),
vec![ValueType::Ref].into_iter().collect());
assert_eq!(known_types.get(&Variable::from_valid_name("?score")).expect("known types for ?score").clone(),
vec![ValueType::Double].into_iter().collect());
let mut cc = ConjoiningClauses::default();
let op = PlainSymbol::new("fulltext");
cc.apply_fulltext(&schema, WhereFn {
operator: op,
args: vec![
FnArg::SrcVar(SrcVar::DefaultSrc),
FnArg::IdentOrKeyword(NamespacedKeyword::new("foo", "bar")),
FnArg::Constant(NonIntegerConstant::Text(Rc::new("needle".into()))),
],
binding: Binding::BindRel(vec![VariableOrPlaceholder::Variable(Variable::from_valid_name("?entity")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?value")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?tx")),
VariableOrPlaceholder::Variable(Variable::from_valid_name("?score"))]),
}).expect("to be able to apply_fulltext");
// It's not a fulltext attribute, so the CC cannot yield results.
assert!(cc.is_known_empty());
}
}

View file

@ -0,0 +1,390 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use mentat_core::{
Schema,
TypedValue,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
Variable,
VariableOrPlaceholder,
WhereFn,
};
use clauses::{
ConjoiningClauses,
PushComputed,
};
use clauses::convert::ValueConversion;
use errors::{
BindingError,
ErrorKind,
Result,
};
use types::{
ComputedTable,
EmptyBecause,
SourceAlias,
ValueTypeSet,
VariableColumn,
};
impl ConjoiningClauses {
/// Take a relation: a matrix of values which will successively bind to named variables of
/// the provided types.
/// Construct a computed table to yield this relation.
/// This function will panic if some invariants are not met.
fn collect_named_bindings<'s>(&mut self, schema: &'s Schema, names: Vec<Variable>, types: Vec<ValueType>, values: Vec<TypedValue>) {
if values.is_empty() {
return;
}
assert!(!names.is_empty());
assert_eq!(names.len(), types.len());
assert!(values.len() >= names.len());
assert_eq!(values.len() % names.len(), 0); // It's an exact multiple.
let named_values = ComputedTable::NamedValues {
names: names.clone(),
values: values,
};
let table = self.computed_tables.push_computed(named_values);
let alias = self.next_alias_for_table(table);
// Stitch the computed table into column_bindings, so we get cross-linking.
for (name, ty) in names.iter().zip(types.into_iter()) {
self.constrain_var_to_type(name.clone(), ty);
self.bind_column_to_var(schema, alias.clone(), VariableColumn::Variable(name.clone()), name.clone());
}
self.from.push(SourceAlias(table, alias));
}
fn apply_ground_place<'s>(&mut self, schema: &'s Schema, var: VariableOrPlaceholder, arg: FnArg) -> Result<()> {
match var {
VariableOrPlaceholder::Placeholder => Ok(()),
VariableOrPlaceholder::Variable(var) => self.apply_ground_var(schema, var, arg),
}
}
/// Constrain the CC to associate the given var with the given ground argument.
/// Marks known-empty on failure.
fn apply_ground_var<'s>(&mut self, schema: &'s Schema, var: Variable, arg: FnArg) -> Result<()> {
let known_types = self.known_type_set(&var);
match self.typed_value_from_arg(schema, &var, arg, known_types)? {
ValueConversion::Val(value) => self.apply_ground_value(var, value),
ValueConversion::Impossible(because) => {
self.mark_known_empty(because);
Ok(())
},
}
}
/// Marks known-empty on failure.
fn apply_ground_value(&mut self, var: Variable, value: TypedValue) -> Result<()> {
if let Some(existing) = self.bound_value(&var) {
if existing != value {
self.mark_known_empty(EmptyBecause::ConflictingBindings {
var: var.clone(),
existing: existing.clone(),
desired: value,
});
return Ok(())
}
} else {
self.bind_value(&var, value.clone());
}
Ok(())
}
pub fn apply_ground<'s>(&mut self, schema: &'s Schema, where_fn: WhereFn) -> Result<()> {
if where_fn.args.len() != 1 {
bail!(ErrorKind::InvalidNumberOfArguments(where_fn.operator.clone(), where_fn.args.len(), 1));
}
let mut args = where_fn.args.into_iter();
if where_fn.binding.is_empty() {
// The binding must introduce at least one bound variable.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::NoBoundVariable));
}
if !where_fn.binding.is_valid() {
// The binding must not duplicate bound variables.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::RepeatedBoundVariable));
}
// Scalar and tuple bindings are a little special: because there's only one value,
// we can immediately substitute the value as a known value in the CC, additionally
// generating a WHERE clause if columns have already been bound.
match (where_fn.binding, args.next().unwrap()) {
(Binding::BindScalar(var), constant) =>
self.apply_ground_var(schema, var, constant),
(Binding::BindTuple(places), FnArg::Vector(children)) => {
// Just the same, but we bind more than one column at a time.
if children.len() != places.len() {
// Number of arguments don't match the number of values. TODO: better error message.
bail!(ErrorKind::GroundBindingsMismatch);
}
for (place, arg) in places.into_iter().zip(children.into_iter()) {
self.apply_ground_place(schema, place, arg)? // TODO: short-circuit on impossible.
}
Ok(())
},
// Collection bindings and rel bindings are similar in that they are both
// implemented as a subquery with a projection list and a set of values.
// The difference is that BindColl has only a single variable, and its values
// are all in a single structure. That makes it substantially simpler!
(Binding::BindColl(var), FnArg::Vector(children)) => {
if children.is_empty() {
bail!(ErrorKind::InvalidGroundConstant);
}
// Turn a collection of arguments into a Vec of `TypedValue`s of the same type.
let known_types = self.known_type_set(&var);
// Check that every value has the same type.
let mut accumulated_types = ValueTypeSet::none();
let mut skip: Option<EmptyBecause> = None;
let values = children.into_iter()
.filter_map(|arg| -> Option<Result<TypedValue>> {
// We need to get conversion errors out.
// We also want to mark known-empty on impossibilty, but
// still detect serious errors.
match self.typed_value_from_arg(schema, &var, arg, known_types) {
Ok(ValueConversion::Val(tv)) => {
if accumulated_types.insert(tv.value_type()) &&
!accumulated_types.is_unit() {
// Values not all of the same type.
Some(Err(ErrorKind::InvalidGroundConstant.into()))
} else {
Some(Ok(tv))
}
},
Ok(ValueConversion::Impossible(because)) => {
// Skip this value.
skip = Some(because);
None
},
Err(e) => Some(Err(e.into())),
}
})
.collect::<Result<Vec<TypedValue>>>()?;
if values.is_empty() {
let because = skip.expect("we skipped all rows for a reason");
self.mark_known_empty(because);
return Ok(());
}
// Otherwise, we now have the values and the type.
let types = vec![accumulated_types.exemplar().unwrap()];
let names = vec![var.clone()];
self.collect_named_bindings(schema, names, types, values);
Ok(())
},
(Binding::BindRel(places), FnArg::Vector(rows)) => {
if rows.is_empty() {
bail!(ErrorKind::InvalidGroundConstant);
}
// Grab the known types to which these args must conform, and track
// the places that won't be bound in the output.
let template: Vec<Option<(Variable, ValueTypeSet)>> =
places.iter()
.map(|x| match x {
&VariableOrPlaceholder::Placeholder => None,
&VariableOrPlaceholder::Variable(ref v) => Some((v.clone(), self.known_type_set(v))),
})
.collect();
// The expected 'width' of the matrix is the number of named variables.
let full_width = places.len();
let names: Vec<Variable> = places.into_iter().filter_map(|x| x.into_var()).collect();
let expected_width = names.len();
let expected_rows = rows.len();
if expected_width == 0 {
// They can't all be placeholders.
bail!(ErrorKind::InvalidGroundConstant);
}
// Accumulate values into `matrix` and types into `a_t_f_c`.
// This representation of a rectangular matrix is more efficient than one composed
// of N separate vectors.
let mut matrix = Vec::with_capacity(expected_width * expected_rows);
let mut accumulated_types_for_columns = vec![ValueTypeSet::none(); expected_width];
// Loop so we can bail out.
let mut skipped_all: Option<EmptyBecause> = None;
for row in rows.into_iter() {
match row {
FnArg::Vector(cols) => {
// Make sure that every row is the same length.
if cols.len() != full_width {
bail!(ErrorKind::InvalidGroundConstant);
}
// TODO: don't accumulate twice.
let mut vals = Vec::with_capacity(expected_width);
let mut skip: Option<EmptyBecause> = None;
for (col, pair) in cols.into_iter().zip(template.iter()) {
// Now we have (val, Option<(name, known_types)>). Silly,
// but this is how we iter!
// Convert each item in the row.
// If any value in the row is impossible, then skip the row.
// If all rows are impossible, fail the entire CC.
if let &Some(ref pair) = pair {
match self.typed_value_from_arg(schema, &pair.0, col, pair.1)? {
ValueConversion::Val(tv) => vals.push(tv),
ValueConversion::Impossible(because) => {
// Skip this row. It cannot produce bindings.
skip = Some(because);
break;
},
}
}
}
if skip.is_some() {
// Skip this row and record why, in case we skip all.
skipped_all = skip;
continue;
}
// Accumulate the values into the matrix and the types into the type set.
for (val, acc) in vals.into_iter().zip(accumulated_types_for_columns.iter_mut()) {
let inserted = acc.insert(val.value_type());
if inserted && !acc.is_unit() {
// Heterogeneous types.
bail!(ErrorKind::InvalidGroundConstant);
}
matrix.push(val);
}
},
_ => bail!(ErrorKind::InvalidGroundConstant),
}
}
// Do we have rows? If not, the CC cannot succeed.
if matrix.is_empty() {
// We will either have bailed or will have accumulated *something* into the matrix,
// so we can safely unwrap here.
self.mark_known_empty(skipped_all.expect("we skipped for a reason"));
return Ok(());
}
// Take the single type from each set. We know there's only one: we got at least one
// type, 'cos we bailed out for zero rows, and we also bailed out each time we
// inserted a second type.
// By restricting to homogeneous columns, we greatly simplify projection. In the
// future, we could loosen this restriction, at the cost of projecting (some) value
// type tags. If and when we want to algebrize in two phases and allow for
// late-binding input variables, we'll probably be able to loosen this restriction
// with little penalty.
let types = accumulated_types_for_columns.into_iter()
.map(|x| x.exemplar().unwrap())
.collect();
self.collect_named_bindings(schema, names, types, matrix);
Ok(())
},
(_, _) => bail!(ErrorKind::InvalidGroundConstant),
}
}
}
#[cfg(test)]
mod testing {
use super::*;
use mentat_core::{
Attribute,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
NamespacedKeyword,
PlainSymbol,
Variable,
};
use clauses::{
add_attribute,
associate_ident,
};
use types::{
ValueTypeSet,
};
#[test]
fn test_apply_ground() {
let vz = Variable::from_valid_name("?z");
let mut cc = ConjoiningClauses::default();
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "fts"), 100);
add_attribute(&mut schema, 100, Attribute {
value_type: ValueType::String,
index: true,
fulltext: true,
..Default::default()
});
// It's awkward enough to write these expansions that we give the details for the simplest
// case only. See the tests of the translator for more extensive (albeit looser) coverage.
let op = PlainSymbol::new("ground");
cc.apply_ground(&schema, WhereFn {
operator: op,
args: vec![
FnArg::EntidOrInteger(10),
],
binding: Binding::BindScalar(vz.clone()),
}).expect("to be able to apply_ground");
assert!(!cc.is_known_empty());
// Finally, expand column bindings.
cc.expand_column_bindings();
assert!(!cc.is_known_empty());
let clauses = cc.wheres;
assert_eq!(clauses.len(), 0);
let column_bindings = cc.column_bindings;
assert_eq!(column_bindings.len(), 0); // Scalar doesn't need this.
let known_types = cc.known_types;
assert_eq!(known_types.len(), 1);
assert_eq!(known_types.get(&vz).expect("to know the type of ?z"),
&ValueTypeSet::of_one(ValueType::Long));
let value_bindings = cc.value_bindings;
assert_eq!(value_bindings.len(), 1);
assert_eq!(value_bindings.get(&vz).expect("to have a value for ?z"),
&TypedValue::Long(10)); // We default to Long instead of entid.
}
}

View file

@ -54,6 +54,7 @@ use types::{
DatomsColumn,
DatomsTable,
EmptyBecause,
FulltextColumn,
QualifiedAlias,
QueryValue,
SourceAlias,
@ -61,12 +62,16 @@ use types::{
ValueTypeSet,
};
mod convert; // Converting args to values.
mod inputs;
mod or;
mod not;
mod pattern;
mod predicate;
mod resolve;
mod ground;
mod fulltext;
mod where_fn;
use validate::{
@ -335,7 +340,24 @@ impl ConjoiningClauses {
impl ConjoiningClauses {
/// Be careful with this. It'll overwrite existing bindings.
pub fn bind_value(&mut self, var: &Variable, value: TypedValue) {
self.constrain_var_to_type(var.clone(), value.value_type());
let vt = value.value_type();
self.constrain_var_to_type(var.clone(), vt);
// Are there any existing column bindings for this variable?
// If so, generate a constraint against the primary column.
if let Some(vec) = self.column_bindings.get(var) {
if let Some(col) = vec.first() {
self.wheres.add_intersection(ColumnConstraint::Equals(col.clone(), QueryValue::TypedValue(value.clone())));
}
}
// Are we also trying to figure out the type of the value when the query runs?
// If so, constrain that!
if let Some(qa) = self.extracted_types.get(&var) {
self.wheres.add_intersection(ColumnConstraint::HasType(qa.0.clone(), vt));
}
// Finally, store the binding for future use.
self.value_bindings.insert(var.clone(), value);
}
@ -377,6 +399,13 @@ impl ConjoiningClauses {
self.constrain_column_to_constant(table, column, bound_val);
},
Column::Fulltext(FulltextColumn::Rowid) |
Column::Fulltext(FulltextColumn::Text) => {
// We never expose `rowid` via queries. We do expose `text`, but only
// indirectly, by joining against `datoms`. Therefore, these are meaningless.
unimplemented!()
},
Column::Fixed(DatomsColumn::ValueTypeTag) => {
// I'm pretty sure this is meaningless right now, because we will never bind
// a type tag to a variable -- there's no syntax for doing so.
@ -450,8 +479,14 @@ impl ConjoiningClauses {
}
pub fn constrain_column_to_constant<C: Into<Column>>(&mut self, table: TableAlias, column: C, constant: TypedValue) {
let column = column.into();
self.wheres.add_intersection(ColumnConstraint::Equals(QualifiedAlias(table, column), QueryValue::TypedValue(constant)))
match constant {
// Be a little more explicit.
TypedValue::Ref(entid) => self.constrain_column_to_entity(table, column, entid),
_ => {
let column = column.into();
self.wheres.add_intersection(ColumnConstraint::Equals(QualifiedAlias(table, column), QueryValue::TypedValue(constant)))
},
}
}
pub fn constrain_column_to_entity<C: Into<Column>>(&mut self, table: TableAlias, column: C, entity: Entid) {

View file

@ -8,188 +8,23 @@
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use std::rc::Rc;
use mentat_core::{
Schema,
SQLValueType,
TypedValue,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
NonIntegerConstant,
Variable,
VariableOrPlaceholder,
WhereFn,
};
use clauses::{
ConjoiningClauses,
PushComputed,
};
use errors::{
BindingError,
ErrorKind,
Result,
};
use super::QualifiedAlias;
use types::{
ColumnConstraint,
ComputedTable,
EmptyBecause,
SourceAlias,
ValueTypeSet,
VariableColumn,
};
macro_rules! coerce_to_typed_value {
($var: ident, $val: ident, $types: expr, $type: path, $constructor: path) => { {
Ok(if !$types.contains($type) {
Impossible(EmptyBecause::TypeMismatch {
var: $var.clone(),
existing: $types,
desired: ValueTypeSet::of_one($type),
})
} else {
Val($constructor($val).into())
})
} }
}
enum ValueConversion {
Val(TypedValue),
Impossible(EmptyBecause),
}
/// Conversion of FnArgs to TypedValues.
impl ConjoiningClauses {
/// Convert the provided `FnArg` to a `TypedValue`.
/// The conversion depends on, and can fail because of:
/// - Existing known types of a variable to which this arg will be bound.
/// - Existing bindings of a variable `FnArg`.
fn typed_value_from_arg<'s>(&self, schema: &'s Schema, var: &Variable, arg: FnArg, known_types: ValueTypeSet) -> Result<ValueConversion> {
use self::ValueConversion::*;
if known_types.is_empty() {
// If this happens, it likely means the pattern has already failed!
return Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::any(),
}));
}
match arg {
// Longs are potentially ambiguous: they might be longs or entids.
FnArg::EntidOrInteger(x) => {
match (ValueType::Ref.accommodates_integer(x),
known_types.contains(ValueType::Ref),
known_types.contains(ValueType::Long)) {
(true, true, true) => {
// Ambiguous: this arg could be an entid or a long.
// We default to long.
Ok(Val(TypedValue::Long(x)))
},
(true, true, false) => {
// This can only be a ref.
Ok(Val(TypedValue::Ref(x)))
},
(_, false, true) => {
// This can only be a long.
Ok(Val(TypedValue::Long(x)))
},
(false, true, _) => {
// This isn't a valid ref, but that's the type to which this must conform!
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_longs(),
}))
},
(_, false, false) => {
// Non-overlapping type sets.
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_longs(),
}))
},
}
},
// If you definitely want to look up an ident, do it before running the query.
FnArg::IdentOrKeyword(x) => {
match (known_types.contains(ValueType::Ref),
known_types.contains(ValueType::Keyword)) {
(true, true) => {
// Ambiguous: this could be a keyword or an ident.
// Default to keyword.
Ok(Val(TypedValue::Keyword(Rc::new(x))))
},
(true, false) => {
// This can only be an ident. Look it up!
match schema.get_entid(&x).map(TypedValue::Ref) {
Some(e) => Ok(Val(e)),
None => Ok(Impossible(EmptyBecause::UnresolvedIdent(x.clone()))),
}
},
(false, true) => {
Ok(Val(TypedValue::Keyword(Rc::new(x))))
},
(false, false) => {
Ok(Impossible(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: known_types,
desired: ValueTypeSet::of_keywords(),
}))
},
}
},
FnArg::Variable(in_var) => {
// TODO: technically you could ground an existing variable inside the query….
if !self.input_variables.contains(&in_var) {
bail!(ErrorKind::UnboundVariable((*in_var.0).clone()));
}
match self.bound_value(&in_var) {
// The type is already known if it's a bound variable….
Some(ref in_value) => Ok(Val(in_value.clone())),
None => bail!(ErrorKind::UnboundVariable((*in_var.0).clone())),
}
},
// This isn't implemented yet.
FnArg::Constant(NonIntegerConstant::BigInteger(_)) => unimplemented!(),
// These don't make sense here.
FnArg::Vector(_) |
FnArg::SrcVar(_) => bail!(ErrorKind::InvalidGroundConstant),
// These are all straightforward.
FnArg::Constant(NonIntegerConstant::Boolean(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Boolean, TypedValue::Boolean)
},
FnArg::Constant(NonIntegerConstant::Instant(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Instant, TypedValue::Instant)
},
FnArg::Constant(NonIntegerConstant::Uuid(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Uuid, TypedValue::Uuid)
},
FnArg::Constant(NonIntegerConstant::Float(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::Double, TypedValue::Double)
},
FnArg::Constant(NonIntegerConstant::Text(x)) => {
coerce_to_typed_value!(var, x, known_types, ValueType::String, TypedValue::String)
},
}
}
}
/// Application of `where` functions.
impl ConjoiningClauses {
/// There are several kinds of functions binding variables in our Datalog:
@ -202,369 +37,9 @@ impl ConjoiningClauses {
// Because we'll be growing the set of built-in functions, handling each differently, and
// ultimately allowing user-specified functions, we match on the function name first.
match where_fn.operator.0.as_str() {
"fulltext" => self.apply_fulltext(schema, where_fn),
"ground" => self.apply_ground(schema, where_fn),
_ => bail!(ErrorKind::UnknownFunction(where_fn.operator.clone())),
}
}
fn apply_ground_place<'s>(&mut self, schema: &'s Schema, var: VariableOrPlaceholder, arg: FnArg) -> Result<()> {
match var {
VariableOrPlaceholder::Placeholder => Ok(()),
VariableOrPlaceholder::Variable(var) => self.apply_ground_var(schema, var, arg),
}
}
/// Constrain the CC to associate the given var with the given ground argument.
/// Marks known-empty on failure.
fn apply_ground_var<'s>(&mut self, schema: &'s Schema, var: Variable, arg: FnArg) -> Result<()> {
let known_types = self.known_type_set(&var);
match self.typed_value_from_arg(schema, &var, arg, known_types)? {
ValueConversion::Val(value) => self.apply_ground_value(var, value),
ValueConversion::Impossible(because) => {
self.mark_known_empty(because);
Ok(())
},
}
}
/// Marks known-empty on failure.
fn apply_ground_value(&mut self, var: Variable, value: TypedValue) -> Result<()> {
if let Some(existing) = self.bound_value(&var) {
if existing != value {
self.mark_known_empty(EmptyBecause::ConflictingBindings {
var: var.clone(),
existing: existing.clone(),
desired: value,
});
return Ok(())
}
} else {
self.bind_value(&var, value.clone());
}
let vt = value.value_type();
// Check to see whether this variable is already associated to a column.
// If so, we want to add an equality filter (or, in the future, redo the existing patterns).
if let Some(QualifiedAlias(table, column)) = self.column_bindings
.get(&var)
.and_then(|vec| vec.get(0).cloned()) {
self.constrain_column_to_constant(table, column, value);
}
// Are we also trying to figure out the type of the value when the query runs?
// If so, constrain that!
if let Some(table) = self.extracted_types.get(&var)
.map(|qa| qa.0.clone()) {
self.wheres.add_intersection(ColumnConstraint::HasType(table, vt));
}
Ok(())
}
/// Take a relation: a matrix of values which will successively bind to named variables of
/// the provided types.
/// Construct a computed table to yield this relation.
/// This function will panic if some invariants are not met.
fn collect_named_bindings<'s>(&mut self, schema: &'s Schema, names: Vec<Variable>, types: Vec<ValueType>, values: Vec<TypedValue>) {
if values.is_empty() {
return;
}
assert!(!names.is_empty());
assert_eq!(names.len(), types.len());
assert!(values.len() >= names.len());
assert_eq!(values.len() % names.len(), 0); // It's an exact multiple.
let named_values = ComputedTable::NamedValues {
names: names.clone(),
values: values,
};
let table = self.computed_tables.push_computed(named_values);
let alias = self.next_alias_for_table(table);
// Stitch the computed table into column_bindings, so we get cross-linking.
for (name, ty) in names.iter().zip(types.into_iter()) {
self.constrain_var_to_type(name.clone(), ty);
self.bind_column_to_var(schema, alias.clone(), VariableColumn::Variable(name.clone()), name.clone());
}
self.from.push(SourceAlias(table, alias));
}
pub fn apply_ground<'s>(&mut self, schema: &'s Schema, where_fn: WhereFn) -> Result<()> {
if where_fn.args.len() != 1 {
bail!(ErrorKind::InvalidNumberOfArguments(where_fn.operator.clone(), where_fn.args.len(), 1));
}
let mut args = where_fn.args.into_iter();
if where_fn.binding.is_empty() {
// The binding must introduce at least one bound variable.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::NoBoundVariable));
}
if !where_fn.binding.is_valid() {
// The binding must not duplicate bound variables.
bail!(ErrorKind::InvalidBinding(where_fn.operator.clone(), BindingError::RepeatedBoundVariable));
}
// Scalar and tuple bindings are a little special: because there's only one value,
// we can immediately substitute the value as a known value in the CC, additionally
// generating a WHERE clause if columns have already been bound.
match (where_fn.binding, args.next().unwrap()) {
(Binding::BindScalar(var), constant) =>
self.apply_ground_var(schema, var, constant),
(Binding::BindTuple(places), FnArg::Vector(children)) => {
// Just the same, but we bind more than one column at a time.
if children.len() != places.len() {
// Number of arguments don't match the number of values. TODO: better error message.
bail!(ErrorKind::GroundBindingsMismatch);
}
for (place, arg) in places.into_iter().zip(children.into_iter()) {
self.apply_ground_place(schema, place, arg)? // TODO: short-circuit on impossible.
}
Ok(())
},
// Collection bindings and rel bindings are similar in that they are both
// implemented as a subquery with a projection list and a set of values.
// The difference is that BindColl has only a single variable, and its values
// are all in a single structure. That makes it substantially simpler!
(Binding::BindColl(var), FnArg::Vector(children)) => {
if children.is_empty() {
bail!(ErrorKind::InvalidGroundConstant);
}
// Turn a collection of arguments into a Vec of `TypedValue`s of the same type.
let known_types = self.known_type_set(&var);
// Check that every value has the same type.
let mut accumulated_types = ValueTypeSet::none();
let mut skip: Option<EmptyBecause> = None;
let values = children.into_iter()
.filter_map(|arg| -> Option<Result<TypedValue>> {
// We need to get conversion errors out.
// We also want to mark known-empty on impossibilty, but
// still detect serious errors.
match self.typed_value_from_arg(schema, &var, arg, known_types) {
Ok(ValueConversion::Val(tv)) => {
if accumulated_types.insert(tv.value_type()) &&
!accumulated_types.is_unit() {
// Values not all of the same type.
Some(Err(ErrorKind::InvalidGroundConstant.into()))
} else {
Some(Ok(tv))
}
},
Ok(ValueConversion::Impossible(because)) => {
// Skip this value.
skip = Some(because);
None
},
Err(e) => Some(Err(e.into())),
}
})
.collect::<Result<Vec<TypedValue>>>()?;
if values.is_empty() {
let because = skip.expect("we skipped all rows for a reason");
self.mark_known_empty(because);
return Ok(());
}
// Otherwise, we now have the values and the type.
let types = vec![accumulated_types.exemplar().unwrap()];
let names = vec![var.clone()];
self.collect_named_bindings(schema, names, types, values);
Ok(())
},
(Binding::BindRel(places), FnArg::Vector(rows)) => {
if rows.is_empty() {
bail!(ErrorKind::InvalidGroundConstant);
}
// Grab the known types to which these args must conform, and track
// the places that won't be bound in the output.
let template: Vec<Option<(Variable, ValueTypeSet)>> =
places.iter()
.map(|x| match x {
&VariableOrPlaceholder::Placeholder => None,
&VariableOrPlaceholder::Variable(ref v) => Some((v.clone(), self.known_type_set(v))),
})
.collect();
// The expected 'width' of the matrix is the number of named variables.
let full_width = places.len();
let names: Vec<Variable> = places.into_iter().filter_map(|x| x.into_var()).collect();
let expected_width = names.len();
let expected_rows = rows.len();
if expected_width == 0 {
// They can't all be placeholders.
bail!(ErrorKind::InvalidGroundConstant);
}
// Accumulate values into `matrix` and types into `a_t_f_c`.
// This representation of a rectangular matrix is more efficient than one composed
// of N separate vectors.
let mut matrix = Vec::with_capacity(expected_width * expected_rows);
let mut accumulated_types_for_columns = vec![ValueTypeSet::none(); expected_width];
// Loop so we can bail out.
let mut skipped_all: Option<EmptyBecause> = None;
for row in rows.into_iter() {
match row {
FnArg::Vector(cols) => {
// Make sure that every row is the same length.
if cols.len() != full_width {
bail!(ErrorKind::InvalidGroundConstant);
}
// TODO: don't accumulate twice.
let mut vals = Vec::with_capacity(expected_width);
let mut skip: Option<EmptyBecause> = None;
for (col, pair) in cols.into_iter().zip(template.iter()) {
// Now we have (val, Option<(name, known_types)>). Silly,
// but this is how we iter!
// Convert each item in the row.
// If any value in the row is impossible, then skip the row.
// If all rows are impossible, fail the entire CC.
if let &Some(ref pair) = pair {
match self.typed_value_from_arg(schema, &pair.0, col, pair.1)? {
ValueConversion::Val(tv) => vals.push(tv),
ValueConversion::Impossible(because) => {
// Skip this row. It cannot produce bindings.
skip = Some(because);
break;
},
}
}
}
if skip.is_some() {
// Skip this row and record why, in case we skip all.
skipped_all = skip;
continue;
}
// Accumulate the values into the matrix and the types into the type set.
for (val, acc) in vals.into_iter().zip(accumulated_types_for_columns.iter_mut()) {
let inserted = acc.insert(val.value_type());
if inserted && !acc.is_unit() {
// Heterogeneous types.
bail!(ErrorKind::InvalidGroundConstant);
}
matrix.push(val);
}
},
_ => bail!(ErrorKind::InvalidGroundConstant),
}
}
// Do we have rows? If not, the CC cannot succeed.
if matrix.is_empty() {
// We will either have bailed or will have accumulated *something* into the matrix,
// so we can safely unwrap here.
self.mark_known_empty(skipped_all.expect("we skipped for a reason"));
return Ok(());
}
// Take the single type from each set. We know there's only one: we got at least one
// type, 'cos we bailed out for zero rows, and we also bailed out each time we
// inserted a second type.
// By restricting to homogeneous columns, we greatly simplify projection. In the
// future, we could loosen this restriction, at the cost of projecting (some) value
// type tags. If and when we want to algebrize in two phases and allow for
// late-binding input variables, we'll probably be able to loosen this restriction
// with little penalty.
let types = accumulated_types_for_columns.into_iter()
.map(|x| x.exemplar().unwrap())
.collect();
self.collect_named_bindings(schema, names, types, matrix);
Ok(())
},
(_, _) => bail!(ErrorKind::InvalidGroundConstant),
}
}
}
#[cfg(test)]
mod testing {
use super::*;
use mentat_core::{
Attribute,
ValueType,
};
use mentat_query::{
Binding,
FnArg,
NamespacedKeyword,
PlainSymbol,
Variable,
};
use clauses::{
add_attribute,
associate_ident,
};
use types::{
ValueTypeSet,
};
#[test]
fn test_apply_ground() {
let vz = Variable::from_valid_name("?z");
let mut cc = ConjoiningClauses::default();
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "fts"), 100);
add_attribute(&mut schema, 100, Attribute {
value_type: ValueType::String,
index: true,
fulltext: true,
..Default::default()
});
// It's awkward enough to write these expansions that we give the details for the simplest
// case only. See the tests of the translator for more extensive (albeit looser) coverage.
let op = PlainSymbol::new("ground");
cc.apply_ground(&schema, WhereFn {
operator: op,
args: vec![
FnArg::EntidOrInteger(10),
],
binding: Binding::BindScalar(vz.clone()),
}).expect("to be able to apply_ground");
assert!(!cc.is_known_empty());
// Finally, expand column bindings.
cc.expand_column_bindings();
assert!(!cc.is_known_empty());
let clauses = cc.wheres;
assert_eq!(clauses.len(), 0);
let column_bindings = cc.column_bindings;
assert_eq!(column_bindings.len(), 0); // Scalar doesn't need this.
let known_types = cc.known_types;
assert_eq!(known_types.len(), 1);
assert_eq!(known_types.get(&vz).expect("to know the type of ?z"),
&ValueTypeSet::of_one(ValueType::Long));
let value_bindings = cc.value_bindings;
assert_eq!(value_bindings.len(), 1);
assert_eq!(value_bindings.get(&vz).expect("to have a value for ?z"),
&TypedValue::Long(10)); // We default to Long instead of entid.
}
}

View file

@ -21,7 +21,16 @@ use self::mentat_query::{
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum BindingError {
NoBoundVariable,
UnexpectedBinding,
RepeatedBoundVariable, // TODO: include repeated variable(s).
/// Expected `[[?x ?y]]` but got some other type of binding. Mentat is deliberately more strict
/// than Datomic: we won't try to make sense of non-obvious (and potentially erroneous) bindings.
ExpectedBindRel,
/// Expected `[?x1 … ?xN]` or `[[?x1 … ?xN]]` but got some other number of bindings. Mentat is
/// deliberately more strict than Datomic: we prefer placeholders to omission.
InvalidNumberOfBindings { number: usize, expected: usize },
}
error_chain! {

View file

@ -217,6 +217,7 @@ pub use types::{
ComputedTable,
DatomsColumn,
DatomsTable,
FulltextColumn,
OrderBy,
QualifiedAlias,
QueryValue,

View file

@ -85,6 +85,13 @@ pub enum DatomsColumn {
ValueTypeTag,
}
/// One of the named columns of our fulltext values table.
#[derive(PartialEq, Eq, Clone)]
pub enum FulltextColumn {
Rowid,
Text,
}
#[derive(PartialEq, Eq, Clone)]
pub enum VariableColumn {
Variable(Variable),
@ -94,6 +101,7 @@ pub enum VariableColumn {
#[derive(PartialEq, Eq, Clone)]
pub enum Column {
Fixed(DatomsColumn),
Fulltext(FulltextColumn),
Variable(VariableColumn),
}
@ -157,11 +165,34 @@ impl Debug for Column {
fn fmt(&self, f: &mut Formatter) -> Result {
match self {
&Column::Fixed(ref c) => c.fmt(f),
&Column::Fulltext(ref c) => c.fmt(f),
&Column::Variable(ref v) => v.fmt(f),
}
}
}
impl FulltextColumn {
pub fn as_str(&self) -> &'static str {
use self::FulltextColumn::*;
match *self {
Rowid => "rowid",
Text => "text",
}
}
}
impl ColumnName for FulltextColumn {
fn column_name(&self) -> String {
self.as_str().to_string()
}
}
impl Debug for FulltextColumn {
fn fmt(&self, f: &mut Formatter) -> Result {
write!(f, "{}", self.as_str())
}
}
/// A specific instance of a table within a query. E.g., "datoms123".
pub type TableAlias = String;
@ -301,6 +332,9 @@ pub enum ColumnConstraint {
},
HasType(TableAlias, ValueType),
NotExists(ComputedTable),
// TODO: Merge this with NumericInequality? I expect the fine-grained information to be
// valuable when optimizing.
Matches(QualifiedAlias, QueryValue),
}
#[derive(PartialEq, Eq, Debug)]
@ -411,6 +445,10 @@ impl Debug for ColumnConstraint {
write!(f, "{:?} {:?} {:?}", left, operator, right)
},
&Matches(ref qa, ref thing) => {
write!(f, "{:?} MATCHES {:?}", qa, thing)
},
&HasType(ref qa, value_type) => {
write!(f, "{:?}.value_type_tag = {:?}", qa, value_type)
},
@ -426,6 +464,7 @@ pub enum EmptyBecause {
ConflictingBindings { var: Variable, existing: TypedValue, desired: TypedValue },
TypeMismatch { var: Variable, existing: ValueTypeSet, desired: ValueTypeSet },
NoValidTypes(Variable),
NonAttributeArgument,
NonNumericArgument,
NonStringFulltextValue,
UnresolvedIdent(NamespacedKeyword),
@ -451,6 +490,9 @@ impl Debug for EmptyBecause {
&NoValidTypes(ref var) => {
write!(f, "Type mismatch: {:?} has no valid types", var)
},
&NonAttributeArgument => {
write!(f, "Non-attribute argument in attribute place")
},
&NonNumericArgument => {
write!(f, "Non-numeric argument in numeric place")
},
@ -582,3 +624,28 @@ impl ValueTypeSet {
self.0.len() == 1
}
}
impl IntoIterator for ValueTypeSet {
type Item = ValueType;
type IntoIter = ::enum_set::Iter<ValueType>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl ::std::iter::FromIterator<ValueType> for ValueTypeSet {
fn from_iter<I: IntoIterator<Item = ValueType>>(iterator: I) -> Self {
let mut ret = Self::none();
ret.0.extend(iterator);
ret
}
}
impl ::std::iter::Extend<ValueType> for ValueTypeSet {
fn extend<I: IntoIterator<Item = ValueType>>(&mut self, iter: I) {
for element in iter {
self.0.insert(element);
}
}
}

View file

@ -0,0 +1,102 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
extern crate mentat_core;
extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
use mentat_core::{
Attribute,
Entid,
Schema,
ValueType,
};
use mentat_query_parser::{
parse_find_string,
};
use mentat_query::{
NamespacedKeyword,
};
use mentat_query_algebrizer::{
ConjoiningClauses,
algebrize,
};
// These are helpers that tests use to build Schema instances.
fn associate_ident(schema: &mut Schema, i: NamespacedKeyword, e: Entid) {
schema.entid_map.insert(e, i.clone());
schema.ident_map.insert(i.clone(), e);
}
fn add_attribute(schema: &mut Schema, e: Entid, a: Attribute) {
schema.schema_map.insert(e, a);
}
fn prepopulated_schema() -> Schema {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "name"), 65);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "description"), 66);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "parent"), 67);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "age"), 68);
associate_ident(&mut schema, NamespacedKeyword::new("foo", "height"), 69);
add_attribute(&mut schema, 65, Attribute {
value_type: ValueType::String,
multival: false,
..Default::default()
});
add_attribute(&mut schema, 66, Attribute {
value_type: ValueType::String,
fulltext: true,
multival: true,
..Default::default()
});
add_attribute(&mut schema, 67, Attribute {
value_type: ValueType::String,
multival: true,
..Default::default()
});
add_attribute(&mut schema, 68, Attribute {
value_type: ValueType::Long,
multival: false,
..Default::default()
});
add_attribute(&mut schema, 69, Attribute {
value_type: ValueType::Long,
multival: false,
..Default::default()
});
schema
}
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
}
#[test]
fn test_apply_fulltext() {
let schema = prepopulated_schema();
// If you use a non-FTS attribute, we will short-circuit.
let query = r#"[:find ?val
:where [(fulltext $ :foo/name "hello") [[?entity ?val _ _]]]]"#;
assert!(alg(&schema, query).is_known_empty());
// If you get a type mismatch, we will short-circuit.
let query = r#"[:find ?val
:where [(fulltext $ :foo/description "hello") [[?entity ?val ?tx ?score]]]
[?score :foo/bar _]]"#;
assert!(alg(&schema, query).is_known_empty());
}

View file

@ -13,6 +13,8 @@ extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
use std::collections::BTreeMap;
use mentat_core::{
Attribute,
Entid,
@ -37,7 +39,9 @@ use mentat_query_algebrizer::{
ComputedTable,
Error,
ErrorKind,
QueryInputs,
algebrize,
algebrize_with_inputs,
};
// These are helpers that tests use to build Schema instances.
@ -92,6 +96,11 @@ fn bails(schema: &Schema, input: &str) -> Error {
algebrize(schema.into(), parsed).expect_err("algebrize to have failed")
}
fn bails_with_inputs(schema: &Schema, input: &str, inputs: QueryInputs) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize_with_inputs(schema, parsed, 0, inputs).expect_err("algebrize to have failed")
}
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
@ -313,3 +322,26 @@ fn test_ground_nonexistent_variable_invalid() {
},
}
}
#[test]
fn test_unbound_input_variable_invalid() {
let schema = prepopulated_schema();
let q = r#"[:find ?y ?age :in ?x :where [(ground [?x]) [?y ...]] [?y :foo/age ?age]]"#;
// This fails even if we know the type: we don't support grounding bindings
// that aren't known at algebrizing time.
let mut types = BTreeMap::default();
types.insert(Variable::from_valid_name("?x"), ValueType::Ref);
let i = QueryInputs::new(types, BTreeMap::default()).expect("valid QueryInputs");
let e = bails_with_inputs(&schema, &q, i);
match e {
Error(ErrorKind::UnboundVariable(v), _) => {
assert_eq!(v.0, "?x");
},
_ => {
panic!();
},
}
}

View file

@ -124,6 +124,14 @@ impl Constraint {
right: right,
}
}
pub fn fulltext_match(left: ColumnOrExpression, right: ColumnOrExpression) -> Constraint {
Constraint::Infix {
op: Op("MATCH"), // SQLite specific!
left: left,
right: right,
}
}
}
#[allow(dead_code)]
@ -198,6 +206,10 @@ fn push_column(qb: &mut QueryBuilder, col: &Column) -> BuildQueryResult {
qb.push_sql(d.as_str());
Ok(())
},
&Column::Fulltext(ref d) => {
qb.push_sql(d.as_str());
Ok(())
},
&Column::Variable(ref vc) => push_variable_column(qb, vc),
}
}
@ -555,22 +567,30 @@ impl SelectQuery {
#[cfg(test)]
mod tests {
use super::*;
use std::rc::Rc;
use mentat_query_algebrizer::{
Column,
DatomsColumn,
DatomsTable,
FulltextColumn,
};
fn build(c: &QueryFragment) -> String {
fn build_query(c: &QueryFragment) -> SQLQuery {
let mut builder = SQLiteQueryBuilder::new();
c.push_sql(&mut builder)
.map(|_| builder.finish())
.unwrap().sql
.expect("to produce a query for the given constraint")
}
fn build(c: &QueryFragment) -> String {
build_query(c).sql
}
#[test]
fn test_in_constraint() {
let none = Constraint::In {
left: ColumnOrExpression::Column(QualifiedAlias::new("datoms01".to_string(), DatomsColumn::Value)),
left: ColumnOrExpression::Column(QualifiedAlias::new("datoms01".to_string(), Column::Fixed(DatomsColumn::Value))),
list: vec![],
};
@ -651,6 +671,25 @@ mod tests {
"SELECT 0 AS `?a`, 0 AS `?b` WHERE 0 UNION ALL VALUES (0, 1), (1, 2)");
}
#[test]
fn test_matches_constraint() {
let c = Constraint::Infix {
op: Op("MATCHES"),
left: ColumnOrExpression::Column(QualifiedAlias("fulltext01".to_string(), Column::Fulltext(FulltextColumn::Text))),
right: ColumnOrExpression::Value(TypedValue::String(Rc::new("needle".to_string()))),
};
let q = build_query(&c);
assert_eq!("`fulltext01`.text MATCHES $v0", q.sql);
assert_eq!(vec![("$v0".to_string(), Rc::new(mentat_sql::Value::Text("needle".to_string())))], q.args);
let c = Constraint::Infix {
op: Op("="),
left: ColumnOrExpression::Column(QualifiedAlias("fulltext01".to_string(), Column::Fulltext(FulltextColumn::Rowid))),
right: ColumnOrExpression::Column(QualifiedAlias("datoms02".to_string(), Column::Fixed(DatomsColumn::Value))),
};
assert_eq!("`fulltext01`.rowid = `datoms02`.v", build(&c));
}
#[test]
fn test_end_to_end() {
// [:find ?x :where [?x 65537 ?v] [?x 65536 ?v]]

View file

@ -148,6 +148,14 @@ impl ToConstraint for ColumnConstraint {
}
},
Matches(left, right) => {
Constraint::Infix {
op: Op("MATCH"),
left: ColumnOrExpression::Column(left),
right: right.into(),
}
},
HasType(table, value_type) => {
let column = QualifiedAlias::new(table, DatomsColumn::ValueTypeTag).to_column();
Constraint::equal(column, ColumnOrExpression::Integer(value_type.value_type_tag()))

View file

@ -15,6 +15,8 @@ extern crate mentat_query_parser;
extern crate mentat_query_translator;
extern crate mentat_sql;
use std::collections::BTreeMap;
use std::rc::Rc;
use mentat_query::{
@ -69,6 +71,13 @@ fn prepopulated_typed_schema(foo_type: ValueType) -> Schema {
value_type: foo_type,
..Default::default()
});
associate_ident(&mut schema, NamespacedKeyword::new("foo", "fts"), 100);
add_attribute(&mut schema, 100, Attribute {
value_type: ValueType::String,
index: true,
fulltext: true,
..Default::default()
});
schema
}
@ -226,7 +235,7 @@ fn test_unknown_attribute_double_value() {
// In general, doubles _could_ be 1.0, which might match a boolean or a ref. Set tag = 5 to
// make sure we only match numbers.
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.v = 9.95 AND `datoms00`.value_type_tag = 5");
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.v = 9.95e0 AND `datoms00`.value_type_tag = 5");
assert_eq!(args, vec![]);
}
@ -295,7 +304,7 @@ fn test_numeric_gte_known_attribute() {
let schema = prepopulated_typed_schema(ValueType::Double);
let query = r#"[:find ?x :where [?x :foo/bar ?y] [(>= ?y 12.9)]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.a = 99 AND `datoms00`.v >= 12.9");
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?x` FROM `datoms` AS `datoms00` WHERE `datoms00`.a = 99 AND `datoms00`.v >= 1.29e1");
assert_eq!(args, vec![]);
}
@ -727,3 +736,155 @@ fn test_not_with_ground() {
(SELECT 1 FROM (SELECT 0 AS `?v` WHERE 0 UNION ALL VALUES (28), (29)) AS `c00` \
WHERE `datoms00`.v = `c00`.`?v`)");
}
#[test]
fn test_fulltext() {
let schema = prepopulated_typed_schema(ValueType::Double);
let query = r#"[:find ?entity ?value ?tx ?score :where [(fulltext $ :foo/fts "needle") [[?entity ?value ?tx ?score]]]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
assert_eq!(sql, "SELECT DISTINCT `datoms01`.e AS `?entity`, \
`fulltext_values00`.text AS `?value`, \
`datoms01`.tx AS `?tx`, \
0e0 AS `?score` \
FROM `fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0");
assert_eq!(args, vec![make_arg("$v0", "needle"),]);
let query = r#"[:find ?entity ?value ?tx :where [(fulltext $ :foo/fts "needle") [[?entity ?value ?tx ?score]]]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
// Observe that the computed table isn't dropped, even though `?score` isn't bound in the final conjoining clause.
assert_eq!(sql, "SELECT DISTINCT `datoms01`.e AS `?entity`, \
`fulltext_values00`.text AS `?value`, \
`datoms01`.tx AS `?tx` \
FROM `fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0");
assert_eq!(args, vec![make_arg("$v0", "needle"),]);
let query = r#"[:find ?entity ?value ?tx :where [(fulltext $ :foo/fts "needle") [[?entity ?value ?tx _]]]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
// Observe that the computed table isn't included at all when `?score` isn't bound.
assert_eq!(sql, "SELECT DISTINCT `datoms01`.e AS `?entity`, \
`fulltext_values00`.text AS `?value`, \
`datoms01`.tx AS `?tx` \
FROM `fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0");
assert_eq!(args, vec![make_arg("$v0", "needle"),]);
let query = r#"[:find ?entity ?value ?tx :where [(fulltext $ :foo/fts "needle") [[?entity ?value ?tx ?score]]] [?entity :foo/bar ?score]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
assert_eq!(sql, "SELECT DISTINCT `datoms01`.e AS `?entity`, \
`fulltext_values00`.text AS `?value`, \
`datoms01`.tx AS `?tx` \
FROM `fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01`, \
`datoms` AS `datoms02` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0 \
AND `datoms02`.a = 99 \
AND `datoms02`.v = 0e0 \
AND `datoms01`.e = `datoms02`.e");
assert_eq!(args, vec![make_arg("$v0", "needle"),]);
let query = r#"[:find ?entity ?value ?tx :where [?entity :foo/bar ?score] [(fulltext $ :foo/fts "needle") [[?entity ?value ?tx ?score]]]]"#;
let SQLQuery { sql, args } = translate(&schema, query);
assert_eq!(sql, "SELECT DISTINCT `datoms00`.e AS `?entity`, \
`fulltext_values01`.text AS `?value`, \
`datoms02`.tx AS `?tx` \
FROM `datoms` AS `datoms00`, \
`fulltext_values` AS `fulltext_values01`, \
`datoms` AS `datoms02` \
WHERE `datoms00`.a = 99 \
AND `datoms02`.a = 100 \
AND `datoms02`.v = `fulltext_values01`.rowid \
AND `fulltext_values01`.text MATCH $v0 \
AND `datoms00`.v = 0e0 \
AND `datoms00`.e = `datoms02`.e");
assert_eq!(args, vec![make_arg("$v0", "needle"),]);
}
#[test]
fn test_fulltext_inputs() {
let schema = prepopulated_typed_schema(ValueType::String);
// Bind ?entity. We expect the output to collide.
let query = r#"[:find ?val
:in ?entity
:where [(fulltext $ :foo/fts "hello") [[?entity ?val _ _]]]]"#;
let mut types = BTreeMap::default();
types.insert(Variable::from_valid_name("?entity"), ValueType::Ref);
let inputs = QueryInputs::new(types, BTreeMap::default()).expect("valid inputs");
// Without binding the value. q_once will err if you try this!
let SQLQuery { sql, args } = translate_with_inputs(&schema, query, inputs);
assert_eq!(sql, "SELECT DISTINCT `fulltext_values00`.text AS `?val` \
FROM \
`fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0");
assert_eq!(args, vec![make_arg("$v0", "hello"),]);
// With the value bound.
let inputs = QueryInputs::with_value_sequence(vec![(Variable::from_valid_name("?entity"), TypedValue::Ref(111))]);
let SQLQuery { sql, args } = translate_with_inputs(&schema, query, inputs);
assert_eq!(sql, "SELECT DISTINCT `fulltext_values00`.text AS `?val` \
FROM \
`fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0 \
AND `datoms01`.e = 111");
assert_eq!(args, vec![make_arg("$v0", "hello"),]);
// Same again, but retrieving the entity.
let query = r#"[:find ?entity .
:in ?entity
:where [(fulltext $ :foo/fts "hello") [[?entity _ _]]]]"#;
let inputs = QueryInputs::with_value_sequence(vec![(Variable::from_valid_name("?entity"), TypedValue::Ref(111))]);
let SQLQuery { sql, args } = translate_with_inputs(&schema, query, inputs);
assert_eq!(sql, "SELECT 111 AS `?entity` FROM \
`fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0 \
AND `datoms01`.e = 111 \
LIMIT 1");
assert_eq!(args, vec![make_arg("$v0", "hello"),]);
// A larger pattern.
let query = r#"[:find ?entity ?value ?friend
:in ?entity
:where
[(fulltext $ :foo/fts "hello") [[?entity ?value]]]
[?entity :foo/bar ?friend]]"#;
let inputs = QueryInputs::with_value_sequence(vec![(Variable::from_valid_name("?entity"), TypedValue::Ref(121))]);
let SQLQuery { sql, args } = translate_with_inputs(&schema, query, inputs);
assert_eq!(sql, "SELECT DISTINCT 121 AS `?entity`, \
`fulltext_values00`.text AS `?value`, \
`datoms02`.v AS `?friend` \
FROM \
`fulltext_values` AS `fulltext_values00`, \
`datoms` AS `datoms01`, \
`datoms` AS `datoms02` \
WHERE `datoms01`.a = 100 \
AND `datoms01`.v = `fulltext_values00`.rowid \
AND `fulltext_values00`.text MATCH $v0 \
AND `datoms01`.e = 121 \
AND `datoms02`.e = 121 \
AND `datoms02`.a = 99");
assert_eq!(args, vec![make_arg("$v0", "hello"),]);
}

View file

@ -160,7 +160,14 @@ impl QueryBuilder for SQLiteQueryBuilder {
&Ref(entid) => self.push_sql(entid.to_string().as_str()),
&Boolean(v) => self.push_sql(if v { "1" } else { "0" }),
&Long(v) => self.push_sql(v.to_string().as_str()),
&Double(OrderedFloat(v)) => self.push_sql(v.to_string().as_str()),
&Double(OrderedFloat(v)) => {
// Rust's floats print without a trailing '.' in some cases.
// https://github.com/rust-lang/rust/issues/30967
// We format with 'e' -- scientific notation -- so that SQLite treats them as
// floats and not integers. This is most noticeable for fulltext scores, which
// will currently (2017-06) always be 0, and need to round-trip as doubles.
self.push_sql(format!("{:e}", v).as_str());
},
&Instant(dt) => {
self.push_sql(format!("{}", dt.to_micros()).as_str()); // TODO: argument instead?
},
@ -260,9 +267,13 @@ mod tests {
s.push_static_arg(string_arg("frobnicate"));
s.push_sql(" OR ");
s.push_static_arg(string_arg("swoogle"));
s.push_sql(" OR ");
s.push_identifier("bar").unwrap();
s.push_sql(" = ");
s.push_typed_value(&TypedValue::Double(1.0.into())).unwrap();
let q = s.finish();
assert_eq!(q.sql.as_str(), "SELECT `foo` WHERE `bar` = $v0 OR $v1");
assert_eq!(q.sql.as_str(), "SELECT `foo` WHERE `bar` = $v0 OR $v1 OR `bar` = 1e0");
assert_eq!(q.args,
vec![("$v0".to_string(), string_arg("frobnicate")),
("$v1".to_string(), string_arg("swoogle"))]);

View file

@ -254,3 +254,40 @@ fn test_instants_and_uuids() {
_ => panic!("Expected query to work."),
}
}
#[test]
fn test_fulltext() {
let mut c = new_connection("").expect("Couldn't open conn.");
let mut conn = Conn::connect(&mut c).expect("Couldn't open DB.");
conn.transact(&mut c, r#"[
[:db/add "s" :db/ident :foo/fts]
[:db/add "s" :db/valueType :db.type/string]
[:db/add "s" :db/fulltext true]
[:db/add "s" :db/cardinality :db.cardinality/many]
]"#).unwrap();
let v = conn.transact(&mut c, r#"[
[:db/add "v" :foo/fts "hello darkness my old friend"]
[:db/add "v" :foo/fts "I've come to talk with you again"]
]"#).unwrap().tempids.get("v").cloned().expect("v was mapped");
let r = conn.q_once(&mut c,
r#"[:find [?x ?val ?score]
:where [(fulltext $ :foo/fts "darkness") [[?x ?val _ ?score]]]]"#, None);
match r {
Result::Ok(QueryResults::Tuple(Some(vals))) => {
let mut vals = vals.into_iter();
match (vals.next(), vals.next(), vals.next(), vals.next()) {
(Some(TypedValue::Ref(x)),
Some(TypedValue::String(text)),
Some(TypedValue::Double(score)),
None) => {
assert_eq!(x, v);
assert_eq!(text.as_str(), "hello darkness my old friend");
assert_eq!(score, 0.0f64.into());
},
_ => panic!("Unexpected results."),
}
},
_ => panic!("Expected query to work."),
}
}