Implement type requirements/predicates for queries. Fixes #474

This commit is contained in:
Thom Chiovoloni 2018-01-18 18:10:22 -05:00
parent ef9f2d9c51
commit f3dc922571
16 changed files with 478 additions and 106 deletions

View file

@ -30,6 +30,7 @@ use errors::{
/// the bindings that will be used at execution time.
/// When built correctly, `types` is guaranteed to contain the types of `values` -- use
/// `QueryInputs::new` or `QueryInputs::with_values` to construct an instance.
#[derive(Clone)]
pub struct QueryInputs {
// These should be crate-private.
pub types: BTreeMap<Variable, ValueType>,

View file

@ -46,6 +46,8 @@ use mentat_query::{
};
use errors::{
Error,
ErrorKind,
Result,
};
@ -214,6 +216,9 @@ pub struct ConjoiningClauses {
/// A mapping, similar to `column_bindings`, but used to pull type tags out of the store at runtime.
/// If a var isn't unit in `known_types`, it should be present here.
pub extracted_types: BTreeMap<Variable, QualifiedAlias>,
/// Map of variables to the set of type requirements we have for them.
required_types: BTreeMap<Variable, ValueType>,
}
impl PartialEq for ConjoiningClauses {
@ -226,7 +231,8 @@ impl PartialEq for ConjoiningClauses {
self.input_variables.eq(&other.input_variables) &&
self.value_bindings.eq(&other.value_bindings) &&
self.known_types.eq(&other.known_types) &&
self.extracted_types.eq(&other.extracted_types)
self.extracted_types.eq(&other.extracted_types) &&
self.required_types.eq(&other.required_types)
}
}
@ -244,6 +250,7 @@ impl Debug for ConjoiningClauses {
.field("value_bindings", &self.value_bindings)
.field("known_types", &self.known_types)
.field("extracted_types", &self.extracted_types)
.field("required_types", &self.required_types)
.finish()
}
}
@ -257,6 +264,7 @@ impl Default for ConjoiningClauses {
from: vec![],
computed_tables: vec![],
wheres: ColumnIntersection::default(),
required_types: BTreeMap::new(),
input_variables: BTreeSet::new(),
column_bindings: BTreeMap::new(),
value_bindings: BTreeMap::new(),
@ -320,6 +328,7 @@ impl ConjoiningClauses {
value_bindings: self.value_bindings.clone(),
known_types: self.known_types.clone(),
extracted_types: self.extracted_types.clone(),
required_types: self.required_types.clone(),
..Default::default()
}
}
@ -334,6 +343,7 @@ impl ConjoiningClauses {
value_bindings: self.value_bindings.with_intersected_keys(&vars),
known_types: self.known_types.with_intersected_keys(&vars),
extracted_types: self.extracted_types.with_intersected_keys(&vars),
required_types: self.required_types.with_intersected_keys(&vars),
..Default::default()
}
}
@ -356,7 +366,7 @@ impl ConjoiningClauses {
// Are we also trying to figure out the type of the value when the query runs?
// If so, constrain that!
if let Some(qa) = self.extracted_types.get(&var) {
self.wheres.add_intersection(ColumnConstraint::HasType(qa.0.clone(), vt));
self.wheres.add_intersection(ColumnConstraint::has_type(qa.0.clone(), vt));
}
// Finally, store the binding for future use.
@ -541,6 +551,19 @@ impl ConjoiningClauses {
}
}
pub fn add_type_requirement(&mut self, var: Variable, ty: ValueType) {
if let Some(existing) = self.required_types.insert(var.clone(), ty) {
// If we already have a required type for `var`, we're empty.
if existing != ty {
self.mark_known_empty(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: ValueTypeSet::of_one(existing),
desired: ValueTypeSet::of_one(ty)
});
}
}
}
/// Like `constrain_var_to_type` but in reverse: this expands the set of types
/// with which a variable is associated.
///
@ -848,7 +871,43 @@ impl ConjoiningClauses {
}
}
pub fn process_required_types(&mut self) -> Result<()> {
// We can't call `mark_known_empty` inside the loop since it would be a
// mutable borrow on self while we're iterating over `self.required_types`.
// Doing it like this avoids needing to copy `self.required_types`.
let mut empty_because: Option<EmptyBecause> = None;
for (var, &ty) in self.required_types.iter() {
if let Some(&already_known) = self.known_types.get(var) {
if already_known.exemplar() == Some(ty) {
// If we're already certain the type and the constraint are
// the same, then there's no need to constrain anything.
continue;
}
if !already_known.contains(ty) && empty_because.is_none() {
// If we know the constraint can't be one of the types
// the variable could take, then we know we're empty.
empty_because = Some(EmptyBecause::TypeMismatch {
var: var.clone(),
existing: already_known,
desired: ValueTypeSet::of_one(ty)
});
break;
}
}
let qa = self.extracted_types
.get(&var)
.ok_or_else(|| Error::from_kind(ErrorKind::UnboundVariable(var.name())))?;
self.wheres.add_intersection(ColumnConstraint::HasType {
value: qa.0.clone(),
value_type: ty,
strict: true,
});
}
if let Some(reason) = empty_because {
self.mark_known_empty(reason);
}
Ok(())
}
/// When a CC has accumulated all patterns, generate value_type_tag entries in `wheres`
/// to refine value types for which two things are true:
///

View file

@ -53,13 +53,14 @@ impl ConjoiningClauses {
template.apply_clause(&schema, clause)?;
}
template.expand_column_bindings();
template.prune_extracted_types();
template.process_required_types()?;
if template.is_known_empty() {
return Ok(());
}
// We are only expanding column bindings here and not pruning extracted types as we are not projecting values.
template.expand_column_bindings();
let subquery = ComputedTable::Subquery(template);
self.wheres.add_intersection(ColumnConstraint::NotExists(subquery));

View file

@ -577,6 +577,7 @@ impl ConjoiningClauses {
} else {
receptacle.expand_column_bindings();
receptacle.prune_extracted_types();
receptacle.process_required_types()?;
acc.push(receptacle);
}
}

View file

@ -201,7 +201,7 @@ impl ConjoiningClauses {
} else {
// It must be a keyword.
self.constrain_column_to_constant(col.clone(), DatomsColumn::Value, TypedValue::Keyword(kw.clone()));
self.wheres.add_intersection(ColumnConstraint::HasType(col.clone(), ValueType::Keyword));
self.wheres.add_intersection(ColumnConstraint::has_type(col.clone(), ValueType::Keyword));
};
},
PatternValuePlace::Constant(ref c) => {
@ -237,7 +237,7 @@ impl ConjoiningClauses {
// Because everything we handle here is unambiguous, we generate a single type
// restriction from the value type of the typed value.
if value_type.is_none() {
self.wheres.add_intersection(ColumnConstraint::HasType(col.clone(), typed_value_type));
self.wheres.add_intersection(ColumnConstraint::has_type(col.clone(), typed_value_type));
}
},
}
@ -445,7 +445,7 @@ mod testing {
// TODO: implement expand_type_tags.
assert_eq!(cc.wheres, vec![
ColumnConstraint::Equals(d0_v, QueryValue::TypedValue(TypedValue::Boolean(true))),
ColumnConstraint::HasType("datoms00".to_string(), ValueType::Boolean),
ColumnConstraint::has_type("datoms00".to_string(), ValueType::Boolean),
].into());
}
@ -589,7 +589,7 @@ mod testing {
// TODO: implement expand_type_tags.
assert_eq!(cc.wheres, vec![
ColumnConstraint::Equals(d0_v, QueryValue::TypedValue(TypedValue::String(Rc::new("hello".to_string())))),
ColumnConstraint::HasType("all_datoms00".to_string(), ValueType::String),
ColumnConstraint::has_type("all_datoms00".to_string(), ValueType::String),
].into());
}

View file

@ -34,11 +34,26 @@ use types::{
Inequality,
};
fn value_type_function_name(s: &str) -> Option<ValueType> {
match s {
"ref" => Some(ValueType::Ref),
"boolean" => Some(ValueType::Boolean),
"instant" => Some(ValueType::Instant),
"long" => Some(ValueType::Long),
"double" => Some(ValueType::Double),
"string" => Some(ValueType::String),
"keyword" => Some(ValueType::Keyword),
"uuid" => Some(ValueType::Uuid),
_ => None
}
}
/// Application of predicates.
impl ConjoiningClauses {
/// There are several kinds of predicates in our Datalog:
/// - A limited set of binary comparison operators: < > <= >= !=.
/// These are converted into SQLite binary comparisons and some type constraints.
/// - A set of type requirements constraining their argument to be a specific ValueType
/// - In the future, some predicates that are implemented via function calls in SQLite.
///
/// At present we have implemented only the five built-in comparison binary operators.
@ -47,6 +62,8 @@ impl ConjoiningClauses {
// and ultimately allowing user-specified predicates, we match on the predicate name first.
if let Some(op) = Inequality::from_datalog_operator(predicate.operator.0.as_str()) {
self.apply_inequality(schema, op, predicate)
} else if let Some(ty) = value_type_function_name(predicate.operator.0.as_str()) {
self.apply_type_requirement(predicate, ty)
} else {
bail!(ErrorKind::UnknownFunction(predicate.operator.clone()))
}
@ -59,6 +76,20 @@ impl ConjoiningClauses {
}
}
pub fn apply_type_requirement(&mut self, pred: Predicate, ty: ValueType) -> Result<()> {
if pred.args.len() != 1 {
bail!(ErrorKind::InvalidNumberOfArguments(pred.operator.clone(), pred.args.len(), 1));
}
let mut args = pred.args.into_iter();
if let FnArg::Variable(v) = args.next().unwrap() {
self.add_type_requirement(v, ty);
Ok(())
} else {
bail!(ErrorKind::InvalidArgument(pred.operator.clone(), "variable".into(), 0))
}
}
/// This function:
/// - Resolves variables and converts types to those more amenable to SQL.
/// - Ensures that the predicate functions name a known operator.

View file

@ -185,6 +185,7 @@ pub fn algebrize_with_inputs(schema: &Schema,
}
cc.expand_column_bindings();
cc.prune_extracted_types();
cc.process_required_types()?;
let (order, extra_vars) = validate_and_simplify_order(&cc, parsed.order)?;
let with: BTreeSet<Variable> = parsed.with.into_iter().chain(extra_vars.into_iter()).collect();

View file

@ -334,11 +334,21 @@ pub enum ColumnConstraint {
left: QueryValue,
right: QueryValue,
},
HasType(TableAlias, ValueType),
HasType {
value: TableAlias,
value_type: ValueType,
strict: bool,
},
NotExists(ComputedTable),
Matches(QualifiedAlias, QueryValue),
}
impl ColumnConstraint {
pub fn has_type(value: TableAlias, value_type: ValueType) -> ColumnConstraint {
ColumnConstraint::HasType { value, value_type, strict: false }
}
}
#[derive(PartialEq, Eq, Debug)]
pub enum ColumnConstraintOrAlternation {
Constraint(ColumnConstraint),
@ -451,8 +461,14 @@ impl Debug for ColumnConstraint {
write!(f, "{:?} MATCHES {:?}", qa, thing)
},
&HasType(ref qa, value_type) => {
write!(f, "{:?}.value_type_tag = {:?}", qa, value_type)
&HasType { ref value, value_type, strict } => {
write!(f, "({:?}.value_type_tag = {:?}", value, value_type)?;
if strict && value_type == ValueType::Double || value_type == ValueType::Long {
write!(f, " AND typeof({:?}) = '{:?}')", value,
if value_type == ValueType::Double { "real" } else { "integer" })
} else {
write!(f, ")")
}
},
&NotExists(ref ct) => {
write!(f, "NOT EXISTS {:?}", ct)

View file

@ -13,37 +13,24 @@ extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
pub mod utils;
use mentat_core::{
Attribute,
Entid,
Schema,
ValueType,
};
use mentat_query_parser::{
parse_find_string,
};
use mentat_query::{
NamespacedKeyword,
};
use mentat_query_algebrizer::{
ConjoiningClauses,
algebrize,
use utils::{
add_attribute,
alg,
associate_ident,
};
// These are helpers that tests use to build Schema instances.
fn associate_ident(schema: &mut Schema, i: NamespacedKeyword, e: Entid) {
schema.entid_map.insert(e, i.clone());
schema.ident_map.insert(i.clone(), e);
}
fn add_attribute(schema: &mut Schema, e: Entid, a: Attribute) {
schema.attribute_map.insert(e, a);
}
fn prepopulated_schema() -> Schema {
let mut schema = Schema::default();
associate_ident(&mut schema, NamespacedKeyword::new("foo", "name"), 65);
@ -80,11 +67,6 @@ fn prepopulated_schema() -> Schema {
schema
}
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
}
#[test]
fn test_apply_fulltext() {
let schema = prepopulated_schema();

View file

@ -13,20 +13,17 @@ extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
pub mod utils;
use std::collections::BTreeMap;
use mentat_core::{
Attribute,
Entid,
Schema,
ValueType,
TypedValue,
};
use mentat_query_parser::{
parse_find_string,
};
use mentat_query::{
NamespacedKeyword,
PlainSymbol,
@ -35,26 +32,19 @@ use mentat_query::{
use mentat_query_algebrizer::{
BindingError,
ConjoiningClauses,
ComputedTable,
Error,
ErrorKind,
QueryInputs,
algebrize,
algebrize_with_inputs,
};
// These are helpers that tests use to build Schema instances.
#[cfg(test)]
fn associate_ident(schema: &mut Schema, i: NamespacedKeyword, e: Entid) {
schema.entid_map.insert(e, i.clone());
schema.ident_map.insert(i.clone(), e);
}
#[cfg(test)]
fn add_attribute(schema: &mut Schema, e: Entid, a: Attribute) {
schema.attribute_map.insert(e, a);
}
use utils::{
add_attribute,
alg,
associate_ident,
bails,
bails_with_inputs,
};
fn prepopulated_schema() -> Schema {
let mut schema = Schema::default();
@ -91,21 +81,6 @@ fn prepopulated_schema() -> Schema {
schema
}
fn bails(schema: &Schema, input: &str) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect_err("algebrize to have failed")
}
fn bails_with_inputs(schema: &Schema, input: &str, inputs: QueryInputs) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize_with_inputs(schema, parsed, 0, inputs).expect_err("algebrize to have failed")
}
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
}
#[test]
fn test_ground_doesnt_bail_for_type_conflicts() {
// We know `?x` to be a ref, but we're attempting to ground it to a Double.

View file

@ -13,18 +13,15 @@ extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
pub mod utils;
use mentat_core::{
Attribute,
Entid,
Schema,
ValueType,
ValueTypeSet,
};
use mentat_query_parser::{
parse_find_string,
};
use mentat_query::{
NamespacedKeyword,
PlainSymbol,
@ -32,24 +29,16 @@ use mentat_query::{
};
use mentat_query_algebrizer::{
ConjoiningClauses,
EmptyBecause,
Error,
ErrorKind,
algebrize,
};
// These are helpers that tests use to build Schema instances.
#[cfg(test)]
fn associate_ident(schema: &mut Schema, i: NamespacedKeyword, e: Entid) {
schema.entid_map.insert(e, i.clone());
schema.ident_map.insert(i.clone(), e);
}
#[cfg(test)]
fn add_attribute(schema: &mut Schema, e: Entid, a: Attribute) {
schema.attribute_map.insert(e, a);
}
use utils::{
add_attribute,
alg,
associate_ident,
bails,
};
fn prepopulated_schema() -> Schema {
let mut schema = Schema::default();
@ -68,16 +57,6 @@ fn prepopulated_schema() -> Schema {
schema
}
fn bails(schema: &Schema, input: &str) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect_err("algebrize to have failed")
}
fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
}
#[test]
fn test_instant_predicates_require_instants() {
let schema = prepopulated_schema();

View file

@ -0,0 +1,80 @@
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
extern crate mentat_core;
extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_parser;
pub mod utils;
use utils::{
alg,
SchemaBuilder,
bails,
};
use mentat_core::{
Schema,
ValueType,
};
fn prepopulated_schema() -> Schema {
SchemaBuilder::new()
.define_simple_attr("test", "boolean", ValueType::Boolean, false)
.define_simple_attr("test", "long", ValueType::Long, false)
.define_simple_attr("test", "double", ValueType::Double, false)
.define_simple_attr("test", "string", ValueType::String, false)
.define_simple_attr("test", "keyword", ValueType::Keyword, false)
.define_simple_attr("test", "uuid", ValueType::Uuid, false)
.define_simple_attr("test", "instant", ValueType::Instant, false)
.define_simple_attr("test", "ref", ValueType::Ref, false)
.schema
}
#[test]
fn test_empty_known() {
let type_names = [
"boolean",
"long",
"double",
"string",
"keyword",
"uuid",
"instant",
"ref",
];
let schema = prepopulated_schema();
for known_type in type_names.iter() {
for required in type_names.iter() {
let q = format!("[:find ?e :where [?e :test/{} ?v] [({} ?v)]]",
known_type, required);
println!("Query: {}", q);
let cc = alg(&schema, &q);
// It should only be empty if the known type and our requirement differ.
assert_eq!(cc.empty_because.is_some(), known_type != required,
"known_type = {}; required = {}", known_type, required);
}
}
}
#[test]
fn test_multiple() {
let schema = prepopulated_schema();
let q = "[:find ?e :where [?e _ ?v] [(long ?v)] [(double ?v)]]";
let cc = alg(&schema, &q);
assert!(cc.empty_because.is_some());
}
#[test]
fn test_unbound() {
let schema = prepopulated_schema();
bails(&schema, "[:find ?e :where [(string ?e)]]");
}

View file

@ -0,0 +1,98 @@
// Copyright 2018 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
use mentat_core::{
Attribute,
Entid,
Schema,
ValueType,
};
use mentat_query_parser::{
parse_find_string,
};
use mentat_query::{
NamespacedKeyword,
};
use mentat_query_algebrizer::{
algebrize,
algebrize_with_inputs,
ConjoiningClauses,
Error,
QueryInputs,
};
// Common utility functions used in multiple test files. Note: Import this with
// `pub mod utils` (not `mod utils`), or you'll get spurious unused function
// warnings when functions exist in this file but are only used by modules that
// don't import with `pub` (yes, this is annoying).
// These are helpers that tests use to build Schema instances.
pub fn associate_ident(schema: &mut Schema, i: NamespacedKeyword, e: Entid) {
schema.entid_map.insert(e, i.clone());
schema.ident_map.insert(i.clone(), e);
}
pub fn add_attribute(schema: &mut Schema, e: Entid, a: Attribute) {
schema.attribute_map.insert(e, a);
}
pub struct SchemaBuilder {
pub schema: Schema,
pub counter: Entid,
}
impl SchemaBuilder {
pub fn new() -> SchemaBuilder {
SchemaBuilder {
schema: Schema::default(),
counter: 65
}
}
pub fn define_attr(mut self, kw: NamespacedKeyword, attr: Attribute) -> Self {
associate_ident(&mut self.schema, kw, self.counter);
add_attribute(&mut self.schema, self.counter, attr);
self.counter += 1;
self
}
pub fn define_simple_attr<T>(self,
keyword_ns: T,
keyword_name: T,
value_type: ValueType,
multival: bool) -> Self
where T: Into<String>
{
self.define_attr(NamespacedKeyword::new(keyword_ns, keyword_name), Attribute {
value_type,
multival,
..Default::default()
})
}
}
pub fn bails(schema: &Schema, input: &str) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect_err("algebrize to have failed")
}
pub fn bails_with_inputs(schema: &Schema, input: &str, inputs: QueryInputs) -> Error {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize_with_inputs(schema, parsed, 0, inputs).expect_err("algebrize to have failed")
}
pub fn alg(schema: &Schema, input: &str) -> ConjoiningClauses {
let parsed = parse_find_string(input).expect("query input to have parsed");
algebrize(schema.into(), parsed).expect("algebrizing to have succeeded").cc
}

View file

@ -105,9 +105,22 @@ pub enum Constraint {
},
NotExists {
subquery: TableOrSubquery,
},
TypeCheck {
value: ColumnOrExpression,
datatype: SQLDatatype
}
}
/// Type safe representation of the possible return values from `typeof`
pub enum SQLDatatype {
Null, // "null"
Integer, // "integer"
Real, // "real"
Text, // "text"
Blob, // "blob"
}
impl Constraint {
pub fn not_equal(left: ColumnOrExpression, right: ColumnOrExpression) -> Constraint {
Constraint::Infix {
@ -313,6 +326,19 @@ impl QueryFragment for Op {
}
}
impl QueryFragment for SQLDatatype {
fn push_sql(&self, out: &mut QueryBuilder) -> BuildQueryResult {
out.push_sql(match *self {
SQLDatatype::Null => "'null'",
SQLDatatype::Integer => "'integer'",
SQLDatatype::Real => "'real'",
SQLDatatype::Text => "'text'",
SQLDatatype::Blob => "'blob'",
});
Ok(())
}
}
impl QueryFragment for Constraint {
fn push_sql(&self, out: &mut QueryBuilder) -> BuildQueryResult {
use self::Constraint::*;
@ -367,7 +393,14 @@ impl QueryFragment for Constraint {
subquery.push_sql(out)?;
out.push_sql(")");
Ok(())
}
},
&TypeCheck { ref value, ref datatype } => {
out.push_sql("typeof(");
value.push_sql(out)?;
out.push_sql(") = ");
datatype.push_sql(out)?;
Ok(())
},
}
}
}

View file

@ -50,6 +50,7 @@ use mentat_query_sql::{
ProjectedColumn,
Projection,
SelectQuery,
SQLDatatype,
TableList,
TableOrSubquery,
Values,
@ -157,10 +158,30 @@ impl ToConstraint for ColumnConstraint {
right: right.into(),
}
},
HasType(table, value_type) => {
let column = QualifiedAlias::new(table, DatomsColumn::ValueTypeTag).to_column();
Constraint::equal(column, ColumnOrExpression::Integer(value_type.value_type_tag()))
HasType { value: table, value_type, strict } => {
let type_column = QualifiedAlias::new(table.clone(), DatomsColumn::ValueTypeTag).to_column();
let loose = Constraint::equal(type_column,
ColumnOrExpression::Integer(value_type.value_type_tag()));
if !strict || (value_type != ValueType::Long && value_type != ValueType::Double) {
loose
} else {
// HasType has requested that we check for strict equality, and we're
// checking a ValueType where that makes a difference (a numeric type).
let val_column = QualifiedAlias::new(table, DatomsColumn::Value).to_column();
Constraint::And {
constraints: vec![
loose,
Constraint::TypeCheck {
value: val_column,
datatype: match value_type {
ValueType::Long => SQLDatatype::Integer,
ValueType::Double => SQLDatatype::Real,
_ => unreachable!()
}
}
]
}
}
},
NotExists(computed_table) => {

View file

@ -15,6 +15,7 @@ extern crate mentat;
extern crate mentat_core;
extern crate mentat_db;
extern crate mentat_query_algebrizer; // For errors.
extern crate rusqlite;
use std::str::FromStr;
@ -25,9 +26,9 @@ use mentat_core::{
HasSchema,
KnownEntid,
TypedValue,
ValueType,
Utc,
Uuid,
ValueType,
};
use mentat::{
@ -501,3 +502,96 @@ fn test_lookup() {
let fetched_many = conn.lookup_value_for_attribute(&c, *entid, &foo_many).unwrap().unwrap();
assert!(two_longs.contains(&fetched_many));
}
#[test]
fn test_type_reqs() {
let mut c = new_connection("").expect("Couldn't open conn.");
let mut conn = Conn::connect(&mut c).expect("Couldn't open DB.");
conn.transact(&mut c, r#"[
{:db/ident :test/boolean :db/valueType :db.type/boolean :db/cardinality :db.cardinality/one}
{:db/ident :test/long :db/valueType :db.type/long :db/cardinality :db.cardinality/one}
{:db/ident :test/double :db/valueType :db.type/double :db/cardinality :db.cardinality/one}
{:db/ident :test/string :db/valueType :db.type/string :db/cardinality :db.cardinality/one}
{:db/ident :test/keyword :db/valueType :db.type/keyword :db/cardinality :db.cardinality/one}
{:db/ident :test/uuid :db/valueType :db.type/uuid :db/cardinality :db.cardinality/one}
{:db/ident :test/instant :db/valueType :db.type/instant :db/cardinality :db.cardinality/one}
{:db/ident :test/ref :db/valueType :db.type/ref :db/cardinality :db.cardinality/one}
]"#).unwrap();
conn.transact(&mut c, r#"[
{:test/boolean true
:test/long 33
:test/double 1.4
:test/string "foo"
:test/keyword :foo/bar
:test/uuid #uuid "12341234-1234-1234-1234-123412341234"
:test/instant #inst "2018-01-01T11:00:00.000Z"
:test/ref 1}
]"#).unwrap();
let eid_query = r#"[:find ?eid :where [?eid :test/string "foo"]]"#;
let res = conn.q_once(&mut c, eid_query, None).unwrap();
let entid = match res {
QueryResults::Rel(ref vs) if vs.len() == 1 && vs[0].len() == 1 && vs[0][0].matches_type(ValueType::Ref) =>
if let TypedValue::Ref(eid) = vs[0][0] {
eid
} else {
// Already checked this.
unreachable!();
}
unexpected => {
panic!("Query to get the entity id returned unexpected result {:?}", unexpected);
}
};
let type_names = &[
"boolean",
"long",
"double",
"string",
"keyword",
"uuid",
"instant",
"ref",
];
let entid_binding = QueryInputs::with_value_sequence(vec![
(Variable::from_valid_name("?e"), TypedValue::Ref(entid)),
]);
for name in type_names {
let q = format!("[:find [?v ...] :in ?e :where [?e _ ?v] [({} ?v)]]", name);
let results = conn.q_once(&mut c, &q, entid_binding.clone()).unwrap();
match results {
QueryResults::Coll(vals) => {
assert_eq!(vals.len(), 1, "Query should find exactly 1 item");
},
v => {
panic!("Query returned unexpected type: {:?}", v);
}
}
}
conn.transact(&mut c, r#"[
{:db/ident :test/long2 :db/valueType :db.type/long :db/cardinality :db.cardinality/one}
]"#).unwrap();
conn.transact(&mut c, &format!("[[:db/add {} :test/long2 5]]", entid)).unwrap();
let longs_query = r#"[:find [?v ...]
:order (asc ?v)
:in ?e
:where [?e _ ?v] [(long ?v)]]"#;
let res = conn.q_once(&mut c, longs_query, entid_binding.clone()).unwrap();
match res {
QueryResults::Coll(vals) => {
assert_eq!(vals, vec![TypedValue::Long(5), TypedValue::Long(33)])
},
v => {
panic!("Query returned unexpected type: {:?}", v);
}
};
}