Commit graph

13 commits

Author SHA1 Message Date
Gregory Burd 4b1583473e Fix more issues identified by clippy (aka: lint). 2020-08-07 09:15:36 -04:00
Gregory Burd 125306e108 Update dependencies. Lint. 2020-08-05 23:03:58 -04:00
Greg Burd b2f92b8461 Update to 2018 edition of Rust (1.42). Fix and format code. Update dependencies. Fix tests. 2020-01-16 10:58:21 -05:00
Grisha Kruglov b22b29679b
Basic sync support (#563) r=nalexander
* Pre: remove remnants of 'open_empty'

* Pre: Cleanup 'datoms' table after a timeline move

Since timeline move operations use a transactor, they generate a
"phantom" 'tx' and a 'txInstant' assertion. It is "phantom" in a sense
that it was never present in the 'transactions' table, and is entirely
synthetic as far as our database is concerned.
It's an implementational artifact, and we were not cleaning it up.

It becomes a problem when we start inserting transactions after a move.
Once the transactor clashes with the phantom 'tx', it will retract the
phantom 'txInstant' value, leaving the transactions log in an incorrect state.

This patch adds a test for this scenario and elects the easy way out: simply
remove the offending 'txInstant' datom.

* Part 1: Sync without support for side-effects

A "side-effect" is defined here as a mutation of a remote state as part
of the sync.

If, during a sync we determine that a remote state needs to be changed, bail out.

This generally supports different variations of "baton-passing" syncing, where clients
will succeed syncing if each change is non-conflicting.

* Part 2: Support basic "side-effects" syncing

This patch introduces a concept of a follow-up sync. If a sync generated
a "merge transaction" (a regular transaction that contains assertions
necessary for local and remote transaction logs to converge), then
this transaction needs to be uploaded in a follow-up sync.

Generated SyncReport indicates if a follow-up sync is required.

Follow-up sync itself is just a regular sync. If remote state did not change,
it will result in a simple RemoteFastForward. Otherwise, we'll continue
merging and requesting a follow-up.

Schema alterations are explicitly not supported.

As local transactions are rebased on top of remote, following changes happen:
- entids are changed into tempids, letting transactor upsert :db/unique values
- entids for retractions are changed into lookup-refs if we're confident they'll succeed
-- otherwise, retractions are dropped on the floor

* Post: use a macro for more readable tests

* Tolstoy README
2018-09-07 19:18:20 -07:00
Grisha Kruglov c8e6a511f4 Pre: Move tolstoy/errors into tolstoy-traits 2018-08-09 13:16:05 -07:00
Grisha Kruglov d0214fad7d Pre: Move core/types.rs into core_traits 2018-08-09 13:16:05 -07:00
Grisha Kruglov a57ba5d79f Pre: Move Entid and KnownEntid into core_traits 2018-08-09 13:16:05 -07:00
Grisha Kruglov bff24c60b7
Add a top-level "syncable" feature. (#782) r=ncalexan
* Add a top-level "syncable" feature.

Tested with:

cargo test --all
cargo test --all --no-default-features
cargo build --manifest-path tools/cli/Cargo.toml --no-default-features
cargo run --manifest-path tools/cli/Cargo.toml --no-default-features debugcli

Co-authored-by: Nick Alexander <nalexander@mozilla.com>

* Add 'syncable' feature to 'db' crate to conditionally derive serialization for Partition*

This is leading up to syncing with partition support.
2018-07-11 16:26:06 -07:00
Nick Alexander 46c2a0801f Add type checking and constraint checking to the transactor. (#663, #532, #679)
This should address #663, by re-inserting type checking in the
transactor stack after the entry point used by the term builder.

Before this commit, we were using an SQLite UNIQUE index to assert
that no `[e a]` pair, with `a` a cardinality one attribute, was
asserted more than once.  However, that's not in line with Datomic,
which treats transaction inputs as a set and allows a single datom
like `[e a v]` to appear multiple times.  It's both awkward and not
particularly efficient to look for _distinct_ repetitions in SQL, so
we accept some runtime cost in order to check for repetitions in the
transactor.  This will allow us to address #532, which is really about
whether we treat inputs as sets.  A side benefit is that we can
provide more helpful error messages when the transactor does detect
that the input truly violates the cardinality constraints of the
schema.

This commit builds a trie while error checking and collecting final
terms, which should be fairly efficient.  It also allows a simpler
expression of input-provided :db/txInstant datoms, which in turn
uncovered a small issue with the transaction watcher, where-by the
watcher would not see non-input-provided :db/txInstant datoms.

This transition to Datomic-like input-as-set semantics allows us to
address #532.  Previously, two tempids that upserted to the same entid
would produce duplicate datoms, and that would have been rejected by
the transactor -- correctly, since we did not allow duplicate datoms
under the input-as-list semantics.  With input-as-set semantics,
duplicate datoms are allowed; and that means that we must allow
tempids to be equivalent, i.e., to resolve to the same tempid.

To achieve this, we:
- index the set of tempids
- identify tempid indices that share an upsert
- map tempids to a dense set of contiguous integer labels

We use the well-known union-find algorithm, as implemented by
petgraph, to efficiently manage the set of equivalent tempids.

Along the way, I've fixed and added tests for two small errors in the
transactor.  First, don't drop datoms resolved by upsert (#679).
Second, ensure that complex upserts are allocated.

I don't know quite what happened here.  The Clojure implementation
correctly kept complex upserts that hadn't resolved as complex
upserts (see
9a9dfb502a/src/common/datomish/transact.cljc (L436))
and then allocated complex upserts if they didn't resolve (see
9a9dfb502a/src/common/datomish/transact.cljc (L509)).

Based on the code comments, I think the Rust implementation must have
incorrectly tried to optimize by handling all complex upserts in at
most a single generation of evolution, and that's just not correct.
We're effectively implementing a topological sort, using very specific
domain knowledge, and its not true that a node in a topological sort
can be considered only once!
2018-05-14 15:22:45 -07:00
Richard Newman ca451a7c9c Silence a warning in Tolstoy. 2018-04-03 14:01:29 -07:00
Grisha Kruglov 93e5dff9c8
Revised uploader flow (battle-tested); CLI support for sync (#557) r=rnewman 2018-02-16 01:44:28 -08:00
Grisha Kruglov 84f29676e8
"Unchanged server" uploader flow (#543) r=rnewman
* Remove unused struct from tx_processor

* Derive serialize & deserialize for TypedValue

* First pass of uploader flow + feedback
2018-02-09 09:55:19 -08:00
Grisha Kruglov d848d954cf Issue 508 - Iterating transcation processor r=rnewman
Review comments
2018-02-06 12:24:12 -08:00