1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
#![warn(missing_docs)] #![crate_name="itertools"] #![cfg_attr(not(feature = "use_std"), no_std)] //! Itertools — extra iterator adaptors, functions and macros. //! //! To use the iterator methods in this crate, import the [`Itertools` trait](./trait.Itertools.html): //! //! ``` //! use itertools::Itertools; //! ``` //! //! ## Crate Features //! //! - `use_std` //! - Enabled by default. //! - Disable to compile itertools using `#![no_std]`. This disables //! any items that depend on collections (like `group_by`, `unique`, //! `kmerge`, `join` and many more). //! //! ## Rust Version //! //! This version of itertools requires Rust 1.12 or later. //! #![doc(html_root_url="https://docs.rs/itertools/0.7/")] extern crate either; #[cfg(not(feature = "use_std"))] extern crate core as std; pub use either::Either; #[cfg(feature = "use_std")] use std::collections::HashMap; use std::iter::{IntoIterator}; use std::cmp::Ordering; use std::fmt; #[cfg(feature = "use_std")] use std::hash::Hash; #[cfg(feature = "use_std")] use std::fmt::Write; #[macro_use] mod impl_macros; // for compatibility with no std and macros #[doc(hidden)] pub use std::iter as __std_iter; /// The concrete iterator types. pub mod structs { pub use adaptors::{ Dedup, Interleave, InterleaveShortest, Product, PutBack, Batching, Step, MapResults, Merge, MergeBy, TakeWhileRef, WhileSome, Coalesce, TupleCombinations, Flatten, Positions, Update, }; #[cfg(feature = "use_std")] pub use adaptors::MultiProduct; #[cfg(feature = "use_std")] pub use combinations::Combinations; pub use cons_tuples_impl::ConsTuples; pub use format::{Format, FormatWith}; #[cfg(feature = "use_std")] pub use groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups}; pub use intersperse::Intersperse; #[cfg(feature = "use_std")] pub use kmerge_impl::{KMerge, KMergeBy}; pub use merge_join::MergeJoinBy; #[cfg(feature = "use_std")] pub use multipeek_impl::MultiPeek; pub use pad_tail::PadUsing; pub use peeking_take_while::PeekingTakeWhile; pub use process_results_impl::ProcessResults; #[cfg(feature = "use_std")] pub use put_back_n_impl::PutBackN; #[cfg(feature = "use_std")] pub use rciter_impl::RcIter; pub use repeatn::RepeatN; pub use sources::{RepeatCall, Unfold, Iterate}; #[cfg(feature = "use_std")] pub use tee::Tee; pub use tuple_impl::{TupleBuffer, TupleWindows, Tuples}; #[cfg(feature = "use_std")] pub use unique_impl::{Unique, UniqueBy}; pub use with_position::WithPosition; pub use zip_eq_impl::ZipEq; pub use zip_longest::ZipLongest; pub use ziptuple::Zip; } pub use structs::*; pub use adaptors::flatten; pub use concat_impl::concat; pub use cons_tuples_impl::cons_tuples; pub use diff::diff_with; pub use diff::Diff; #[cfg(feature = "use_std")] pub use kmerge_impl::{kmerge_by}; pub use minmax::MinMaxResult; pub use peeking_take_while::PeekingNext; pub use process_results_impl::process_results; pub use repeatn::repeat_n; pub use sources::{repeat_call, unfold, iterate}; pub use with_position::Position; pub use ziptuple::multizip; mod adaptors; mod either_or_both; pub use either_or_both::EitherOrBoth; #[doc(hidden)] pub mod free; #[doc(inline)] pub use free::*; mod concat_impl; mod cons_tuples_impl; #[cfg(feature = "use_std")] mod combinations; mod diff; mod format; #[cfg(feature = "use_std")] mod group_map; #[cfg(feature = "use_std")] mod groupbylazy; mod intersperse; #[cfg(feature = "use_std")] mod kmerge_impl; mod merge_join; mod minmax; #[cfg(feature = "use_std")] mod multipeek_impl; mod pad_tail; mod peeking_take_while; mod process_results_impl; #[cfg(feature = "use_std")] mod put_back_n_impl; #[cfg(feature = "use_std")] mod rciter_impl; mod repeatn; mod size_hint; mod sources; #[cfg(feature = "use_std")] mod tee; mod tuple_impl; #[cfg(feature = "use_std")] mod unique_impl; mod with_position; mod zip_eq_impl; mod zip_longest; mod ziptuple; #[macro_export] /// Create an iterator over the “cartesian product” of iterators. /// /// Iterator element type is like `(A, B, ..., E)` if formed /// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { /// // Iterate over the coordinates of a 4 x 4 x 4 grid /// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) /// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { /// // .. /// } /// # } /// ``` /// /// **Note:** To enable the macros in this crate, use the `#[macro_use]` /// attribute when importing the crate: /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { } /// ``` macro_rules! iproduct { (@flatten $I:expr,) => ( $I ); (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( iproduct!(@flatten $crate::cons_tuples(iproduct!($I, $J)), $($K,)*) ); ($I:expr) => ( $crate::__std_iter::IntoIterator::into_iter($I) ); ($I:expr, $J:expr) => ( $crate::Itertools::cartesian_product(iproduct!($I), iproduct!($J)) ); ($I:expr, $J:expr, $($K:expr),+) => ( iproduct!(@flatten iproduct!($I, $J), $($K,)+) ); } #[macro_export] /// Create an iterator running multiple iterators in lockstep. /// /// The `izip!` iterator yields elements until any subiterator /// returns `None`. /// /// This is a version of the standard ``.zip()`` that's supporting more than /// two iterators. The iterator elment type is a tuple with one element /// from each of the input iterators. Just like ``.zip()``, the iteration stops /// when the shortest of the inputs reaches its end. /// /// **Note:** The result of this macro is an iterator composed of /// repeated `.zip()` and a `.map()`; it has an anonymous type. /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits /// of using the standard library `.zip()`. /// /// [`multizip`]: fn.multizip.html /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { /// /// // iterate over three sequences side-by-side /// let mut results = [0, 0, 0, 0]; /// let inputs = [3, 7, 9, 6]; /// /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { /// *r = index * 10 + input; /// } /// /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); /// # } /// ``` /// /// **Note:** To enable the macros in this crate, use the `#[macro_use]` /// attribute when importing the crate: /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { } /// ``` macro_rules! izip { // @closure creates a tuple-flattening closure for .map() call. usage: // @closure partial_pattern => partial_tuple , rest , of , iterators // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) ( @closure $p:pat => $tup:expr ) => { |$p| $tup }; // The "b" identifier is a different identifier on each recursion level thanks to hygiene. ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) }; ( $first:expr $( , $rest:expr )* $(,)* ) => { $crate::__std_iter::IntoIterator::into_iter($first) $( .zip($rest) )* .map( izip!(@closure a => (a) $( , $rest )*) ) }; } /// The trait `Itertools`: extra iterator adaptors and methods for iterators. /// /// This trait defines a number of methods. They are divided into two groups: /// /// * *Adaptors* take an iterator and parameter as input, and return /// a new iterator value. These are listed first in the trait. An example /// of an adaptor is [`.interleave()`](#method.interleave) /// /// * *Regular methods* are those that don't return iterators and instead /// return a regular value of some other kind. /// [`.next_tuple()`](#method.next_tuple) is an example and the first regular /// method in the list. pub trait Itertools : Iterator { // adaptors /// Alternate elements from two iterators until both have run out. /// /// Iterator element type is `Self::Item`. /// /// This iterator is *fused*. /// /// ``` /// use itertools::Itertools; /// /// let it = (1..7).interleave(vec![-1, -2]); /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); /// ``` fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> where J: IntoIterator<Item = Self::Item>, Self: Sized { interleave(self, other) } /// Alternate elements from two iterators until at least one of them has run /// out. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let it = (1..7).interleave_shortest(vec![-1, -2]); /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); /// ``` fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> where J: IntoIterator<Item = Self::Item>, Self: Sized { adaptors::interleave_shortest(self, other.into_iter()) } /// An iterator adaptor to insert a particular value /// between each element of the adapted iterator. /// /// Iterator element type is `Self::Item`. /// /// This iterator is *fused*. /// /// ``` /// use itertools::Itertools; /// /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); /// ``` fn intersperse(self, element: Self::Item) -> Intersperse<Self> where Self: Sized, Self::Item: Clone { intersperse::intersperse(self, element) } /// Create an iterator which iterates over both this and the specified /// iterator simultaneously, yielding pairs of two optional elements. /// /// This iterator is *fused*. /// /// As long as neither input iterator is exhausted yet, it yields two values /// via `EitherOrBoth::Both`. /// /// When the parameter iterator is exhausted, it only yields a value from the /// `self` iterator via `EitherOrBoth::Left`. /// /// When the `self` iterator is exhausted, it only yields a value from the /// parameter iterator via `EitherOrBoth::Right`. /// /// When both iterators return `None`, all further invocations of `.next()` /// will return `None`. /// /// Iterator element type is /// [`EitherOrBoth<Self::Item, J::Item>`](enum.EitherOrBoth.html). /// /// ```rust /// use itertools::EitherOrBoth::{Both, Right}; /// use itertools::Itertools; /// let it = (0..1).zip_longest(1..3); /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); /// ``` #[inline] fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> where J: IntoIterator, Self: Sized { zip_longest::zip_longest(self, other.into_iter()) } /// Create an iterator which iterates over both this and the specified /// iterator simultaneously, yielding pairs of elements. /// /// **Panics** if the iterators reach an end and they are not of equal /// lengths. #[inline] fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> where J: IntoIterator, Self: Sized { zip_eq(self, other) } /// A “meta iterator adaptor”. Its closure recives a reference to the /// iterator and may pick off as many elements as it likes, to produce the /// next iterator element. /// /// Iterator element type is `B`. /// /// ``` /// use itertools::Itertools; /// /// // An adaptor that gathers elements in pairs /// let pit = (0..4).batching(|it| { /// match it.next() { /// None => None, /// Some(x) => match it.next() { /// None => None, /// Some(y) => Some((x, y)), /// } /// } /// }); /// /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); /// ``` /// fn batching<B, F>(self, f: F) -> Batching<Self, F> where F: FnMut(&mut Self) -> Option<B>, Self: Sized { adaptors::batching(self, f) } /// Return an *iterable* that can group iterator elements. /// Consecutive elements that map to the same key (“runs”), are assigned /// to the same group. /// /// `GroupBy` is the storage for the lazy grouping operation. /// /// If the groups are consumed in order, or if each group's iterator is /// dropped without keeping it around, then `GroupBy` uses no /// allocations. It needs allocations only if several group iterators /// are alive at the same time. /// /// This type implements `IntoIterator` (it is **not** an iterator /// itself), because the group iterators need to borrow from this /// value. It should be stored in a local variable or temporary and /// iterated. /// /// Iterator element type is `(K, Group)`: the group's key and the /// group iterator. /// /// ``` /// use itertools::Itertools; /// /// // group data into runs of larger than zero or not. /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; /// // groups: |---->|------>|--------->| /// /// // Note: The `&` is significant here, `GroupBy` is iterable /// // only by reference. You can also call `.into_iter()` explicitly. /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { /// // Check that the sum of each group is +/- 4. /// assert_eq!(4, group.sum::<i32>().abs()); /// } /// ``` #[cfg(feature = "use_std")] fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> where Self: Sized, F: FnMut(&Self::Item) -> K, K: PartialEq, { groupbylazy::new(self, key) } /// Return an *iterable* that can chunk the iterator. /// /// Yield subiterators (chunks) that each yield a fixed number elements, /// determined by `size`. The last chunk will be shorter if there aren't /// enough elements. /// /// `IntoChunks` is based on `GroupBy`: it is iterable (implements /// `IntoIterator`, **not** `Iterator`), and it only buffers if several /// chunk iterators are alive at the same time. /// /// Iterator element type is `Chunk`, each chunk's iterator. /// /// **Panics** if `size` is 0. /// /// ``` /// use itertools::Itertools; /// /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; /// //chunk size=3 |------->|-------->|--->| /// /// // Note: The `&` is significant here, `IntoChunks` is iterable /// // only by reference. You can also call `.into_iter()` explicitly. /// for chunk in &data.into_iter().chunks(3) { /// // Check that the sum of each chunk is 4. /// assert_eq!(4, chunk.sum()); /// } /// ``` #[cfg(feature = "use_std")] fn chunks(self, size: usize) -> IntoChunks<Self> where Self: Sized, { assert!(size != 0); groupbylazy::new_chunks(self, size) } /// Return an iterator over all contiguous windows producing tuples of /// a specific size (up to 4). /// /// `tuple_windows` clones the iterator elements so that they can be /// part of successive windows, this makes it most suited for iterators /// of references and other values that are cheap to copy. /// /// ``` /// use itertools::Itertools; /// let mut v = Vec::new(); /// for (a, b) in (1..5).tuple_windows() { /// v.push((a, b)); /// } /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); /// /// let mut it = (1..5).tuple_windows(); /// assert_eq!(Some((1, 2, 3)), it.next()); /// assert_eq!(Some((2, 3, 4)), it.next()); /// assert_eq!(None, it.next()); /// /// // this requires a type hint /// let it = (1..5).tuple_windows::<(_, _, _)>(); /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); /// /// // you can also specify the complete type /// use itertools::TupleWindows; /// use std::ops::Range; /// /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); /// ``` fn tuple_windows<T>(self) -> TupleWindows<Self, T> where Self: Sized + Iterator<Item = T::Item>, T: tuple_impl::TupleCollect, T::Item: Clone { tuple_impl::tuple_windows(self) } /// Return an iterator that groups the items in tuples of a specific size /// (up to 4). /// /// See also the method [`.next_tuple()`](#method.next_tuple). /// /// ``` /// use itertools::Itertools; /// let mut v = Vec::new(); /// for (a, b) in (1..5).tuples() { /// v.push((a, b)); /// } /// assert_eq!(v, vec![(1, 2), (3, 4)]); /// /// let mut it = (1..7).tuples(); /// assert_eq!(Some((1, 2, 3)), it.next()); /// assert_eq!(Some((4, 5, 6)), it.next()); /// assert_eq!(None, it.next()); /// /// // this requires a type hint /// let it = (1..7).tuples::<(_, _, _)>(); /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); /// /// // you can also specify the complete type /// use itertools::Tuples; /// use std::ops::Range; /// /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); /// ``` /// /// See also [`Tuples::into_buffer`](structs/struct.Tuples.html#method.into_buffer). fn tuples<T>(self) -> Tuples<Self, T> where Self: Sized + Iterator<Item = T::Item>, T: tuple_impl::TupleCollect { tuple_impl::tuples(self) } /// Split into an iterator pair that both yield all elements from /// the original iterator. /// /// **Note:** If the iterator is clonable, prefer using that instead /// of using this method. It is likely to be more efficient. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// let xs = vec![0, 1, 2, 3]; /// /// let (mut t1, t2) = xs.into_iter().tee(); /// itertools::assert_equal(t1.next(), Some(0)); /// itertools::assert_equal(t2, 0..4); /// itertools::assert_equal(t1, 1..4); /// ``` #[cfg(feature = "use_std")] fn tee(self) -> (Tee<Self>, Tee<Self>) where Self: Sized, Self::Item: Clone { tee::new(self) } /// Return an iterator adaptor that steps `n` elements in the base iterator /// for each iteration. /// /// The iterator steps by yielding the next element from the base iterator, /// then skipping forward `n - 1` elements. /// /// Iterator element type is `Self::Item`. /// /// **Panics** if the step is 0. /// /// ``` /// use itertools::Itertools; /// /// let it = (0..8).step(3); /// itertools::assert_equal(it, vec![0, 3, 6]); /// ``` fn step(self, n: usize) -> Step<Self> where Self: Sized { adaptors::step(self, n) } /// Return an iterator adaptor that applies the provided closure /// to every `Result::Ok` value. `Result::Err` values are /// unchanged. /// /// ``` /// use itertools::Itertools; /// /// let input = vec![Ok(41), Err(false), Ok(11)]; /// let it = input.into_iter().map_results(|i| i + 1); /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); /// ``` fn map_results<F, T, U, E>(self, f: F) -> MapResults<Self, F> where Self: Iterator<Item = Result<T, E>> + Sized, F: FnMut(T) -> U, { adaptors::map_results(self, f) } /// Return an iterator adaptor that merges the two base iterators in /// ascending order. If both base iterators are sorted (ascending), the /// result is sorted. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let a = (0..11).step(3); /// let b = (0..11).step(5); /// let it = a.merge(b); /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); /// ``` fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> where Self: Sized, Self::Item: PartialOrd, J: IntoIterator<Item = Self::Item> { merge(self, other) } /// Return an iterator adaptor that merges the two base iterators in order. /// This is much like `.merge()` but allows for a custom ordering. /// /// This can be especially useful for sequences of tuples. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let a = (0..).zip("bc".chars()); /// let b = (0..).zip("ad".chars()); /// let it = a.merge_by(b, |x, y| x.1 <= y.1); /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]); /// ``` fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> where Self: Sized, J: IntoIterator<Item = Self::Item>, F: FnMut(&Self::Item, &Self::Item) -> bool { adaptors::merge_by_new(self, other.into_iter(), is_first) } /// Create an iterator that merges items from both this and the specified /// iterator in ascending order. /// /// It chooses whether to pair elements based on the `Ordering` returned by the /// specified compare function. At any point, inspecting the tip of the /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type /// `J::Item` respectively, the resulting iterator will: /// /// - Emit `EitherOrBoth::Left(i)` when `i < j`, /// and remove `i` from its source iterator /// - Emit `EitherOrBoth::Right(j)` when `i > j`, /// and remove `j` from its source iterator /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`, /// and remove both `i` and `j` from their respective source iterators /// /// ``` /// use itertools::Itertools; /// use itertools::EitherOrBoth::{Left, Right, Both}; /// /// let ki = (0..10).step(3); /// let ku = (0..10).step(5); /// let ki_ku = ki.merge_join_by(ku, |i, j| i.cmp(j)).map(|either| { /// match either { /// Left(_) => "Ki", /// Right(_) => "Ku", /// Both(_, _) => "KiKu" /// } /// }); /// /// itertools::assert_equal(ki_ku, vec!["KiKu", "Ki", "Ku", "Ki", "Ki"]); /// ``` #[inline] fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> where J: IntoIterator, F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering, Self: Sized { merge_join_by(self, other, cmp_fn) } /// Return an iterator adaptor that flattens an iterator of iterators by /// merging them in ascending order. /// /// If all base iterators are sorted (ascending), the result is sorted. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let a = (0..6).step(3); /// let b = (1..6).step(3); /// let c = (2..6).step(3); /// let it = vec![a, b, c].into_iter().kmerge(); /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); /// ``` #[cfg(feature = "use_std")] fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> where Self: Sized, Self::Item: IntoIterator, <Self::Item as IntoIterator>::Item: PartialOrd, { kmerge(self) } /// Return an iterator adaptor that flattens an iterator of iterators by /// merging them according to the given closure. /// /// The closure `first` is called with two elements *a*, *b* and should /// return `true` if *a* is ordered before *b*. /// /// If all base iterators are sorted according to `first`, the result is /// sorted. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; /// let b = vec![0., 2., -4.]; /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); /// assert_eq!(it.next(), Some(0.)); /// assert_eq!(it.last(), Some(-7.)); /// ``` #[cfg(feature = "use_std")] fn kmerge_by<F>(self, first: F) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> where Self: Sized, Self::Item: IntoIterator, F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool { kmerge_by(self, first) } /// Return an iterator adaptor that iterates over the cartesian product of /// the element sets of two iterators `self` and `J`. /// /// Iterator element type is `(Self::Item, J::Item)`. /// /// ``` /// use itertools::Itertools; /// /// let it = (0..2).cartesian_product("αβ".chars()); /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]); /// ``` fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> where Self: Sized, Self::Item: Clone, J: IntoIterator, J::IntoIter: Clone { adaptors::cartesian_product(self, other.into_iter()) } /// Return an iterator adaptor that iterates over the cartesian product of /// all subiterators returned by meta-iterator `self`. /// /// All provided iterators must yield the same `Item` type. To generate /// the product of iterators yielding multiple types, use the /// [`iproduct`](macro.iproduct.html) macro instead. /// /// /// The iterator element type is `Vec<T>`, where `T` is the iterator element /// of the subiterators. /// /// ``` /// use itertools::Itertools; /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) /// .multi_cartesian_product(); /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); /// assert_eq!(multi_prod.next(), None); /// ``` #[cfg(feature = "use_std")] fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> where Self: Iterator + Sized, Self::Item: IntoIterator, <Self::Item as IntoIterator>::IntoIter: Clone, <Self::Item as IntoIterator>::Item: Clone { adaptors::multi_cartesian_product(self) } /// Return an iterator adaptor that uses the passed-in closure to /// optionally merge together consecutive elements. /// /// The closure `f` is passed two elements, `previous` and `current` and may /// return either (1) `Ok(combined)` to merge the two values or /// (2) `Err((previous', current'))` to indicate they can't be merged. /// In (2), the value `previous'` is emitted by the iterator. /// Either (1) `combined` or (2) `current'` becomes the previous value /// when coalesce continues with the next pair of elements to merge. The /// value that remains at the end is also emitted by the iterator. /// /// Iterator element type is `Self::Item`. /// /// This iterator is *fused*. /// /// ``` /// use itertools::Itertools; /// /// // sum same-sign runs together /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; /// itertools::assert_equal(data.into_iter().coalesce(|x, y| /// if (x >= 0.) == (y >= 0.) { /// Ok(x + y) /// } else { /// Err((x, y)) /// }), /// vec![-6., 4., -1.]); /// ``` fn coalesce<F>(self, f: F) -> Coalesce<Self, F> where Self: Sized, F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)> { adaptors::coalesce(self, f) } /// Remove duplicates from sections of consecutive identical elements. /// If the iterator is sorted, all elements will be unique. /// /// Iterator element type is `Self::Item`. /// /// This iterator is *fused*. /// /// ``` /// use itertools::Itertools; /// /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; /// itertools::assert_equal(data.into_iter().dedup(), /// vec![1., 2., 3., 2.]); /// ``` fn dedup(self) -> Dedup<Self> where Self: Sized, Self::Item: PartialEq, { adaptors::dedup(self) } /// Return an iterator adaptor that filters out elements that have /// already been produced once during the iteration. Duplicates /// are detected using hash and equality. /// /// Clones of visited elements are stored in a hash set in the /// iterator. /// /// ``` /// use itertools::Itertools; /// /// let data = vec![10, 20, 30, 20, 40, 10, 50]; /// itertools::assert_equal(data.into_iter().unique(), /// vec![10, 20, 30, 40, 50]); /// ``` #[cfg(feature = "use_std")] fn unique(self) -> Unique<Self> where Self: Sized, Self::Item: Clone + Eq + Hash { unique_impl::unique(self) } /// Return an iterator adaptor that filters out elements that have /// already been produced once during the iteration. /// /// Duplicates are detected by comparing the key they map to /// with the keying function `f` by hash and equality. /// The keys are stored in a hash set in the iterator. /// /// ``` /// use itertools::Itertools; /// /// let data = vec!["a", "bb", "aa", "c", "ccc"]; /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), /// vec!["a", "bb", "ccc"]); /// ``` #[cfg(feature = "use_std")] fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> where Self: Sized, V: Eq + Hash, F: FnMut(&Self::Item) -> V { unique_impl::unique_by(self, f) } /// Return an iterator adaptor that borrows from this iterator and /// takes items while the closure `accept` returns `true`. /// /// This adaptor can only be used on iterators that implement `PeekingNext` /// like `.peekable()`, `put_back` and a few other collection iterators. /// /// The last and rejected element (first `false`) is still available when /// `peeking_take_while` is done. /// /// /// See also [`.take_while_ref()`](#method.take_while_ref) /// which is a similar adaptor. fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> where Self: Sized + PeekingNext, F: FnMut(&Self::Item) -> bool, { peeking_take_while::peeking_take_while(self, accept) } /// Return an iterator adaptor that borrows from a `Clone`-able iterator /// to only pick off elements while the predicate `accept` returns `true`. /// /// It uses the `Clone` trait to restore the original iterator so that the /// last and rejected element (first `false`) is still available when /// `take_while_ref` is done. /// /// ``` /// use itertools::Itertools; /// /// let mut hexadecimals = "0123456789abcdef".chars(); /// /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) /// .collect::<String>(); /// assert_eq!(decimals, "0123456789"); /// assert_eq!(hexadecimals.next(), Some('a')); /// /// ``` fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> where Self: Clone, F: FnMut(&Self::Item) -> bool { adaptors::take_while_ref(self, accept) } /// Return an iterator adaptor that filters `Option<A>` iterator elements /// and produces `A`. Stops on the first `None` encountered. /// /// Iterator element type is `A`, the unwrapped element. /// /// ``` /// use itertools::Itertools; /// /// // List all hexadecimal digits /// itertools::assert_equal( /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(), /// "0123456789abcdef".chars()); /// /// ``` fn while_some<A>(self) -> WhileSome<Self> where Self: Sized + Iterator<Item = Option<A>> { adaptors::while_some(self) } /// Return an iterator adaptor that iterates over the combinations of the /// elements from an iterator. /// /// Iterator element can be any homogeneous tuple of type `Self::Item` with /// size up to 4. /// /// ``` /// use itertools::Itertools; /// /// let mut v = Vec::new(); /// for (a, b) in (1..5).tuple_combinations() { /// v.push((a, b)); /// } /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); /// /// let mut it = (1..5).tuple_combinations(); /// assert_eq!(Some((1, 2, 3)), it.next()); /// assert_eq!(Some((1, 2, 4)), it.next()); /// assert_eq!(Some((1, 3, 4)), it.next()); /// assert_eq!(Some((2, 3, 4)), it.next()); /// assert_eq!(None, it.next()); /// /// // this requires a type hint /// let it = (1..5).tuple_combinations::<(_, _, _)>(); /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); /// /// // you can also specify the complete type /// use itertools::TupleCombinations; /// use std::ops::Range; /// /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); /// ``` fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> where Self: Sized + Clone, Self::Item: Clone, T: adaptors::HasCombination<Self>, { adaptors::tuple_combinations(self) } /// Return an iterator adaptor that iterates over the `n`-length combinations of /// the elements from an iterator. /// /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, /// and clones the iterator elements. /// /// ``` /// use itertools::Itertools; /// /// let it = (1..5).combinations(3); /// itertools::assert_equal(it, vec![ /// vec![1, 2, 3], /// vec![1, 2, 4], /// vec![1, 3, 4], /// vec![2, 3, 4], /// ]); /// ``` #[cfg(feature = "use_std")] fn combinations(self, n: usize) -> Combinations<Self> where Self: Sized, Self::Item: Clone { combinations::combinations(self, n) } /// Return an iterator adaptor that pads the sequence to a minimum length of /// `min` by filling missing elements using a closure `f`. /// /// Iterator element type is `Self::Item`. /// /// ``` /// use itertools::Itertools; /// /// let it = (0..5).pad_using(10, |i| 2*i); /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); /// /// let it = (0..10).pad_using(5, |i| 2*i); /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); /// /// let it = (0..5).pad_using(10, |i| 2*i).rev(); /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); /// ``` fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> where Self: Sized, F: FnMut(usize) -> Self::Item { pad_tail::pad_using(self, min, f) } /// Flatten an iterator of iterables into a single combined sequence of all /// the elements in the iterables. /// /// This is more or less equivalent to `.flat_map` with an identity /// function. /// /// See also the [`flatten`](fn.flatten.html) function. /// /// ```ignore /// use itertools::Itertools; /// /// let data = vec![vec![1, 2, 3], vec![4, 5, 6]]; /// let flattened = data.iter().flatten(); /// /// itertools::assert_equal(flattened, &[1, 2, 3, 4, 5, 6]); /// ``` fn flatten(self) -> Flatten<Self, <Self::Item as IntoIterator>::IntoIter> where Self: Sized, Self::Item: IntoIterator { adaptors::flatten(self) } /// Return an iterator adaptor that wraps each element in a `Position` to /// ease special-case handling of the first or last elements. /// /// Iterator element type is /// [`Position<Self::Item>`](enum.Position.html) /// /// ``` /// use itertools::{Itertools, Position}; /// /// let it = (0..4).with_position(); /// itertools::assert_equal(it, /// vec![Position::First(0), /// Position::Middle(1), /// Position::Middle(2), /// Position::Last(3)]); /// /// let it = (0..1).with_position(); /// itertools::assert_equal(it, vec![Position::Only(0)]); /// ``` fn with_position(self) -> WithPosition<Self> where Self: Sized, { with_position::with_position(self) } /// Return an iterator adaptor that yields the indices of all elements /// satisfying a predicate, counted from the start of the iterator. /// /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`. /// /// ``` /// use itertools::Itertools; /// /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); /// /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); /// ``` fn positions<P>(self, predicate: P) -> Positions<Self, P> where Self: Sized, P: FnMut(Self::Item) -> bool, { adaptors::positions(self, predicate) } /// Return an iterator adaptor that applies a mutating function /// to each element before yielding it. /// /// ``` /// use itertools::Itertools; /// /// let input = vec![vec![1], vec![3, 2, 1]]; /// let it = input.into_iter().update(|mut v| v.push(0)); /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); /// ``` fn update<F>(self, updater: F) -> Update<Self, F> where Self: Sized, F: FnMut(&mut Self::Item), { adaptors::update(self, updater) } // non-adaptor methods /// Advances the iterator and returns the next items grouped in a tuple of /// a specific size (up to 4). /// /// If there are enough elements to be grouped in a tuple, then the tuple is /// returned inside `Some`, otherwise `None` is returned. /// /// ``` /// use itertools::Itertools; /// /// let mut iter = 1..5; /// /// assert_eq!(Some((1, 2)), iter.next_tuple()); /// ``` fn next_tuple<T>(&mut self) -> Option<T> where Self: Sized + Iterator<Item = T::Item>, T: tuple_impl::TupleCollect { T::collect_from_iter_no_buf(self) } /// Collects all items from the iterator into a tuple of a specific size /// (up to 4). /// /// If the number of elements inside the iterator is **exactly** equal to /// the tuple size, then the tuple is returned inside `Some`, otherwise /// `None` is returned. /// /// ``` /// use itertools::Itertools; /// /// let iter = 1..3; /// /// if let Some((x, y)) = iter.collect_tuple() { /// assert_eq!((x, y), (1, 2)) /// } else { /// panic!("Expected two elements") /// } /// ``` fn collect_tuple<T>(mut self) -> Option<T> where Self: Sized + Iterator<Item = T::Item>, T: tuple_impl::TupleCollect { match self.next_tuple() { elt @ Some(_) => match self.next() { Some(_) => None, None => elt, }, _ => None } } /// Find the position and value of the first element satisfying a predicate. /// /// The iterator is not advanced past the first element found. /// /// ``` /// use itertools::Itertools; /// /// let text = "Hα"; /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α'))); /// ``` fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> where P: FnMut(&Self::Item) -> bool { let mut index = 0usize; for elt in self { if pred(&elt) { return Some((index, elt)); } index += 1; } None } /// Check whether all elements compare equal. /// /// Empty iterators are considered to have equal elements: /// /// ``` /// use itertools::Itertools; /// /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; /// assert!(!data.iter().all_equal()); /// assert!(data[0..3].iter().all_equal()); /// assert!(data[3..5].iter().all_equal()); /// assert!(data[5..8].iter().all_equal()); /// /// let data : Option<usize> = None; /// assert!(data.into_iter().all_equal()); /// ``` fn all_equal(&mut self) -> bool where Self::Item: PartialEq, { self.dedup().nth(1).is_none() } /// Consume the first `n` elements from the iterator eagerly, /// and return the same iterator again. /// /// It works similarly to *.skip(* `n` *)* except it is eager and /// preserves the iterator type. /// /// ``` /// use itertools::Itertools; /// /// let mut iter = "αβγ".chars().dropping(2); /// itertools::assert_equal(iter, "γ".chars()); /// ``` /// /// *Fusing notes: if the iterator is exhausted by dropping, /// the result of calling `.next()` again depends on the iterator implementation.* fn dropping(mut self, n: usize) -> Self where Self: Sized { if n > 0 { self.nth(n - 1); } self } /// Consume the last `n` elements from the iterator eagerly, /// and return the same iterator again. /// /// This is only possible on double ended iterators. `n` may be /// larger than the number of elements. /// /// Note: This method is eager, dropping the back elements immediately and /// preserves the iterator type. /// /// ``` /// use itertools::Itertools; /// /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); /// itertools::assert_equal(init, vec![0, 3, 6]); /// ``` fn dropping_back(mut self, n: usize) -> Self where Self: Sized, Self: DoubleEndedIterator { if n > 0 { (&mut self).rev().nth(n - 1); } self } /// Run the closure `f` eagerly on each element of the iterator. /// /// Consumes the iterator until its end. /// /// ``` /// use std::sync::mpsc::channel; /// use itertools::Itertools; /// /// let (tx, rx) = channel(); /// /// // use .foreach() to apply a function to each value -- sending it /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); /// /// drop(tx); /// /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]); /// ``` fn foreach<F>(self, mut f: F) where F: FnMut(Self::Item), Self: Sized, { self.fold((), move |(), element| f(element)) } /// Combine all an iterator's elements into one element by using `Extend`. /// /// This combinator will extend the first item with each of the rest of the /// items of the iterator. If the iterator is empty, the default value of /// `I::Item` is returned. /// /// ```rust /// use itertools::Itertools; /// /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; /// assert_eq!(input.into_iter().concat(), /// vec![1, 2, 3, 4, 5, 6]); /// ``` fn concat(self) -> Self::Item where Self: Sized, Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default { concat(self) } /// `.collect_vec()` is simply a type specialization of `.collect()`, /// for convenience. #[cfg(feature = "use_std")] fn collect_vec(self) -> Vec<Self::Item> where Self: Sized { self.collect() } /// Assign to each reference in `self` from the `from` iterator, /// stopping at the shortest of the two iterators. /// /// The `from` iterator is queried for its next element before the `self` /// iterator, and if either is exhausted the method is done. /// /// Return the number of elements written. /// /// ``` /// use itertools::Itertools; /// /// let mut xs = [0; 4]; /// xs.iter_mut().set_from(1..); /// assert_eq!(xs, [1, 2, 3, 4]); /// ``` #[inline] fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize where Self: Iterator<Item = &'a mut A>, J: IntoIterator<Item = A> { let mut count = 0; for elt in from { match self.next() { None => break, Some(ptr) => *ptr = elt, } count += 1; } count } /// Combine all iterator elements into one String, seperated by `sep`. /// /// Use the `Display` implementation of each element. /// /// ``` /// use itertools::Itertools; /// /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c"); /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3"); /// ``` #[cfg(feature = "use_std")] fn join(&mut self, sep: &str) -> String where Self::Item: std::fmt::Display { match self.next() { None => String::new(), Some(first_elt) => { // estimate lower bound of capacity needed let (lower, _) = self.size_hint(); let mut result = String::with_capacity(sep.len() * lower); write!(&mut result, "{}", first_elt).unwrap(); for elt in self { result.push_str(sep); write!(&mut result, "{}", elt).unwrap(); } result } } } /// Format all iterator elements, separated by `sep`. /// /// All elements are formatted (any formatting trait) /// with `sep` inserted between each element. /// /// **Panics** if the formatter helper is formatted more than once. /// /// ``` /// use itertools::Itertools; /// /// let data = [1.1, 2.71828, -3.]; /// assert_eq!( /// format!("{:.2}", data.iter().format(", ")), /// "1.10, 2.72, -3.00"); /// ``` fn format(self, sep: &str) -> Format<Self> where Self: Sized, { format::new_format_default(self, sep) } /// Format all iterator elements, separated by `sep`. /// /// This is a customizable version of `.format()`. /// /// The supplied closure `format` is called once per iterator element, /// with two arguments: the element and a callback that takes a /// `&Display` value, i.e. any reference to type that implements `Display`. /// /// Using `&format_args!(...)` is the most versatile way to apply custom /// element formatting. The callback can be called multiple times if needed. /// /// **Panics** if the formatter helper is formatted more than once. /// /// ``` /// use itertools::Itertools; /// /// let data = [1.1, 2.71828, -3.]; /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt))); /// assert_eq!(format!("{}", data_formatter), /// "1.10, 2.72, -3.00"); /// /// // .format_with() is recursively composable /// let matrix = [[1., 2., 3.], /// [4., 5., 6.]]; /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| { /// f(&row.iter().format_with(", ", |elt, g| g(&elt))) /// }); /// assert_eq!(format!("{}", matrix_formatter), /// "1, 2, 3\n4, 5, 6"); /// /// /// ``` fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> where Self: Sized, F: FnMut(Self::Item, &mut FnMut(&fmt::Display) -> fmt::Result) -> fmt::Result, { format::new_format(self, sep, format) } /// Fold `Result` values from an iterator. /// /// Only `Ok` values are folded. If no error is encountered, the folded /// value is returned inside `Ok`. Otherwise, the operation terminates /// and returns the first `Err` value it encounters. No iterator elements are /// consumed after the first error. /// /// The first accumulator value is the `start` parameter. /// Each iteration passes the accumulator value and the next value inside `Ok` /// to the fold function `f` and its return value becomes the new accumulator value. /// /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a /// computation like this: /// /// ```ignore /// let mut accum = start; /// accum = f(accum, 1); /// accum = f(accum, 2); /// accum = f(accum, 3); /// ``` /// /// With a `start` value of 0 and an addition as folding function, /// this effetively results in *((0 + 1) + 2) + 3* /// /// ``` /// use std::ops::Add; /// use itertools::Itertools; /// /// let values = [1, 2, -2, -1, 2, 1]; /// assert_eq!( /// values.iter() /// .map(Ok::<_, ()>) /// .fold_results(0, Add::add), /// Ok(3) /// ); /// assert!( /// values.iter() /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") }) /// .fold_results(0, Add::add) /// .is_err() /// ); /// ``` fn fold_results<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> where Self: Iterator<Item = Result<A, E>>, F: FnMut(B, A) -> B { for elt in self { match elt { Ok(v) => start = f(start, v), Err(u) => return Err(u), } } Ok(start) } /// Fold `Option` values from an iterator. /// /// Only `Some` values are folded. If no `None` is encountered, the folded /// value is returned inside `Some`. Otherwise, the operation terminates /// and returns `None`. No iterator elements are consumed after the `None`. /// /// This is the `Option` equivalent to `fold_results`. /// /// ``` /// use std::ops::Add; /// use itertools::Itertools; /// /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); /// /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); /// assert!(more_values.fold_options(0, Add::add).is_none()); /// assert_eq!(more_values.next().unwrap(), Some(0)); /// ``` fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> where Self: Iterator<Item = Option<A>>, F: FnMut(B, A) -> B { for elt in self { match elt { Some(v) => start = f(start, v), None => return None, } } Some(start) } /// Accumulator of the elements in the iterator. /// /// Like `.fold()`, without a base case. If the iterator is /// empty, return `None`. With just one element, return it. /// Otherwise elements are accumulated in sequence using the closure `f`. /// /// ``` /// use itertools::Itertools; /// /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); /// assert_eq!((0..0).fold1(|x, y| x * y), None); /// ``` fn fold1<F>(mut self, f: F) -> Option<Self::Item> where F: FnMut(Self::Item, Self::Item) -> Self::Item, Self: Sized, { self.next().map(move |x| self.fold(x, f)) } /// Accumulate the elements in the iterator in a tree-like manner. /// /// You can think of it as, while there's more than one item, repeatedly /// combining adjacent items. It does so in bottom-up-merge-sort order, /// however, so that it needs only logarithmic stack space. /// /// This produces a call tree like the following (where the calls under /// an item are done after reading that item): /// /// ```text /// 1 2 3 4 5 6 7 /// │ │ │ │ │ │ │ /// └─f └─f └─f │ /// │ │ │ │ /// └───f └─f /// │ │ /// └─────f /// ``` /// /// Which, for non-associative functions, will typically produce a different /// result than the linear call tree used by `fold1`: /// /// ```text /// 1 2 3 4 5 6 7 /// │ │ │ │ │ │ │ /// └─f─f─f─f─f─f /// ``` /// /// If `f` is associative, prefer the normal `fold1` instead. /// /// ``` /// use itertools::Itertools; /// /// // The same tree as above /// let num_strings = (1..8).map(|x| x.to_string()); /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)), /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))"))); /// /// // Like fold1, an empty iterator produces None /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None); /// /// // tree_fold1 matches fold1 for associative operations... /// assert_eq!((0..10).tree_fold1(|x, y| x + y), /// (0..10).fold1(|x, y| x + y)); /// // ...but not for non-associative ones /// assert!((0..10).tree_fold1(|x, y| x - y) /// != (0..10).fold1(|x, y| x - y)); /// ``` // FIXME: If minver changes to >= 1.13, use `assert_ne!` in the doctest. fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item> where F: FnMut(Self::Item, Self::Item) -> Self::Item, Self: Sized, { type State<T> = Result<T, Option<T>>; fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> where II: Iterator<Item = T>, FF: FnMut(T, T) -> T { // This function could be replaced with `it.next().ok_or(None)`, // but half the useful tree_fold1 work is combining adjacent items, // so put that in a form that LLVM is more likely to optimize well. let a = if let Some(v) = it.next() { v } else { return Err(None) }; let b = if let Some(v) = it.next() { v } else { return Err(Some(a)) }; Ok(f(a, b)) } fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> where II: Iterator<Item = T>, FF: FnMut(T, T) -> T { let mut x = try!(inner0(it, f)); for height in 0..stop { // Try to get another tree the same size with which to combine it, // creating a new tree that's twice as big for next time around. let next = if height == 0 { inner0(it, f) } else { inner(height, it, f) }; match next { Ok(y) => x = f(x, y), // If we ran out of items, combine whatever we did manage // to get. It's better combined with the current value // than something in a parent frame, because the tree in // the parent is always as least as big as this one. Err(None) => return Err(Some(x)), Err(Some(y)) => return Err(Some(f(x, y))), } } Ok(x) } match inner(usize::max_value(), &mut self, &mut f) { Err(x) => x, _ => unreachable!(), } } /// An iterator method that applies a function, producing a single, final value. /// /// `fold_while()` is basically equivalent to `fold()` but with additional support for /// early exit via short-circuiting. /// /// ``` /// use itertools::Itertools; /// use itertools::FoldWhile::{Continue, Done}; /// /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; /// /// let mut result = 0; /// /// // for loop: /// for i in &numbers { /// if *i > 5 { /// break; /// } /// result = result + i; /// } /// /// // fold: /// let result2 = numbers.iter().fold(0, |acc, x| { /// if *x > 5 { acc } else { acc + x } /// }); /// /// // fold_while: /// let result3 = numbers.iter().fold_while(0, |acc, x| { /// if *x > 5 { Done(acc) } else { Continue(acc + x) } /// }).into_inner(); /// /// // they're the same /// assert_eq!(result, result2); /// assert_eq!(result2, result3); /// ``` /// /// The big difference between the computations of `result2` and `result3` is that while /// `fold()` called the provided closure for every item of the callee iterator, /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> where Self: Sized, F: FnMut(B, Self::Item) -> FoldWhile<B> { let mut acc = init; while let Some(item) = self.next() { match f(acc, item) { FoldWhile::Continue(res) => acc = res, res @ FoldWhile::Done(_) => return res, } } FoldWhile::Continue(acc) } /// Collect all iterator elements into a sorted vector in ascending order. /// /// **Note:** This consumes the entire iterator, uses the /// `slice::sort_by()` method and returns the sorted vector. /// /// ``` /// use itertools::Itertools; /// /// // sort the letters of the text in ascending order /// let text = "bdacfe"; /// itertools::assert_equal(text.chars().sorted(), /// "abcdef".chars()); /// ``` #[cfg(feature = "use_std")] fn sorted(self) -> Vec<Self::Item> where Self: Sized, Self::Item: Ord { self.sorted_by(Ord::cmp) } /// Collect all iterator elements into a sorted vector. /// /// **Note:** This consumes the entire iterator, uses the /// `slice::sort_by()` method and returns the sorted vector. /// /// ``` /// use itertools::Itertools; /// /// // sort people in descending order by age /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; /// /// let oldest_people_first = people /// .into_iter() /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) /// .into_iter() /// .map(|(person, _age)| person); /// /// itertools::assert_equal(oldest_people_first, /// vec!["Jill", "Jack", "Jane", "John"]); /// ``` #[cfg(feature = "use_std")] fn sorted_by<F>(self, cmp: F) -> Vec<Self::Item> where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering, { let mut v: Vec<Self::Item> = self.collect(); v.sort_by(cmp); v } /// Collect all iterator elements into a sorted vector. /// /// **Note:** This consumes the entire iterator, uses the /// `slice::sort_by_key()` method and returns the sorted vector. /// /// ``` /// use itertools::Itertools; /// /// // sort people in descending order by age /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; /// /// let oldest_people_first = people /// .into_iter() /// .sorted_by_key(|x| -x.1) /// .into_iter() /// .map(|(person, _age)| person); /// /// itertools::assert_equal(oldest_people_first, /// vec!["Jill", "Jack", "Jane", "John"]); /// ``` #[cfg(feature = "use_std")] fn sorted_by_key<K, F>(self, f: F) -> Vec<Self::Item> where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K, { let mut v: Vec<Self::Item> = self.collect(); v.sort_by_key(f); v } /// Collect all iterator elements into one of two /// partitions. Unlike `Iterator::partition`, each partition may /// have a distinct type. /// /// ``` /// use itertools::{Itertools, Either}; /// /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; /// /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures /// .into_iter() /// .partition_map(|r| { /// match r { /// Ok(v) => Either::Left(v), /// Err(v) => Either::Right(v), /// } /// }); /// /// assert_eq!(successes, [1, 2]); /// assert_eq!(failures, [false, true]); /// ``` fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B) where Self: Sized, F: Fn(Self::Item) -> Either<L, R>, A: Default + Extend<L>, B: Default + Extend<R>, { let mut left = A::default(); let mut right = B::default(); for val in self { match predicate(val) { Either::Left(v) => left.extend(Some(v)), Either::Right(v) => right.extend(Some(v)), } } (left, right) } /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. /// /// ``` /// use itertools::Itertools; /// /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; /// let lookup = data.into_iter().into_group_map(); /// /// assert_eq!(lookup[&0], vec![10, 20]); /// assert_eq!(lookup.get(&1), None); /// assert_eq!(lookup[&2], vec![12, 42]); /// assert_eq!(lookup[&3], vec![13, 33]); /// ``` #[cfg(feature = "use_std")] fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> where Self: Iterator<Item=(K, V)> + Sized, K: Hash + Eq, { group_map::into_group_map(self) } /// Return the minimum and maximum elements in the iterator. /// /// The return type `MinMaxResult` is an enum of three variants: /// /// - `NoElements` if the iterator is empty. /// - `OneElement(x)` if the iterator has exactly one element. /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two /// values are equal if and only if there is more than one /// element in the iterator and all elements are equal. /// /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, /// and so is faster than calling `min` and `max` separately which does /// `2 * n` comparisons. /// /// # Examples /// /// ``` /// use itertools::Itertools; /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; /// /// let a: [i32; 0] = []; /// assert_eq!(a.iter().minmax(), NoElements); /// /// let a = [1]; /// assert_eq!(a.iter().minmax(), OneElement(&1)); /// /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); /// /// let a = [1, 1, 1, 1]; /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); /// ``` /// /// The elements can be floats but no particular result is guaranteed /// if an element is NaN. fn minmax(self) -> MinMaxResult<Self::Item> where Self: Sized, Self::Item: PartialOrd { minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) } /// Return the minimum and maximum element of an iterator, as determined by /// the specified function. /// /// The return value is a variant of `MinMaxResult` like for `minmax()`. /// /// For the minimum, the first minimal element is returned. For the maximum, /// the last maximal element wins. This matches the behavior of the standard /// `Iterator::min()` and `Iterator::max()` methods. /// /// The keys can be floats but no particular result is guaranteed /// if a key is NaN. fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K { minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) } /// Return the minimum and maximum element of an iterator, as determined by /// the specified comparison function. /// /// The return value is a variant of `MinMaxResult` like for `minmax()`. /// /// For the minimum, the first minimal element is returned. For the maximum, /// the last maximal element wins. This matches the behavior of the standard /// `Iterator::min()` and `Iterator::max()` methods. fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering { minmax::minmax_impl( self, |_| (), |x, y, _, _| Ordering::Less == compare(x, y) ) } } impl<T: ?Sized> Itertools for T where T: Iterator { } /// Return `true` if both iterables produce equal sequences /// (elements pairwise equal and sequences of the same length), /// `false` otherwise. /// /// This is an `IntoIterator` enabled function that is similar to the standard /// library method `Iterator::eq`. /// /// ``` /// assert!(itertools::equal(vec![1, 2, 3], 1..4)); /// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); /// ``` pub fn equal<I, J>(a: I, b: J) -> bool where I: IntoIterator, J: IntoIterator, I::Item: PartialEq<J::Item> { let mut ia = a.into_iter(); let mut ib = b.into_iter(); loop { match ia.next() { Some(x) => match ib.next() { Some(y) => if x != y { return false; }, None => return false, }, None => return ib.next().is_none() } } } /// Assert that two iterables produce equal sequences, with the same /// semantics as *equal(a, b)*. /// /// **Panics** on assertion failure with a message that shows the /// two iteration elements. /// /// ```ignore /// assert_equal("exceed".split('c'), "excess".split('c')); /// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1', /// ``` pub fn assert_equal<I, J>(a: I, b: J) where I: IntoIterator, J: IntoIterator, I::Item: fmt::Debug + PartialEq<J::Item>, J::Item: fmt::Debug, { let mut ia = a.into_iter(); let mut ib = b.into_iter(); let mut i = 0; loop { match (ia.next(), ib.next()) { (None, None) => return, (a, b) => { let equal = match (&a, &b) { (&Some(ref a), &Some(ref b)) => a == b, _ => false, }; assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}", i=i, a=a, b=b); i += 1; } } } } /// Partition a sequence using predicate `pred` so that elements /// that map to `true` are placed before elements which map to `false`. /// /// The order within the partitions is arbitrary. /// /// Return the index of the split point. /// /// ``` /// use itertools::partition; /// /// # // use repeated numbers to not promise any ordering /// let mut data = [7, 1, 1, 7, 1, 1, 7]; /// let split_index = partition(&mut data, |elt| *elt >= 3); /// /// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); /// assert_eq!(split_index, 3); /// ``` pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize where I: IntoIterator<Item = &'a mut A>, I::IntoIter: DoubleEndedIterator, F: FnMut(&A) -> bool { let mut split_index = 0; let mut iter = iter.into_iter(); 'main: while let Some(front) = iter.next() { if !pred(front) { loop { match iter.next_back() { Some(back) => if pred(back) { std::mem::swap(front, back); break; }, None => break 'main, } } } split_index += 1; } split_index } /// An enum used for controlling the execution of `.fold_while()`. /// /// See [`.fold_while()`](trait.Itertools.html#method.fold_while) for more information. #[derive(Copy, Clone, Debug)] pub enum FoldWhile<T> { /// Continue folding with this value Continue(T), /// Fold is complete and will return this value Done(T), } impl<T> FoldWhile<T> { /// Return the value in the continue or done. pub fn into_inner(self) -> T { match self { FoldWhile::Continue(x) | FoldWhile::Done(x) => x, } } /// Return true if `self` is `Done`, false if it is `Continue`. pub fn is_done(&self) -> bool { match *self { FoldWhile::Continue(_) => false, FoldWhile::Done(_) => true, } } }