1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
use core_traits::{
Binding,
TypedValue,
};
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct RelResult<T> {
pub width: usize,
pub values: Vec<T>,
}
pub type StructuredRelResult = RelResult<Binding>;
impl<T> RelResult<T> {
pub fn empty(width: usize) -> RelResult<T> {
RelResult {
width: width,
values: Vec::new(),
}
}
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
pub fn row_count(&self) -> usize {
self.values.len() / self.width
}
pub fn rows(&self) -> ::std::slice::Chunks<T> {
self.values.chunks(self.width)
}
pub fn row(&self, index: usize) -> Option<&[T]> {
let end = self.width * (index + 1);
if end > self.values.len() {
None
} else {
let start = self.width * index;
Some(&self.values[start..end])
}
}
}
#[test]
fn test_rel_result() {
let empty = StructuredRelResult::empty(3);
let unit = StructuredRelResult {
width: 1,
values: vec![TypedValue::Long(5).into()],
};
let two_by_two = StructuredRelResult {
width: 2,
values: vec![TypedValue::Long(5).into(), TypedValue::Boolean(true).into(),
TypedValue::Long(-2).into(), TypedValue::Boolean(false).into()],
};
assert!(empty.is_empty());
assert!(!unit.is_empty());
assert!(!two_by_two.is_empty());
assert_eq!(empty.row_count(), 0);
assert_eq!(unit.row_count(), 1);
assert_eq!(two_by_two.row_count(), 2);
assert_eq!(empty.row(0), None);
assert_eq!(unit.row(1), None);
assert_eq!(two_by_two.row(2), None);
assert_eq!(unit.row(0), Some(vec![TypedValue::Long(5).into()].as_slice()));
assert_eq!(two_by_two.row(0), Some(vec![TypedValue::Long(5).into(), TypedValue::Boolean(true).into()].as_slice()));
assert_eq!(two_by_two.row(1), Some(vec![TypedValue::Long(-2).into(), TypedValue::Boolean(false).into()].as_slice()));
let mut rr = two_by_two.rows();
assert_eq!(rr.next(), Some(vec![TypedValue::Long(5).into(), TypedValue::Boolean(true).into()].as_slice()));
assert_eq!(rr.next(), Some(vec![TypedValue::Long(-2).into(), TypedValue::Boolean(false).into()].as_slice()));
assert_eq!(rr.next(), None);
}
impl From<Vec<Vec<TypedValue>>> for RelResult<Binding> {
fn from(src: Vec<Vec<TypedValue>>) -> Self {
if src.is_empty() {
RelResult::empty(0)
} else {
let width = src.get(0).map(|r| r.len()).unwrap_or(0);
RelResult {
width: width,
values: src.into_iter().flat_map(|r| r.into_iter().map(|v| v.into())).collect(),
}
}
}
}
pub struct SubvecIntoIterator<T> {
width: usize,
values: ::std::vec::IntoIter<T>,
}
impl<T> Iterator for SubvecIntoIterator<T> {
type Item = Vec<T>;
fn next(&mut self) -> Option<Self::Item> {
let result: Vec<_> = (&mut self.values).take(self.width).collect();
if result.is_empty() {
None
} else {
Some(result)
}
}
}
impl<T> IntoIterator for RelResult<T> {
type Item = Vec<T>;
type IntoIter = SubvecIntoIterator<T>;
fn into_iter(self) -> Self::IntoIter {
SubvecIntoIterator {
width: self.width,
values: self.values.into_iter(),
}
}
}