1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
use std::cmp;
use std::fmt;
use std::hash::Hash;
use std::iter;
use std::marker::PhantomData;
use std::mem::size_of;
use std::ops::{Index, IndexMut, Range};
use std::slice;

use {
    Direction, Outgoing, Incoming,
    Undirected,
    Directed,
    EdgeType,
    IntoWeightedEdge,
};

use iter_format::{
    IterFormatExt,
    NoPretty,
    DebugMap,
};

use visit::EdgeRef;
use visit::{IntoNodeReferences, IntoEdges, IntoEdgesDirected};
use util::enumerate;

#[cfg(feature = "serde-1")]
mod serialization;


/// The default integer type for graph indices.
/// `u32` is the default to reduce the size of the graph's data and improve
/// performance in the common case.
///
/// Used for node and edge indices in `Graph` and `StableGraph`, used
/// for node indices in `Csr`.
pub type DefaultIx = u32;

/// Trait for the unsigned integer type used for node and edge indices.
///
/// Marked `unsafe` because: the trait must faithfully preseve
/// and convert index values.
pub unsafe trait IndexType : Copy + Default + Hash + Ord + fmt::Debug + 'static
{
    fn new(x: usize) -> Self;
    fn index(&self) -> usize;
    fn max() -> Self;
}

unsafe impl IndexType for usize {
    #[inline(always)]
    fn new(x: usize) -> Self { x }
    #[inline(always)]
    fn index(&self) -> Self { *self }
    #[inline(always)]
    fn max() -> Self { ::std::usize::MAX }
}

unsafe impl IndexType for u32 {
    #[inline(always)]
    fn new(x: usize) -> Self { x as u32 }
    #[inline(always)]
    fn index(&self) -> usize { *self as usize }
    #[inline(always)]
    fn max() -> Self { ::std::u32::MAX }
}

unsafe impl IndexType for u16 {
    #[inline(always)]
    fn new(x: usize) -> Self { x as u16 }
    #[inline(always)]
    fn index(&self) -> usize { *self as usize }
    #[inline(always)]
    fn max() -> Self { ::std::u16::MAX }
}

unsafe impl IndexType for u8 {
    #[inline(always)]
    fn new(x: usize) -> Self { x as u8 }
    #[inline(always)]
    fn index(&self) -> usize { *self as usize }
    #[inline(always)]
    fn max() -> Self { ::std::u8::MAX }
}

/// Node identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct NodeIndex<Ix=DefaultIx>(Ix);

impl<Ix: IndexType> NodeIndex<Ix>
{
    #[inline]
    pub fn new(x: usize) -> Self {
        NodeIndex(IndexType::new(x))
    }

    #[inline]
    pub fn index(self) -> usize
    {
        self.0.index()
    }

    #[inline]
    pub fn end() -> Self
    {
        NodeIndex(IndexType::max())
    }

    fn _into_edge(self) -> EdgeIndex<Ix> {
        EdgeIndex(self.0)
    }
}

impl<Ix: IndexType> From<Ix> for NodeIndex<Ix> {
    fn from(ix: Ix) -> Self { NodeIndex(ix) }
}

impl<Ix: fmt::Debug> fmt::Debug for NodeIndex<Ix>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "NodeIndex({:?})", self.0)
    }
}

/// Short version of `NodeIndex::new`
pub fn node_index<Ix: IndexType>(index: usize) -> NodeIndex<Ix> { NodeIndex::new(index) }

/// Short version of `EdgeIndex::new`
pub fn edge_index<Ix: IndexType>(index: usize) -> EdgeIndex<Ix> { EdgeIndex::new(index) }

/// Edge identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct EdgeIndex<Ix=DefaultIx>(Ix);

impl<Ix: IndexType> EdgeIndex<Ix>
{
    #[inline]
    pub fn new(x: usize) -> Self {
        EdgeIndex(IndexType::new(x))
    }

    #[inline]
    pub fn index(self) -> usize
    {
        self.0.index()
    }

    /// An invalid `EdgeIndex` used to denote absence of an edge, for example
    /// to end an adjacency list.
    #[inline]
    pub fn end() -> Self {
        EdgeIndex(IndexType::max())
    }

    fn _into_node(self) -> NodeIndex<Ix> {
        NodeIndex(self.0)
    }
}

impl<Ix: fmt::Debug> fmt::Debug for EdgeIndex<Ix>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "EdgeIndex({:?})", self.0)
    }
}
/*
 * FIXME: Use this impl again, when we don't need to add so many bounds
impl<Ix: IndexType> fmt::Debug for EdgeIndex<Ix>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "EdgeIndex("));
        if *self == EdgeIndex::end() {
            try!(write!(f, "End"));
        } else {
            try!(write!(f, "{}", self.index()));
        }
        write!(f, ")")
    }
}
*/

const DIRECTIONS: [Direction; 2] = [Outgoing, Incoming];

/// The graph's node type.
#[derive(Debug)]
pub struct Node<N, Ix = DefaultIx> {
    /// Associated node data.
    pub weight: N,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex<Ix>; 2],
}

impl<E, Ix> Clone for Node<E, Ix> where E: Clone, Ix: Copy {
    clone_fields!(Node,
                  weight,
                  next,
                  );
}


impl<N, Ix: IndexType> Node<N, Ix>
{
    /// Accessor for data structure internals: the first edge in the given direction.
    pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix>
    {
        self.next[dir.index()]
    }
}


/// The graph's edge type.
#[derive(Debug)]
pub struct Edge<E, Ix = DefaultIx> {
    /// Associated edge data.
    pub weight: E,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex<Ix>; 2],
    /// Start and End node index
    node: [NodeIndex<Ix>; 2],
}

impl<E, Ix> Clone for Edge<E, Ix> where E: Clone, Ix: Copy {
    clone_fields!(Edge,
                  weight,
                  next,
                  node,
                  );
}

impl<E, Ix: IndexType> Edge<E, Ix>
{
    /// Accessor for data structure internals: the next edge for the given direction.
    pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix>
    {
        self.next[dir.index()]
    }

    /// Return the source node index.
    pub fn source(&self) -> NodeIndex<Ix>
    {
        self.node[0]
    }

    /// Return the target node index.
    pub fn target(&self) -> NodeIndex<Ix>
    {
        self.node[1]
    }
}

/// `Graph<N, E, Ty, Ix>` is a graph datastructure using an adjacency list representation.
///
/// `Graph` is parameterized over:
///
/// - Associated data `N` for nodes and `E` for edges, called *weights*.
///   The associated data can be of arbitrary type.
/// - Edge type `Ty` that determines whether the graph edges are directed or undirected.
/// - Index type `Ix`, which determines the maximum size of the graph.
///
/// The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert,
/// efficient graph search and graph algorithms.
/// It implements **O(e')** edge lookup and edge and node removals, where **e'**
/// is some local measure of edge count.
/// Based on the graph datastructure used in rustc.
///
/// Here's an example of building a graph with directed edges, and below
/// an illustration of how it could be rendered with graphviz (see
/// [`Dot`](../dot/struct.Dot.html)):
///
/// ```
/// use petgraph::Graph;
///
/// let mut deps = Graph::<&str, &str>::new();
/// let pg = deps.add_node("petgraph");
/// let fb = deps.add_node("fixedbitset");
/// let qc = deps.add_node("quickcheck");
/// let rand = deps.add_node("rand");
/// let libc = deps.add_node("libc");
/// deps.extend_with_edges(&[
///     (pg, fb), (pg, qc),
///     (qc, rand), (rand, libc), (qc, libc),
/// ]);
/// ```
///
/// ![graph-example](https://bluss.github.io/ndarray/images/graph-example.svg)
///
/// ### Graph Indices
///
/// The graph maintains indices for nodes and edges, and node and edge
/// weights may be accessed mutably. Indices range in a compact interval, for
/// example for *n* nodes indices are 0 to *n* - 1 inclusive.
///
/// `NodeIndex` and `EdgeIndex` are types that act as references to nodes and edges,
/// but these are only stable across certain operations.
/// **Adding nodes or edges keeps indices stable.
/// Removing nodes or edges may shift other indices.**
/// Removing a node will force the last node to shift its index to
/// take its place. Similarly, removing an edge shifts the index of the last edge.
///
/// The `Ix` parameter is `u32` by default. The goal is that you can ignore this parameter
/// completely unless you need a very big graph -- then you can use `usize`.
///
/// ### Pros and Cons of Indices
///
/// * The fact that the node and edge indices in the graph each are numbered in compact
/// intervals (from 0 to *n* - 1 for *n* nodes) simplifies some graph algorithms.
///
/// * You can select graph index integer type after the size of the graph. A smaller
/// size may have better performance.
///
/// * Using indices allows mutation while traversing the graph, see `Dfs`,
/// and `.neighbors(a).detach()`.
///
/// * You can create several graphs using the equal node indices but with
/// differing weights or differing edges.
///
/// * The `Graph` is a regular rust collection and is `Send` and `Sync` (as long
/// as associated data `N` and `E` are).
///
/// * Some indices shift during node or edge removal, so that is a drawback
/// of removing elements. Indices don't allow as much compile time checking as
/// references.
///
pub struct Graph<N, E, Ty = Directed, Ix = DefaultIx> {
    nodes: Vec<Node<N, Ix>>,
    edges: Vec<Edge<E, Ix>>,
    ty: PhantomData<Ty>,
}

/// A `Graph` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraph<N, E, Ix = DefaultIx> = Graph<N, E, Directed, Ix>;

/// A `Graph` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraph<N, E, Ix = DefaultIx> = Graph<N, E, Undirected, Ix>;


/// The resulting cloned graph has the same graph indices as `self`.
impl<N, E, Ty, Ix: IndexType> Clone for Graph<N, E, Ty, Ix>
    where N: Clone, E: Clone,
{
    fn clone(&self) -> Self {
        Graph {
            nodes: self.nodes.clone(),
            edges: self.edges.clone(),
            ty: self.ty,
        }
    }

    fn clone_from(&mut self, rhs: &Self) {
        self.nodes.clone_from(&rhs.nodes);
        self.edges.clone_from(&rhs.edges);
        self.ty = rhs.ty;
    }
}

impl<N, E, Ty, Ix> fmt::Debug for Graph<N, E, Ty, Ix>
    where N: fmt::Debug,
          E: fmt::Debug,
          Ty: EdgeType,
          Ix: IndexType,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let etype = if self.is_directed() { "Directed" } else { "Undirected" };
        let mut fmt_struct = f.debug_struct("Graph");
        fmt_struct.field("Ty", &etype);
        fmt_struct.field("node_count", &self.node_count());
        fmt_struct.field("edge_count", &self.edge_count());
        if self.edge_count() > 0 {
            fmt_struct.field("edges",
                 &self.edges
                     .iter()
                     .map(|e| NoPretty((e.source().index(), e.target().index())))
                     .format(", "));
        }
        // skip weights if they are ZST!
        if size_of::<N>() != 0 {
            fmt_struct.field("node weights", &DebugMap(|| self.nodes.iter()
                             .map(|n| &n.weight)
                             .enumerate()));
        }
        if size_of::<E>() != 0 {
            fmt_struct.field("edge weights", &DebugMap(|| self.edges.iter()
                             .map(|n| &n.weight)
                             .enumerate()));
        }
        fmt_struct.finish()
    }
}

enum Pair<T> {
    Both(T, T),
    One(T),
    None,
}

use std::cmp::max;

/// Get mutable references at index `a` and `b`.
fn index_twice<T>(slc: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
    if max(a, b) >= slc.len() {
        Pair::None
    } else if a == b {
        Pair::One(&mut slc[max(a, b)])
    } else {
        // safe because a, b are in bounds and distinct
        unsafe {
            let ar = &mut *(slc.get_unchecked_mut(a) as *mut _);
            let br = &mut *(slc.get_unchecked_mut(b) as *mut _);
            Pair::Both(ar, br)
        }
    }
}

impl<N, E> Graph<N, E, Directed>
{
    /// Create a new `Graph` with directed edges.
    ///
    /// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
    /// a constructor that is generic in all the type parameters of `Graph`.
    pub fn new() -> Self
    {
        Graph{nodes: Vec::new(), edges: Vec::new(),
              ty: PhantomData}
    }
}

impl<N, E> Graph<N, E, Undirected>
{
    /// Create a new `Graph` with undirected edges.
    ///
    /// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
    /// a constructor that is generic in all the type parameters of `Graph`.
    pub fn new_undirected() -> Self
    {
        Graph{nodes: Vec::new(), edges: Vec::new(),
              ty: PhantomData}
    }
}

impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    /// Create a new `Graph` with estimated capacity.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self
    {
        Graph{nodes: Vec::with_capacity(nodes), edges: Vec::with_capacity(edges),
              ty: PhantomData}
    }

    /// Return the number of nodes (vertices) in the graph.
    ///
    /// Computes in **O(1)** time.
    pub fn node_count(&self) -> usize
    {
        self.nodes.len()
    }

    /// Return the number of edges in the graph.
    ///
    /// Computes in **O(1)** time.
    pub fn edge_count(&self) -> usize
    {
        self.edges.len()
    }

    /// Whether the graph has directed edges or not.
    #[inline]
    pub fn is_directed(&self) -> bool
    {
        Ty::is_directed()
    }

    /// Add a node (also called vertex) with associated data `weight` to the graph.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Return the index of the new node.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index
    /// type (N/A if usize).
    pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>
    {
        let node = Node{weight: weight, next: [EdgeIndex::end(), EdgeIndex::end()]};
        let node_idx = NodeIndex::new(self.nodes.len());
        // check for max capacity, except if we use usize
        assert!(<Ix as IndexType>::max().index() == !0 || NodeIndex::end() != node_idx);
        self.nodes.push(node);
        node_idx
    }

    /// Access the weight for node `a`.
    ///
    /// Also available with indexing syntax: `&graph[a]`.
    pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>
    {
        self.nodes.get(a.index()).map(|n| &n.weight)
    }

    /// Access the weight for node `a`, mutably.
    ///
    /// Also available with indexing syntax: `&mut graph[a]`.
    pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>
    {
        self.nodes.get_mut(a.index()).map(|n| &mut n.weight)
    }

    /// Add an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Return the index of the new edge.
    ///
    /// Computes in **O(1)** time.
    ///
    /// **Panics** if any of the nodes don't exist.<br>
    /// **Panics** if the Graph is at the maximum number of edges for its index
    /// type (N/A if usize).
    ///
    /// **Note:** `Graph` allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
    {
        let edge_idx = EdgeIndex::new(self.edges.len());
        assert!(<Ix as IndexType>::max().index() == !0 || EdgeIndex::end() != edge_idx);
        let mut edge = Edge {
            weight: weight,
            node: [a, b],
            next: [EdgeIndex::end(); 2],
        };
        match index_twice(&mut self.nodes, a.index(), b.index()) {
            Pair::None => panic!("Graph::add_edge: node indices out of bounds"),
            Pair::One(an) => {
                edge.next = an.next;
                an.next[0] = edge_idx;
                an.next[1] = edge_idx;
            }
            Pair::Both(an, bn) => {
                // a and b are different indices
                edge.next = [an.next[0], bn.next[1]];
                an.next[0] = edge_idx;
                bn.next[1] = edge_idx;
            }
        }
        self.edges.push(edge);
        edge_idx
    }

    /// Add or update an edge from `a` to `b`.
    /// If the edge already exists, its weight is updated.
    ///
    /// Return the index of the affected edge.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    ///
    /// **Panics** if any of the nodes don't exist.
    pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
    {
        if let Some(ix) = self.find_edge(a, b) {
            if let Some(ed) = self.edge_weight_mut(ix) {
                *ed = weight;
                return ix;
            }
        }
        self.add_edge(a, b, weight)
    }

    /// Access the weight for edge `e`.
    ///
    /// Also available with indexing syntax: `&graph[e]`.
    pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>
    {
        self.edges.get(e.index()).map(|ed| &ed.weight)
    }

    /// Access the weight for edge `e`, mutably.
    ///
    /// Also available with indexing syntax: `&mut graph[e]`.
    pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>
    {
        self.edges.get_mut(e.index()).map(|ed| &mut ed.weight)
    }

    /// Access the source and target nodes for `e`.
    pub fn edge_endpoints(&self, e: EdgeIndex<Ix>)
        -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>
    {
        self.edges.get(e.index()).map(|ed| (ed.source(), ed.target()))
    }

    /// Remove `a` from the graph if it exists, and return its weight.
    /// If it doesn't exist in the graph, return `None`.
    ///
    /// Apart from `a`, this invalidates the last node index in the graph
    /// (that node will adopt the removed node index). Edge indices are
    /// invalidated as they would be following the removal of each edge
    /// with an endpoint in `a`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of affected
    /// edges, including *n* calls to `.remove_edge()` where *n* is the number
    /// of edges with an endpoint in `a`, and including the edges with an
    /// endpoint in the displaced node.
    pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>
    {
        if self.nodes.get(a.index()).is_none() {
            return None
        }
        for d in &DIRECTIONS {
            let k = d.index();

            // Remove all edges from and to this node.
            loop {
                let next = self.nodes[a.index()].next[k];
                if next == EdgeIndex::end() {
                    break
                }
                let ret = self.remove_edge(next);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }

        // Use swap_remove -- only the swapped-in node is going to change
        // NodeIndex<Ix>, so we only have to walk its edges and update them.

        let node = self.nodes.swap_remove(a.index());

        // Find the edge lists of the node that had to relocate.
        // It may be that no node had to relocate, then we are done already.
        let swap_edges = match self.nodes.get(a.index()) {
            None => return Some(node.weight),
            Some(ed) => ed.next,
        };

        // The swapped element's old index
        let old_index = NodeIndex::new(self.nodes.len());
        let new_index = a;

        // Adjust the starts of the out edges, and ends of the in edges.
        for &d in &DIRECTIONS {
            let k = d.index();
            let mut edges = edges_walker_mut(&mut self.edges, swap_edges[k], d);
            while let Some(curedge) = edges.next_edge() {
                debug_assert!(curedge.node[k] == old_index);
                curedge.node[k] = new_index;
            }
        }
        Some(node.weight)
    }

    /// For edge `e` with endpoints `edge_node`, replace links to it,
    /// with links to `edge_next`.
    fn change_edge_links(&mut self, edge_node: [NodeIndex<Ix>; 2], e: EdgeIndex<Ix>,
                         edge_next: [EdgeIndex<Ix>; 2])
    {
        for &d in &DIRECTIONS {
            let k = d.index();
            let node = match self.nodes.get_mut(edge_node[k].index()) {
                Some(r) => r,
                None => {
                    debug_assert!(false, "Edge's endpoint dir={:?} index={:?} not found",
                                  d, edge_node[k]);
                    return
                }
            };
            let fst = node.next[k];
            if fst == e {
                //println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
                node.next[k] = edge_next[k];
            } else {
                let mut edges = edges_walker_mut(&mut self.edges, fst, d);
                while let Some(curedge) = edges.next_edge() {
                    if curedge.next[k] == e {
                        curedge.next[k] = edge_next[k];
                        break; // the edge can only be present once in the list.
                    }
                }
            }
        }
    }

    /// Remove an edge and return its edge weight, or `None` if it didn't exist.
    ///
    /// Apart from `e`, this invalidates the last edge index in the graph
    /// (that edge will adopt the removed edge index).
    ///
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
    /// the vertices of `e` and the vertices of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>
    {
        // every edge is part of two lists,
        // outgoing and incoming edges.
        // Remove it from both
        let (edge_node, edge_next) = match self.edges.get(e.index()) {
            None => return None,
            Some(x) => (x.node, x.next),
        };
        // Remove the edge from its in and out lists by replacing it with
        // a link to the next in the list.
        self.change_edge_links(edge_node, e, edge_next);
        self.remove_edge_adjust_indices(e)
    }

    fn remove_edge_adjust_indices(&mut self, e: EdgeIndex<Ix>) -> Option<E>
    {
        // swap_remove the edge -- only the removed edge
        // and the edge swapped into place are affected and need updating
        // indices.
        let edge = self.edges.swap_remove(e.index());
        let swap = match self.edges.get(e.index()) {
            // no elment needed to be swapped.
            None => return Some(edge.weight),
            Some(ed) => ed.node,
        };
        let swapped_e = EdgeIndex::new(self.edges.len());

        // Update the edge lists by replacing links to the old index by references to the new
        // edge index.
        self.change_edge_links(swap, swapped_e, [e, e]);
        Some(edge.weight)
    }

    /// Return an iterator of all nodes with an edge starting from `a`.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `NodeIndex<Ix>`.
    ///
    /// Use [`.neighbors(a).detach()`][1] to get a neighbor walker that does
    /// not borrow from the graph.
    ///
    /// [1]: struct.Neighbors.html#method.detach
    pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
    {
        self.neighbors_directed(a, Outgoing)
    }

    /// Return an iterator of all neighbors that have an edge between them and
    /// `a`, in the specified direction.
    /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
    ///
    /// - `Directed`, `Outgoing`: All edges from `a`.
    /// - `Directed`, `Incoming`: All edges to `a`.
    /// - `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `NodeIndex<Ix>`.
    ///
    /// For a `Directed` graph, neighbors are listed in reverse order of their
    /// addition to the graph, so the most recently added edge's neighbor is
    /// listed first. The order in an `Undirected` graph is arbitrary.
    ///
    /// Use [`.neighbors_directed(a, dir).detach()`][1] to get a neighbor walker that does
    /// not borrow from the graph.
    ///
    /// [1]: struct.Neighbors.html#method.detach
    pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Neighbors<E, Ix>
    {
        let mut iter = self.neighbors_undirected(a);
        if self.is_directed() {
            let k = dir.index();
            iter.next[1 - k] = EdgeIndex::end();
            iter.skip_start = NodeIndex::end();
        }
        iter
    }

    /// Return an iterator of all neighbors that have an edge between them and
    /// `a`, in either direction.
    /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
    ///
    /// - `Directed` and `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `NodeIndex<Ix>`.
    ///
    /// Use [`.neighbors_undirected(a).detach()`][1] to get a neighbor walker that does
    /// not borrow from the graph.
    ///
    /// [1]: struct.Neighbors.html#method.detach
    ///
    pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
    {
        Neighbors {
            skip_start: a,
            edges: &self.edges,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::end(), EdgeIndex::end()],
                Some(n) => n.next,
            }
        }
    }

    /// Return an iterator of all edges of `a`.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges connected to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> {
        self.edges_directed(a, Outgoing)
    }

    /// Return an iterator of all edges of `a`, in the specified direction.
    ///
    /// - `Directed`, `Outgoing`: All edges from `a`.
    /// - `Directed`, `Incoming`: All edges to `a`.
    /// - `Undirected`: All edges connected to `a`.
    ///
    /// Produces an empty iterator if the node `a` doesn't exist.<br>
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix>
    {
        let mut iter = self.edges_undirected(a);
        if self.is_directed() {
            iter.direction = Some(dir);
        }
        if self.is_directed() && dir == Incoming {
            iter.next.swap(0, 1);
        }
        iter
    }

    /// Return an iterator over all edges connected to `a`.
    ///
    /// - `Directed` and `Undirected`: All edges connected to `a`.
    ///
    /// Produces an empty iterator if the node `a` doesn't exist.<br>
    /// Iterator element type is `EdgeReference<E, Ix>`.
    fn edges_undirected(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> {
        Edges {
            skip_start: a,
            edges: &self.edges,
            direction: None,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::end(), EdgeIndex::end()],
                Some(n) => n.next,
            },
            ty: PhantomData,
        }
    }

    /// Lookup if there is an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
        self.find_edge(a, b).is_some()
    }

    /// Lookup an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>>
    {
        if !self.is_directed() {
            self.find_edge_undirected(a, b).map(|(ix, _)| ix)
        } else {
            match self.nodes.get(a.index()) {
                None => None,
                Some(node) => self.find_edge_directed_from_node(node, b)
            }
        }
    }

    fn find_edge_directed_from_node(&self, node: &Node<N, Ix>, b: NodeIndex<Ix>)
        -> Option<EdgeIndex<Ix>>
    {
        let mut edix = node.next[0];
        while let Some(edge) = self.edges.get(edix.index()) {
            if edge.node[1] == b {
                return Some(edix)
            }
            edix = edge.next[0];
        }
        None
    }

    /// Lookup an edge between `a` and `b`, in either direction.
    ///
    /// If the graph is undirected, then this is equivalent to `.find_edge()`.
    ///
    /// Return the edge index and its directionality, with `Outgoing` meaning
    /// from `a` to `b` and `Incoming` the reverse,
    /// or `None` if the edge does not exist.
    pub fn find_edge_undirected(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<(EdgeIndex<Ix>, Direction)>
    {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => self.find_edge_undirected_from_node(node, b),
        }
    }

    fn find_edge_undirected_from_node(&self, node: &Node<N, Ix>, b: NodeIndex<Ix>)
        -> Option<(EdgeIndex<Ix>, Direction)>
    {
        for &d in &DIRECTIONS {
            let k = d.index();
            let mut edix = node.next[k];
            while let Some(edge) = self.edges.get(edix.index()) {
                if edge.node[1 - k] == b {
                    return Some((edix, d))
                }
                edix = edge.next[k];
            }
        }
        None
    }

    /// Return an iterator over either the nodes without edges to them
    /// (`Incoming`) or from them (`Outgoing`).
    ///
    /// An *internal* node has both incoming and outgoing edges.
    /// The nodes in `.externals(Incoming)` are the source nodes and
    /// `.externals(Outgoing)` are the sinks of the graph.
    ///
    /// For a graph with undirected edges, both the sinks and the sources are
    /// just the nodes without edges.
    ///
    /// The whole iteration computes in **O(|V|)** time.
    pub fn externals(&self, dir: Direction) -> Externals<N, Ty, Ix>
    {
        Externals{iter: self.nodes.iter().enumerate(), dir: dir, ty: PhantomData}
    }

    /// Return an iterator over the node indices of the graph
    pub fn node_indices(&self) -> NodeIndices<Ix> {
        NodeIndices { r: 0..self.node_count(), ty: PhantomData }
    }

    /// Return an iterator yielding mutable access to all node weights.
    ///
    /// The order in which weights are yielded matches the order of their
    /// node indices.
    pub fn node_weights_mut(&mut self) -> NodeWeightsMut<N, Ix>
    {
        NodeWeightsMut { nodes: self.nodes.iter_mut() }
    }

    /// Return an iterator over the edge indices of the graph
    pub fn edge_indices(&self) -> EdgeIndices<Ix> {
        EdgeIndices { r: 0..self.edge_count(), ty: PhantomData }
    }

    /// Create an iterator over all edges, in indexed order.
    ///
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edge_references(&self) -> EdgeReferences<E, Ix> {
        EdgeReferences {
            iter: self.edges.iter().enumerate()
        }
    }

    /// Return an iterator yielding mutable access to all edge weights.
    ///
    /// The order in which weights are yielded matches the order of their
    /// edge indices.
    pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<E, Ix>
    {
        EdgeWeightsMut { edges: self.edges.iter_mut() }
    }

    // Remaining methods are of the more internal flavour, read-only access to
    // the data structure's internals.

    /// Access the internal node array.
    pub fn raw_nodes(&self) -> &[Node<N, Ix>]
    {
        &self.nodes
    }

    /// Access the internal edge array.
    pub fn raw_edges(&self) -> &[Edge<E, Ix>]
    {
        &self.edges
    }

    /// Convert the graph into a vector of Nodes and a vector of Edges
    pub fn into_nodes_edges(self) -> (Vec<Node<N, Ix>>, Vec<Edge<E, Ix>>) {
        (self.nodes, self.edges)
    }

    /// Accessor for data structure internals: the first edge in the given direction.
    pub fn first_edge(&self, a: NodeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>>
    {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir.index()];
                if edix == EdgeIndex::end() {
                    None
                } else { Some(edix) }
            }
        }
    }

    /// Accessor for data structure internals: the next edge for the given direction.
    pub fn next_edge(&self, e: EdgeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>>
    {
        match self.edges.get(e.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir.index()];
                if edix == EdgeIndex::end() {
                    None
                } else { Some(edix) }
            }
        }
    }

    /// Index the `Graph` by two indices, any combination of
    /// node or edge indices is fine.
    ///
    /// **Panics** if the indices are equal or if they are out of bounds.
    ///
    /// ```
    /// use petgraph::{Graph, Incoming};
    /// use petgraph::visit::Dfs;
    ///
    /// let mut gr = Graph::new();
    /// let a = gr.add_node(0.);
    /// let b = gr.add_node(0.);
    /// let c = gr.add_node(0.);
    /// gr.add_edge(a, b, 3.);
    /// gr.add_edge(b, c, 2.);
    /// gr.add_edge(c, b, 1.);
    ///
    /// // walk the graph and sum incoming edges into the node weight
    /// let mut dfs = Dfs::new(&gr, a);
    /// while let Some(node) = dfs.next(&gr) {
    ///     // use a walker -- a detached neighbors iterator
    ///     let mut edges = gr.neighbors_directed(node, Incoming).detach();
    ///     while let Some(edge) = edges.next_edge(&gr) {
    ///         let (nw, ew) = gr.index_twice_mut(node, edge);
    ///         *nw += *ew;
    ///     }
    /// }
    ///
    /// // check the result
    /// assert_eq!(gr[a], 0.);
    /// assert_eq!(gr[b], 4.);
    /// assert_eq!(gr[c], 2.);
    /// ```
    pub fn index_twice_mut<T, U>(&mut self, i: T, j: U)
        -> (&mut <Self as Index<T>>::Output,
            &mut <Self as Index<U>>::Output)
        where Self: IndexMut<T> + IndexMut<U>,
              T: GraphIndex,
              U: GraphIndex,
    {
        assert!(T::is_node_index() != U::is_node_index() ||
                i.index() != j.index());

        // Allow two mutable indexes here -- they are nonoverlapping
        unsafe {
            let self_mut = self as *mut _;
            (<Self as IndexMut<T>>::index_mut(&mut *self_mut, i),
             <Self as IndexMut<U>>::index_mut(&mut *self_mut, j))
        }
    }

    /// Reverse the direction of all edges
    pub fn reverse(&mut self) {
        // swap edge endpoints,
        // edge incoming / outgoing lists,
        // node incoming / outgoing lists
        for edge in &mut self.edges {
            edge.node.swap(0, 1);
            edge.next.swap(0, 1);
        }
        for node in &mut self.nodes {
            node.next.swap(0, 1);
        }
    }

    /// Remove all nodes and edges
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.edges.clear();
    }

    /// Remove all edges
    pub fn clear_edges(&mut self) {
        self.edges.clear();
        for node in &mut self.nodes {
            node.next = [EdgeIndex::end(), EdgeIndex::end()];
        }
    }

    /// Return the current node and edge capacity of the graph.
    pub fn capacity(&self) -> (usize, usize) {
        (self.nodes.capacity(), self.edges.capacity())
    }

    /// Reserves capacity for at least `additional` more nodes to be inserted in
    /// the graph. Graph may reserve more space to avoid frequent reallocations.
    ///
    /// **Panics** if the new capacity overflows `usize`.
    pub fn reserve_nodes(&mut self, additional: usize) {
        self.nodes.reserve(additional);
    }

    /// Reserves capacity for at least `additional` more edges to be inserted in
    /// the graph. Graph may reserve more space to avoid frequent reallocations.
    ///
    /// **Panics** if the new capacity overflows `usize`.
    pub fn reserve_edges(&mut self, additional: usize) {
        self.edges.reserve(additional);
    }

    /// Reserves the minimum capacity for exactly `additional` more nodes to be
    /// inserted in the graph. Does nothing if the capacity is already
    /// sufficient.
    ///
    /// Prefer `reserve_nodes` if future insertions are expected.
    ///
    /// **Panics** if the new capacity overflows `usize`.
    pub fn reserve_exact_nodes(&mut self, additional: usize) {
        self.nodes.reserve_exact(additional);
    }

    /// Reserves the minimum capacity for exactly `additional` more edges to be
    /// inserted in the graph.
    /// Does nothing if the capacity is already sufficient.
    ///
    /// Prefer `reserve_edges` if future insertions are expected.
    ///
    /// **Panics** if the new capacity overflows `usize`.
    pub fn reserve_exact_edges(&mut self, additional: usize) {
        self.edges.reserve_exact(additional);
    }

    /// Shrinks the capacity of the underlying nodes collection as much as possible.
    pub fn shrink_to_fit_nodes(&mut self) {
        self.nodes.shrink_to_fit();
    }

    /// Shrinks the capacity of the underlying edges collection as much as possible.
    pub fn shrink_to_fit_edges(&mut self) {
        self.edges.shrink_to_fit();
    }

    /// Shrinks the capacity of the graph as much as possible.
    pub fn shrink_to_fit(&mut self) {
        self.nodes.shrink_to_fit();
        self.edges.shrink_to_fit();
    }

    /// Keep all nodes that return `true` from the `visit` closure,
    /// remove the others.
    ///
    /// `visit` is provided a proxy reference to the graph, so that
    /// the graph can be walked and associated data modified.
    ///
    /// The order nodes are visited is not specified.
    pub fn retain_nodes<F>(&mut self, mut visit: F)
        where F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool
    {
        for index in self.node_indices().rev() {
            if !visit(Frozen(self), index) {
                let ret = self.remove_node(index);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }

    /// Keep all edges that return `true` from the `visit` closure,
    /// remove the others.
    ///
    /// `visit` is provided a proxy reference to the graph, so that
    /// the graph can be walked and associated data modified.
    ///
    /// The order edges are visited is not specified.
    pub fn retain_edges<F>(&mut self, mut visit: F)
        where F: FnMut(Frozen<Self>, EdgeIndex<Ix>) -> bool
    {
        for index in self.edge_indices().rev() {
            if !visit(Frozen(self), index) {
                let ret = self.remove_edge(index);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }


    /// Create a new `Graph` from an iterable of edges.
    ///
    /// Node weights `N` are set to default values.
    /// Edge weights `E` may either be specified in the list,
    /// or they are filled with default values.
    ///
    /// Nodes are inserted automatically to match the edges.
    ///
    /// ```
    /// use petgraph::Graph;
    ///
    /// let gr = Graph::<(), i32>::from_edges(&[
    ///     (0, 1), (0, 2), (0, 3),
    ///     (1, 2), (1, 3),
    ///     (2, 3),
    /// ]);
    /// ```
    pub fn from_edges<I>(iterable: I) -> Self
        where I: IntoIterator,
              I::Item: IntoWeightedEdge<E>,
              <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
              N: Default,
    {
        let mut g = Self::with_capacity(0, 0);
        g.extend_with_edges(iterable);
        g
    }

    /// Extend the graph from an iterable of edges.
    ///
    /// Node weights `N` are set to default values.
    /// Edge weights `E` may either be specified in the list,
    /// or they are filled with default values.
    ///
    /// Nodes are inserted automatically to match the edges.
    pub fn extend_with_edges<I>(&mut self, iterable: I)
        where I: IntoIterator,
              I::Item: IntoWeightedEdge<E>,
              <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
              N: Default,
    {
        let iter = iterable.into_iter();
        let (low, _) = iter.size_hint();
        self.edges.reserve(low);

        for elt in iter {
            let (source, target, weight) = elt.into_weighted_edge();
            let (source, target) = (source.into(), target.into());
            let nx = cmp::max(source, target);
            while nx.index() >= self.node_count() {
                self.add_node(N::default());
            }
            self.add_edge(source, target, weight);
        }
    }


    /// Create a new `Graph` by mapping node and
    /// edge weights to new values.
    ///
    /// The resulting graph has the same structure and the same
    /// graph indices as `self`.
    pub fn map<'a, F, G, N2, E2>(&'a self, mut node_map: F, mut edge_map: G)
        -> Graph<N2, E2, Ty, Ix>
        where F: FnMut(NodeIndex<Ix>, &'a N) -> N2,
              G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,
    {
        let mut g = Graph::with_capacity(self.node_count(), self.edge_count());
        g.nodes.extend(enumerate(&self.nodes).map(|(i, node)|
            Node {
                weight: node_map(NodeIndex::new(i), &node.weight),
                next: node.next,
            }));
        g.edges.extend(enumerate(&self.edges).map(|(i, edge)| 
            Edge {
                weight: edge_map(EdgeIndex::new(i), &edge.weight),
                next: edge.next,
                node: edge.node,
            }));
        g
    }

    /// Create a new `Graph` by mapping nodes and edges.
    /// A node or edge may be mapped to `None` to exclude it from
    /// the resulting graph.
    ///
    /// Nodes are mapped first with the `node_map` closure, then
    /// `edge_map` is called for the edges that have not had any endpoint
    /// removed.
    ///
    /// The resulting graph has the structure of a subgraph of the original graph.
    /// If no nodes are removed, the resulting graph has compatible node
    /// indices; if neither nodes nor edges are removed, the result has
    /// the same graph indices as `self`.
    pub fn filter_map<'a, F, G, N2, E2>(&'a self, mut node_map: F, mut edge_map: G)
        -> Graph<N2, E2, Ty, Ix>
        where F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>,
              G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,
    {
        let mut g = Graph::with_capacity(0, 0);
        // mapping from old node index to new node index, end represents removed.
        let mut node_index_map = vec![NodeIndex::end(); self.node_count()];
        for (i, node) in enumerate(&self.nodes) {
            if let Some(nw) = node_map(NodeIndex::new(i), &node.weight) {
                node_index_map[i] = g.add_node(nw);
            }
        }
        for (i, edge) in enumerate(&self.edges) {
            // skip edge if any endpoint was removed
            let source = node_index_map[edge.source().index()];
            let target = node_index_map[edge.target().index()];
            if source != NodeIndex::end() && target != NodeIndex::end() {
                if let Some(ew) = edge_map(EdgeIndex::new(i), &edge.weight) {
                    g.add_edge(source, target, ew);
                }
            }
        }
        g
    }

    /// Convert the graph into either undirected or directed. No edge adjustments
    /// are done, so you may want to go over the result to remove or add edges.
    ///
    /// Computes in **O(1)** time.
    pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix> where
        NewTy: EdgeType
    {
        Graph{nodes: self.nodes, edges: self.edges,
              ty: PhantomData}
    }


    //
    // internal methods
    //
    #[cfg(feature = "serde-1")]
    /// Fix up node and edge links after deserialization
    fn link_edges(&mut self) -> Result<(), NodeIndex<Ix>> {
        for (edge_index, edge) in enumerate(&mut self.edges) {
            let a = edge.source();
            let b = edge.target();
            let edge_idx = EdgeIndex::new(edge_index);
            match index_twice(&mut self.nodes, a.index(), b.index()) {
                Pair::None => return Err(if a > b { a } else { b }),
                Pair::One(an) => {
                    edge.next = an.next;
                    an.next[0] = edge_idx;
                    an.next[1] = edge_idx;
                }
                Pair::Both(an, bn) => {
                    // a and b are different indices
                    edge.next = [an.next[0], bn.next[1]];
                    an.next[0] = edge_idx;
                    bn.next[1] = edge_idx;
                }
            }
        }
        Ok(())
    }
}

/// An iterator over either the nodes without edges to them or from them.
pub struct Externals<'a, N: 'a, Ty, Ix: IndexType = DefaultIx> {
    iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
    dir: Direction,
    ty: PhantomData<Ty>,
}

impl<'a, N: 'a, Ty, Ix> Iterator for Externals<'a, N, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Item = NodeIndex<Ix>;
    fn next(&mut self) -> Option<NodeIndex<Ix>>
    {
        let k = self.dir.index();
        loop {
            match self.iter.next() {
                None => return None,
                Some((index, node)) => {
                    if node.next[k] == EdgeIndex::end() &&
                        (Ty::is_directed() ||
                         node.next[1-k] == EdgeIndex::end()) {
                        return Some(NodeIndex::new(index))
                    } else {
                        continue
                    }
                },
            }
        }
    }
}

/// Iterator over the neighbors of a node.
///
/// Iterator element type is `NodeIndex<Ix>`.
///
/// Created with [`.neighbors()`][1], [`.neighbors_directed()`][2] or
/// [`.neighbors_undirected()`][3].
///
/// [1]: struct.Graph.html#method.neighbors
/// [2]: struct.Graph.html#method.neighbors_directed
/// [3]: struct.Graph.html#method.neighbors_undirected
pub struct Neighbors<'a, E: 'a, Ix: 'a = DefaultIx>
{
    /// starting node to skip over
    skip_start: NodeIndex<Ix>,
    edges: &'a [Edge<E, Ix>],
    next: [EdgeIndex<Ix>; 2],
}

impl<'a, E, Ix> Iterator for Neighbors<'a, E, Ix> where
    Ix: IndexType,
{
    type Item = NodeIndex<Ix>;

    fn next(&mut self) -> Option<NodeIndex<Ix>> {
        // First any outgoing edges
        match self.edges.get(self.next[0].index()) {
            None => {}
            Some(edge) => {
                self.next[0] = edge.next[0];
                return Some(edge.node[1]);
            }
        }
        // Then incoming edges
        // For an "undirected" iterator (traverse both incoming
        // and outgoing edge lists), make sure we don't double
        // count selfloops by skipping them in the incoming list.
        while let Some(edge) = self.edges.get(self.next[1].index()) {
            self.next[1] = edge.next[1];
            if edge.node[0] != self.skip_start {
                return Some(edge.node[0]);
            }
        }
        None
    }
}


impl<'a, E, Ix> Clone for Neighbors<'a, E, Ix>
    where Ix: IndexType,
{
    clone_fields!(Neighbors,
                  skip_start,
                  edges,
                  next,
                  );
}

impl<'a, E, Ix> Neighbors<'a, E, Ix>
    where Ix: IndexType,
{
    /// Return a “walker” object that can be used to step through the
    /// neighbors and edges from the origin node.
    ///
    /// Note: The walker does not borrow from the graph, this is to allow mixing
    /// edge walking with mutating the graph's weights.
    pub fn detach(&self) -> WalkNeighbors<Ix> {
        WalkNeighbors {
            skip_start: self.skip_start,
            next: self.next
        }
    }
}

struct EdgesWalkerMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
    edges: &'a mut [Edge<E, Ix>],
    next: EdgeIndex<Ix>,
    dir: Direction,
}

fn edges_walker_mut<E, Ix>(edges: &mut [Edge<E, Ix>], next: EdgeIndex<Ix>, dir: Direction)
    -> EdgesWalkerMut<E, Ix>
    where Ix: IndexType,
{
    EdgesWalkerMut {
        edges: edges,
        next: next,
        dir: dir
    }
}

impl<'a, E, Ix> EdgesWalkerMut<'a, E, Ix> where
    Ix: IndexType,
{
    fn next_edge(&mut self) -> Option<&mut Edge<E, Ix>> {
        self.next().map(|t| t.1)
    }

    fn next(&mut self) -> Option<(EdgeIndex<Ix>, &mut Edge<E, Ix>)> {
        let this_index = self.next;
        let k = self.dir.index();
        match self.edges.get_mut(self.next.index()) {
            None => None,
            Some(edge) => {
                self.next = edge.next[k];
                Some((this_index, edge))
            }
        }
    }
}


impl<'a, N, E, Ty, Ix> IntoEdges for &'a Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type Edges = Edges<'a, E, Ty, Ix>;
    fn edges(self, a: Self::NodeId) -> Self::Edges {
        self.edges(a)
    }
}

impl<'a, N, E, Ty, Ix> IntoEdgesDirected for &'a Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type EdgesDirected = Edges<'a, E, Ty, Ix>;
    fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected {
        self.edges_directed(a, dir)
    }
}


/// Iterator over the edges of from or to a node
pub struct Edges<'a, E: 'a, Ty, Ix: 'a = DefaultIx>
    where Ty: EdgeType,
          Ix: IndexType,
{
    /// starting node to skip over
    skip_start: NodeIndex<Ix>,
    edges: &'a [Edge<E, Ix>],

    /// Next edge to visit.
    /// If we are only following one direction, we only use next[0] regardless.
    next: [EdgeIndex<Ix>; 2],

    /// Which direction to follow
    /// None: Both,
    /// Some(d): d if Directed, Both if Undirected
    direction: Option<Direction>,
    ty: PhantomData<Ty>,
}

impl<'a, E, Ty, Ix> Iterator for Edges<'a, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type Item = EdgeReference<'a, E, Ix>;

    fn next(&mut self) -> Option<Self::Item> {
        // First the outgoing or incoming edges (directionality)
        let k = self.direction.unwrap_or(Outgoing).index();
        let i = self.next[0].index();
        match self.edges.get(i) {
            None => {}
            Some(&Edge { ref node, ref weight, ref next }) => {
                self.next[0] = next[k];
                return Some(EdgeReference {
                    index: edge_index(i),
                    node: *node,
                    weight: weight,
                });
            }
        }
        // Stop here if we only follow one direction
        if self.direction.is_some() {
            return None;
        }
        // Then incoming edges
        // For an "undirected" iterator (traverse both incoming
        // and outgoing edge lists), make sure we don't double
        // count selfloops by skipping them in the incoming list.

        // We reach here if self.direction was None or Outgoing.
        debug_assert_eq!(k, 0);
        while let Some(edge) = self.edges.get(self.next[1].index()) {
            let i = self.next[1].index();
            self.next[1] = edge.next[1];
            if edge.node[0] != self.skip_start {
                return Some(EdgeReference {
                    index: edge_index(i),
                    node: swap_pair(edge.node),
                    weight: &edge.weight,
                });
            }
        }
        None
    }
}

fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] {
    x.swap(0, 1);
    x
}

impl<'a, E, Ty, Ix> Clone for Edges<'a, E, Ty, Ix>
    where Ix: IndexType,
          Ty: EdgeType,
{
    fn clone(&self) -> Self {
        Edges {
            skip_start: self.skip_start,
            edges: self.edges,
            next: self.next,
            direction: self.direction,
            ty: self.ty,
        }
    }
}

/// Iterator yielding mutable access to all node weights.
pub struct NodeWeightsMut<'a, N: 'a, Ix: IndexType = DefaultIx> {
    nodes: ::std::slice::IterMut<'a, Node<N, Ix>>,
}

impl<'a, N, Ix> Iterator for NodeWeightsMut<'a, N, Ix> where
    Ix: IndexType,
{
    type Item = &'a mut N;

    fn next(&mut self) -> Option<&'a mut N> {
        self.nodes.next().map(|node| &mut node.weight)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.nodes.size_hint()
    }
}

/// Iterator yielding mutable access to all edge weights.
pub struct EdgeWeightsMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
    edges: ::std::slice::IterMut<'a, Edge<E, Ix>>,
}

impl<'a, E, Ix> Iterator for EdgeWeightsMut<'a, E, Ix> where
    Ix: IndexType,
{
    type Item = &'a mut E;

    fn next(&mut self) -> Option<&'a mut E> {
        self.edges.next().map(|edge| &mut edge.weight)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.edges.size_hint()
    }
}

/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = N;
    fn index(&self, index: NodeIndex<Ix>) -> &N {
        &self.nodes[index.index()].weight
    }
}

/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N {
        &mut self.nodes[index.index()].weight
    }

}

/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = E;
    fn index(&self, index: EdgeIndex<Ix>) -> &E {
        &self.edges[index.index()].weight
    }
}

/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E {
        &mut self.edges[index.index()].weight
    }
}

/// Create a new empty `Graph`.
impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    fn default() -> Self { Self::with_capacity(0, 0) }
}

/// A  `GraphIndex` is a node or edge index.
pub trait GraphIndex : Copy {
    #[doc(hidden)]
    fn index(&self) -> usize;
    #[doc(hidden)]
    fn is_node_index() -> bool;
}

impl<Ix: IndexType> GraphIndex for NodeIndex<Ix> {
    #[inline]
    fn index(&self) -> usize { NodeIndex::index(*self) }
    #[inline]
    fn is_node_index() -> bool { true }
}

impl<Ix: IndexType> GraphIndex for EdgeIndex<Ix> {
    #[inline]
    fn index(&self) -> usize { EdgeIndex::index(*self) }
    #[inline]
    fn is_node_index() -> bool { false }
}

/// A “walker” object that can be used to step through the edge list of a node.
///
/// Created with [`.detach()`](struct.Neighbors.html#method.detach).
///
/// The walker does not borrow from the graph, so it lets you step through
/// neighbors or incident edges while also mutating graph weights, as
/// in the following example:
///
/// ```
/// use petgraph::{Graph, Incoming};
/// use petgraph::visit::Dfs;
///
/// let mut gr = Graph::new();
/// let a = gr.add_node(0.);
/// let b = gr.add_node(0.);
/// let c = gr.add_node(0.);
/// gr.add_edge(a, b, 3.);
/// gr.add_edge(b, c, 2.);
/// gr.add_edge(c, b, 1.);
///
/// // step through the graph and sum incoming edges into the node weight
/// let mut dfs = Dfs::new(&gr, a);
/// while let Some(node) = dfs.next(&gr) {
///     // use a detached neighbors walker
///     let mut edges = gr.neighbors_directed(node, Incoming).detach();
///     while let Some(edge) = edges.next_edge(&gr) {
///         gr[node] += gr[edge];
///     }
/// }
///
/// // check the result
/// assert_eq!(gr[a], 0.);
/// assert_eq!(gr[b], 4.);
/// assert_eq!(gr[c], 2.);
/// ```
pub struct WalkNeighbors<Ix> {
    skip_start: NodeIndex<Ix>,
    next: [EdgeIndex<Ix>; 2],
}

impl<Ix> Clone for WalkNeighbors<Ix>
    where Ix: IndexType,
{
    fn clone(&self) -> Self {
        WalkNeighbors {
            skip_start: self.skip_start,
            next: self.next,
        }
    }
}

impl<Ix: IndexType> WalkNeighbors<Ix> {
    /// Step to the next edge and its endpoint node in the walk for graph `g`.
    ///
    /// The next node indices are always the others than the starting point
    /// where the `WalkNeighbors` value was created.
    /// For an `Outgoing` walk, the target nodes,
    /// for an `Incoming` walk, the source nodes of the edge.
    pub fn next<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
        -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> {
        // First any outgoing edges
        match g.edges.get(self.next[0].index()) {
            None => {}
            Some(edge) => {
                let ed = self.next[0];
                self.next[0] = edge.next[0];
                return Some((ed, edge.node[1]));
            }
        }
        // Then incoming edges
        // For an "undirected" iterator (traverse both incoming
        // and outgoing edge lists), make sure we don't double
        // count selfloops by skipping them in the incoming list.
        while let Some(edge) = g.edges.get(self.next[1].index()) {
            let ed = self.next[1];
            self.next[1] = edge.next[1];
            if edge.node[0] != self.skip_start {
                return Some((ed, edge.node[0]));
            }
        }
        None
    }

    pub fn next_node<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
        -> Option<NodeIndex<Ix>>
    {
        self.next(g).map(|t| t.1)
    }

    pub fn next_edge<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
        -> Option<EdgeIndex<Ix>>
    {
        self.next(g).map(|t| t.0)
    }
}

/// Iterator over the node indices of a graph.
#[derive(Clone, Debug)]
pub struct NodeIndices<Ix = DefaultIx> {
    r: Range<usize>,
    ty: PhantomData<fn() -> Ix>,
}

impl<Ix: IndexType> Iterator for NodeIndices<Ix> {
    type Item = NodeIndex<Ix>;

    fn next(&mut self) -> Option<Self::Item> {
        self.r.next().map(node_index)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.r.size_hint()
    }
}

impl<Ix: IndexType> DoubleEndedIterator for NodeIndices<Ix> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.r.next_back().map(node_index)
    }
}

impl<Ix: IndexType> ExactSizeIterator for NodeIndices<Ix> {}

/// Iterator over the edge indices of a graph.
#[derive(Clone, Debug)]
pub struct EdgeIndices<Ix = DefaultIx> {
    r: Range<usize>,
    ty: PhantomData<fn() -> Ix>,
}

impl<Ix: IndexType> Iterator for EdgeIndices<Ix> {
    type Item = EdgeIndex<Ix>;

    fn next(&mut self) -> Option<Self::Item> {
        self.r.next().map(edge_index)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.r.size_hint()
    }
}

impl<Ix: IndexType> DoubleEndedIterator for EdgeIndices<Ix> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.r.next_back().map(edge_index)
    }
}

impl<Ix: IndexType> ExactSizeIterator for EdgeIndices<Ix> {}

/// Reference to a `Graph` edge.
#[derive(Debug)]
pub struct EdgeReference<'a, E: 'a, Ix = DefaultIx> {
    index: EdgeIndex<Ix>,
    node: [NodeIndex<Ix>; 2],
    weight: &'a E,
}

impl<'a, E, Ix: IndexType> Clone for EdgeReference<'a, E, Ix> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, E, Ix: IndexType> Copy for EdgeReference<'a, E, Ix> { }

impl<'a, E, Ix: IndexType> PartialEq for EdgeReference<'a, E, Ix>
    where E: PartialEq,
{
    fn eq(&self, rhs: &Self) -> bool {
        self.index == rhs.index && self.weight == rhs.weight
    }
}

impl<'a, N, E, Ty, Ix> IntoNodeReferences for &'a Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type NodeRef = (NodeIndex<Ix>, &'a N);
    type NodeReferences = NodeReferences<'a, N, Ix>;
    fn node_references(self) -> Self::NodeReferences {
        NodeReferences {
            iter: self.nodes.iter().enumerate()
        }
    }
}

/// Iterator over all nodes of a graph.
pub struct NodeReferences<'a, N: 'a, Ix: IndexType = DefaultIx> {
    iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
}

impl<'a, N, Ix> Iterator for NodeReferences<'a, N, Ix>
    where Ix: IndexType
{
    type Item = (NodeIndex<Ix>, &'a N);

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|(i, node)| 
            (node_index(i), &node.weight)
        )
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, N, Ix> DoubleEndedIterator for NodeReferences<'a, N, Ix>
    where Ix: IndexType
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|(i, node)|
            (node_index(i), &node.weight)
        )
    }
}

impl<'a, N, Ix> ExactSizeIterator for NodeReferences<'a, N, Ix>
    where Ix: IndexType
{ }

impl<'a, Ix, E> EdgeReference<'a, E, Ix>
    where Ix: IndexType,
{
    /// Access the edge’s weight.
    ///
    /// **NOTE** that this method offers a longer lifetime
    /// than the trait (unfortunately they don't match yet).
    pub fn weight(&self) -> &'a E { self.weight }
}

impl<'a, Ix, E> EdgeRef for EdgeReference<'a, E, Ix>
    where Ix: IndexType,
{
    type NodeId = NodeIndex<Ix>;
    type EdgeId = EdgeIndex<Ix>;
    type Weight = E;

    fn source(&self) -> Self::NodeId { self.node[0] }
    fn target(&self) -> Self::NodeId { self.node[1] }
    fn weight(&self) -> &E { self.weight }
    fn id(&self) -> Self::EdgeId { self.index }
}


/// Iterator over all edges of a graph.
pub struct EdgeReferences<'a, E: 'a, Ix: IndexType = DefaultIx> {
    iter: iter::Enumerate<slice::Iter<'a, Edge<E, Ix>>>,
}

impl<'a, E, Ix> Iterator for EdgeReferences<'a, E, Ix>
    where Ix: IndexType
{
    type Item = EdgeReference<'a, E, Ix>;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|(i, edge)| 
            EdgeReference {
                index: edge_index(i),
                node: edge.node,
                weight: &edge.weight,
            }
        )
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, E, Ix> DoubleEndedIterator for EdgeReferences<'a, E, Ix>
    where Ix: IndexType
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|(i, edge)|
            EdgeReference {
                index: edge_index(i),
                node: edge.node,
                weight: &edge.weight,
            }
        )
    }
}

impl<'a, E, Ix> ExactSizeIterator for EdgeReferences<'a, E, Ix>
    where Ix: IndexType
{}

#[cfg(feature = "stable_graph")]
pub mod stable_graph;
mod frozen;

/// `Frozen` is a graph wrapper.
///
/// The `Frozen` only allows shared access (read-only) to the
/// underlying graph `G`, but it allows mutable access to its
/// node and edge weights.
///
/// This is used to ensure immutability of the graph's structure
/// while permitting weights to be both read and written.
///
/// See indexing implementations and the traits `Data` and `DataMap`
/// for read-write access to the graph's weights.
pub struct Frozen<'a, G: 'a>(&'a mut G);