1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// Translated from C to Rust. The original C code can be found at
// https://github.com/ulfjack/ryu and carries the following license:
//
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

use core::{mem, ptr};

use common::*;
use digit_table::*;

#[cfg(feature = "no-panic")]
use no_panic::no_panic;

pub const FLOAT_MANTISSA_BITS: u32 = 23;
pub const FLOAT_EXPONENT_BITS: u32 = 8;

const FLOAT_POW5_INV_BITCOUNT: i32 = 59;
const FLOAT_POW5_BITCOUNT: i32 = 61;

// This table is generated by PrintFloatLookupTable.
static FLOAT_POW5_INV_SPLIT: [u64; 32] = [
    576460752303423489,
    461168601842738791,
    368934881474191033,
    295147905179352826,
    472236648286964522,
    377789318629571618,
    302231454903657294,
    483570327845851670,
    386856262276681336,
    309485009821345069,
    495176015714152110,
    396140812571321688,
    316912650057057351,
    507060240091291761,
    405648192073033409,
    324518553658426727,
    519229685853482763,
    415383748682786211,
    332306998946228969,
    531691198313966350,
    425352958651173080,
    340282366920938464,
    544451787073501542,
    435561429658801234,
    348449143727040987,
    557518629963265579,
    446014903970612463,
    356811923176489971,
    570899077082383953,
    456719261665907162,
    365375409332725730,
    1 << 63,
];

static FLOAT_POW5_SPLIT: [u64; 47] = [
    1152921504606846976,
    1441151880758558720,
    1801439850948198400,
    2251799813685248000,
    1407374883553280000,
    1759218604441600000,
    2199023255552000000,
    1374389534720000000,
    1717986918400000000,
    2147483648000000000,
    1342177280000000000,
    1677721600000000000,
    2097152000000000000,
    1310720000000000000,
    1638400000000000000,
    2048000000000000000,
    1280000000000000000,
    1600000000000000000,
    2000000000000000000,
    1250000000000000000,
    1562500000000000000,
    1953125000000000000,
    1220703125000000000,
    1525878906250000000,
    1907348632812500000,
    1192092895507812500,
    1490116119384765625,
    1862645149230957031,
    1164153218269348144,
    1455191522836685180,
    1818989403545856475,
    2273736754432320594,
    1421085471520200371,
    1776356839400250464,
    2220446049250313080,
    1387778780781445675,
    1734723475976807094,
    2168404344971008868,
    1355252715606880542,
    1694065894508600678,
    2117582368135750847,
    1323488980084844279,
    1654361225106055349,
    2067951531382569187,
    1292469707114105741,
    1615587133892632177,
    2019483917365790221,
];

#[cfg_attr(feature = "no-panic", inline)]
fn pow5_factor(mut value: u32) -> u32 {
    let mut count = 0u32;
    loop {
        debug_assert!(value != 0);
        let q = value / 5;
        let r = value % 5;
        if r != 0 {
            break;
        }
        value = q;
        count += 1;
    }
    count
}

// Returns true if value is divisible by 5^p.
#[cfg_attr(feature = "no-panic", inline)]
fn multiple_of_power_of_5(value: u32, p: u32) -> bool {
    pow5_factor(value) >= p
}

// Returns true if value is divisible by 2^p.
#[cfg_attr(feature = "no-panic", inline)]
fn multiple_of_power_of_2(value: u32, p: u32) -> bool {
    // return __builtin_ctz(value) >= p;
    (value & ((1u32 << p) - 1)) == 0
}

// It seems to be slightly faster to avoid uint128_t here, although the
// generated code for uint128_t looks slightly nicer.
#[cfg_attr(feature = "no-panic", inline)]
fn mul_shift(m: u32, factor: u64, shift: i32) -> u32 {
    debug_assert!(shift > 32);

    // The casts here help MSVC to avoid calls to the __allmul library
    // function.
    let factor_lo = factor as u32;
    let factor_hi = (factor >> 32) as u32;
    let bits0 = m as u64 * factor_lo as u64;
    let bits1 = m as u64 * factor_hi as u64;

    let sum = (bits0 >> 32) + bits1;
    let shifted_sum = sum >> (shift - 32);
    debug_assert!(shifted_sum <= u32::max_value() as u64);
    shifted_sum as u32
}

#[cfg_attr(feature = "no-panic", inline)]
fn mul_pow5_inv_div_pow2(m: u32, q: u32, j: i32) -> u32 {
    debug_assert!(q < FLOAT_POW5_INV_SPLIT.len() as u32);
    unsafe { mul_shift(m, *FLOAT_POW5_INV_SPLIT.get_unchecked(q as usize), j) }
}

#[cfg_attr(feature = "no-panic", inline)]
fn mul_pow5_div_pow2(m: u32, i: u32, j: i32) -> u32 {
    debug_assert!(i < FLOAT_POW5_SPLIT.len() as u32);
    unsafe { mul_shift(m, *FLOAT_POW5_SPLIT.get_unchecked(i as usize), j) }
}

#[cfg_attr(feature = "no-panic", inline)]
pub fn decimal_length(v: u32) -> u32 {
    // Function precondition: v is not a 10-digit number.
    // (9 digits are sufficient for round-tripping.)
    debug_assert!(v < 1000000000);

    if v >= 100000000 {
        9
    } else if v >= 10000000 {
        8
    } else if v >= 1000000 {
        7
    } else if v >= 100000 {
        6
    } else if v >= 10000 {
        5
    } else if v >= 1000 {
        4
    } else if v >= 100 {
        3
    } else if v >= 10 {
        2
    } else {
        1
    }
}

// A floating decimal representing m * 10^e.
pub struct FloatingDecimal32 {
    pub mantissa: u32,
    pub exponent: i32,
}

#[cfg_attr(feature = "no-panic", inline)]
pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 {
    let bias = (1u32 << (FLOAT_EXPONENT_BITS - 1)) - 1;

    let (e2, m2) = if ieee_exponent == 0 {
        (
            // We subtract 2 so that the bounds computation has 2 additional bits.
            1 - bias as i32 - FLOAT_MANTISSA_BITS as i32 - 2,
            ieee_mantissa,
        )
    } else {
        (
            ieee_exponent as i32 - bias as i32 - FLOAT_MANTISSA_BITS as i32 - 2,
            (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa,
        )
    };
    let even = (m2 & 1) == 0;
    let accept_bounds = even;

    // Step 2: Determine the interval of legal decimal representations.
    let mv = 4 * m2;
    let mp = 4 * m2 + 2;
    // Implicit bool -> int conversion. True is 1, false is 0.
    let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
    let mm = 4 * m2 - 1 - mm_shift;

    // Step 3: Convert to a decimal power base using 64-bit arithmetic.
    let mut vr: u32;
    let mut vp: u32;
    let mut vm: u32;
    let e10: i32;
    let mut vm_is_trailing_zeros = false;
    let mut vr_is_trailing_zeros = false;
    let mut last_removed_digit = 0u8;
    if e2 >= 0 {
        let q = log10_pow2(e2) as u32;
        e10 = q as i32;
        let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) as i32 - 1;
        let i = -e2 + q as i32 + k;
        vr = mul_pow5_inv_div_pow2(mv, q, i);
        vp = mul_pow5_inv_div_pow2(mp, q, i);
        vm = mul_pow5_inv_div_pow2(mm, q, i);
        if q != 0 && (vp - 1) / 10 <= vm / 10 {
            // We need to know one removed digit even if we are not going to loop below. We could use
            // q = X - 1 above, except that would require 33 bits for the result, and we've found that
            // 32-bit arithmetic is faster even on 64-bit machines.
            let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) as i32 - 1;
            last_removed_digit =
                (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8;
        }
        if q <= 9 {
            // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
            if mv % 5 == 0 {
                vr_is_trailing_zeros = multiple_of_power_of_5(mv, q);
            } else if accept_bounds {
                vm_is_trailing_zeros = multiple_of_power_of_5(mm, q);
            } else {
                vp -= multiple_of_power_of_5(mp, q) as u32;
            }
        }
    } else {
        let q = log10_pow5(-e2) as u32;
        e10 = q as i32 + e2;
        let i = -e2 - q as i32;
        let k = pow5bits(i) as i32 - FLOAT_POW5_BITCOUNT;
        let mut j = q as i32 - k;
        vr = mul_pow5_div_pow2(mv, i as u32, j);
        vp = mul_pow5_div_pow2(mp, i as u32, j);
        vm = mul_pow5_div_pow2(mm, i as u32, j);
        if q != 0 && (vp - 1) / 10 <= vm / 10 {
            j = q as i32 - 1 - (pow5bits(i + 1) as i32 - FLOAT_POW5_BITCOUNT);
            last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8;
        }
        if q <= 1 {
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
            vr_is_trailing_zeros = true;
            if accept_bounds {
                // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
                vm_is_trailing_zeros = mm_shift == 1;
            } else {
                // mp = mv + 2, so it always has at least one trailing 0 bit.
                vp -= 1;
            }
        } else if q < 31 {
            // TODO(ulfjack): Use a tighter bound here.
            vr_is_trailing_zeros = multiple_of_power_of_2(mv, q - 1);
        }
    }

    // Step 4: Find the shortest decimal representation in the interval of legal representations.
    let mut removed = 0u32;
    let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
        // General case, which happens rarely (~4.0%).
        while vp / 10 > vm / 10 {
            vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0;
            vr_is_trailing_zeros &= last_removed_digit == 0;
            last_removed_digit = (vr % 10) as u8;
            vr /= 10;
            vp /= 10;
            vm /= 10;
            removed += 1;
        }
        if vm_is_trailing_zeros {
            while vm % 10 == 0 {
                vr_is_trailing_zeros &= last_removed_digit == 0;
                last_removed_digit = (vr % 10) as u8;
                vr /= 10;
                vp /= 10;
                vm /= 10;
                removed += 1;
            }
        }
        if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
            // Round even if the exact number is .....50..0.
            last_removed_digit = 4;
        }
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
            as u32
    } else {
        // Specialized for the common case (~96.0%). Percentages below are relative to this.
        // Loop iterations below (approximately):
        // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
        while vp / 10 > vm / 10 {
            last_removed_digit = (vr % 10) as u8;
            vr /= 10;
            vp /= 10;
            vm /= 10;
            removed += 1;
        }
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        vr + (vr == vm || last_removed_digit >= 5) as u32
    };
    let exp = e10 + removed as i32;

    FloatingDecimal32 {
        exponent: exp,
        mantissa: output,
    }
}

#[cfg_attr(feature = "no-panic", inline)]
unsafe fn to_chars(v: FloatingDecimal32, sign: bool, result: *mut u8) -> usize {
    // Step 5: Print the decimal representation.
    let mut index = 0isize;
    if sign {
        *result.offset(index) = b'-';
        index += 1;
    }

    let mut output = v.mantissa;
    let olength = decimal_length(output);

    // Print the decimal digits.
    // The following code is equivalent to:
    // for (uint32_t i = 0; i < olength - 1; ++i) {
    //   const uint32_t c = output % 10; output /= 10;
    //   result[index + olength - i] = (char) ('0' + c);
    // }
    // result[index] = '0' + output % 10;
    let mut i = 0isize;
    while output >= 10000 {
        let c = output - 10000 * (output / 10000);
        output /= 10000;
        let c0 = (c % 100) << 1;
        let c1 = (c / 100) << 1;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c0 as usize),
            result.offset(index + olength as isize - i - 1),
            2,
        );
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c1 as usize),
            result.offset(index + olength as isize - i - 3),
            2,
        );
        i += 4;
    }
    if output >= 100 {
        let c = (output % 100) << 1;
        output /= 100;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c as usize),
            result.offset(index + olength as isize - i - 1),
            2,
        );
        i += 2;
    }
    if output >= 10 {
        let c = output << 1;
        // We can't use memcpy here: the decimal dot goes between these two digits.
        *result.offset(index + olength as isize - i) = *DIGIT_TABLE.get_unchecked(c as usize + 1);
        *result.offset(index) = *DIGIT_TABLE.get_unchecked(c as usize);
    } else {
        *result.offset(index) = b'0' + output as u8;
    }

    // Print decimal point if needed.
    if olength > 1 {
        *result.offset(index + 1) = b'.';
        index += olength as isize + 1;
    } else {
        index += 1;
    }

    // Print the exponent.
    *result.offset(index) = b'E';
    index += 1;
    let mut exp = v.exponent + olength as i32 - 1;
    if exp < 0 {
        *result.offset(index) = b'-';
        index += 1;
        exp = -exp;
    }

    if exp >= 10 {
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked((2 * exp) as usize),
            result.offset(index),
            2,
        );
        index += 2;
    } else {
        *result.offset(index) = b'0' + exp as u8;
        index += 1;
    }

    debug_assert!(index <= 15);
    index as usize
}

/// Print f32 to the given buffer and return number of bytes written.
///
/// At most 15 bytes will be written.
///
/// ## Special cases
///
/// This function represents any NaN as `NaN`, positive infinity as `Infinity`,
/// and negative infinity as `-Infinity`.
///
/// ## Safety
///
/// The `result` pointer argument must point to sufficiently many writable bytes
/// to hold Ryū's representation of `f`.
///
/// ## Example
///
/// ```rust
/// let f = 1.234f32;
///
/// unsafe {
///     let mut buffer: [u8; 15] = std::mem::uninitialized();
///     let n = ryu::raw::f2s_buffered_n(f, &mut buffer[0]);
///     let s = std::str::from_utf8_unchecked(&buffer[..n]);
///     assert_eq!(s, "1.234E0");
/// }
/// ```
#[cfg_attr(must_use_return, must_use)]
#[cfg_attr(feature = "no-panic", no_panic)]
pub unsafe fn f2s_buffered_n(f: f32, result: *mut u8) -> usize {
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
    let bits = mem::transmute::<f32, u32>(f);

    // Decode bits into sign, mantissa, and exponent.
    let ieee_sign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
    let ieee_mantissa = bits & ((1u32 << FLOAT_MANTISSA_BITS) - 1);
    let ieee_exponent =
        ((bits >> FLOAT_MANTISSA_BITS) & ((1u32 << FLOAT_EXPONENT_BITS) - 1)) as u32;

    // Case distinction; exit early for the easy cases.
    if ieee_exponent == ((1u32 << FLOAT_EXPONENT_BITS) - 1)
        || (ieee_exponent == 0 && ieee_mantissa == 0)
    {
        return copy_special_str(result, ieee_sign, ieee_exponent != 0, ieee_mantissa != 0);
    }

    let v = f2d(ieee_mantissa, ieee_exponent);
    to_chars(v, ieee_sign, result)
}