1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
#![cfg_attr(not(any(test, feature = "use_std")), no_std)] //! A scope guard will run a given closure when it goes out of scope, //! even if the code between panics. //! (as long as panic doesn't abort) //! //! # Examples //! //! ## `defer!` //! //! Use the `defer` macro to run an operation at scope exit, //! either regular scope exit or during unwinding from a panic. //! //! ``` //! #[macro_use(defer)] extern crate scopeguard; //! //! use std::cell::Cell; //! //! fn main() { //! // use a cell to observe drops during and after the scope guard is active //! let drop_counter = Cell::new(0); //! { //! // Create a scope guard using `defer!` for the current scope //! defer! {{ //! drop_counter.set(1 + drop_counter.get()); //! }}; //! //! // Do regular operations here in the meantime. //! //! // Just before scope exit: it hasn't run yet. //! assert_eq!(drop_counter.get(), 0); //! //! // The following scope end is where the defer closure is called //! } //! assert_eq!(drop_counter.get(), 1); //! } //! ``` //! //! ## Scope Guard with Value //! //! If the scope guard closure needs to access an outer value that is also //! mutated outside of the scope guard, then you may want to use the scope guard //! with a value. The guard works like a smart pointer, so the inner value can //! be accessed by reference or by mutable reference. //! //! ### 1. The guard owns a file //! //! In this example, the scope guard owns a file and ensures pending writes are //! synced at scope exit. //! //! ``` //! extern crate scopeguard; //! //! use std::fs::File; //! use std::io::{self, Write}; //! //! fn try_main() -> io::Result<()> { //! let f = File::create("newfile.txt")?; //! let mut file = scopeguard::guard(f, |f| { //! // ensure we flush file at return or panic //! let _ = f.sync_all(); //! }); //! // Access the file through the scope guard itself //! file.write(b"test me\n").map(|_| ()) //! } //! //! fn main() { //! try_main().unwrap(); //! } //! //! ``` //! //! ### 2. The guard restores an invariant on scope exit //! //! ``` //! extern crate scopeguard; //! //! use std::mem::ManuallyDrop; //! use std::ptr; //! //! // This function, just for this example, takes the first element //! // and inserts it into the assumed sorted tail of the vector. //! // //! // For optimization purposes we temporarily violate an invariant of the //! // Vec, that it owns all of its elements. //! // //! // The safe approach is to use swap, which means two writes to memory, //! // the optimization is to use a “hole” which uses only one write of memory //! // for each position it moves. //! // //! // We *must* use a scope guard to run this code safely. We //! // are running arbitrary user code (comparison operators) that may panic. //! // The scope guard ensures we restore the invariant after successful //! // exit or during unwinding from panic. //! fn insertion_sort_first<T>(v: &mut Vec<T>) //! where T: PartialOrd //! { //! struct Hole<'a, T: 'a> { //! v: &'a mut Vec<T>, //! index: usize, //! value: ManuallyDrop<T>, //! } //! //! unsafe { //! // Create a moved-from location in the vector, a “hole”. //! let value = ptr::read(&v[0]); //! let mut hole = Hole { v: v, index: 0, value: ManuallyDrop::new(value) }; //! //! // Use a scope guard with a value. //! // At scope exit, plug the hole so that the vector is fully //! // initialized again. //! // The scope guard owns the hole, but we can access it through the guard. //! let mut hole_guard = scopeguard::guard(hole, |hole| { //! // plug the hole in the vector with the value that was // taken out //! let index = hole.index; //! ptr::copy_nonoverlapping(&*hole.value, &mut hole.v[index], 1); //! }); //! //! // run algorithm that moves the hole in the vector here //! // move the hole until it's in a sorted position //! for i in 1..hole_guard.v.len() { //! if *hole_guard.value >= hole_guard.v[i] { //! // move the element back and the hole forward //! let index = hole_guard.index; //! ptr::copy_nonoverlapping(&hole_guard.v[index + 1], &mut hole_guard.v[index], 1); //! hole_guard.index += 1; //! } else { //! break; //! } //! } //! //! // When the scope exits here, the Vec becomes whole again! //! } //! } //! //! fn main() { //! let string = String::from; //! let mut data = vec![string("c"), string("a"), string("b"), string("d")]; //! insertion_sort_first(&mut data); //! assert_eq!(data, vec!["a", "b", "c", "d"]); //! } //! //! ``` //! //! //! # Crate features: //! //! - `use_std` //! + Enabled by default. Enables the `OnUnwind` strategy. //! + Disable to use `no_std`. #[cfg(not(any(test, feature = "use_std")))] extern crate core as std; use std::fmt; use std::marker::PhantomData; use std::ops::{Deref, DerefMut}; pub trait Strategy { /// Return `true` if the guard’s associated code should run /// (in the context where this method is called). fn should_run() -> bool; } /// Always run on scope exit. /// /// “Always” run: on regular exit from a scope or on unwinding from a panic. /// Can not run on abort, process exit, and other catastrophic events where /// destructors don’t run. #[derive(Debug)] pub enum Always {} /// Run on scope exit through unwinding. /// /// Requires crate feature `use_std`. #[cfg(feature = "use_std")] #[derive(Debug)] pub enum OnUnwind {} /// Run on regular scope exit, when not unwinding. /// /// Requires crate feature `use_std`. #[cfg(feature = "use_std")] #[derive(Debug)] #[cfg(test)] enum OnSuccess {} impl Strategy for Always { #[inline(always)] fn should_run() -> bool { true } } #[cfg(feature = "use_std")] impl Strategy for OnUnwind { #[inline(always)] fn should_run() -> bool { std::thread::panicking() } } #[cfg(feature = "use_std")] #[cfg(test)] impl Strategy for OnSuccess { #[inline(always)] fn should_run() -> bool { !std::thread::panicking() } } /// Macro to create a `ScopeGuard` (always run). /// /// The macro takes one expression `$e`, which is the body of a closure /// that will run when the scope is exited. The expression can /// be a whole block. #[macro_export] macro_rules! defer { ($e:expr) => { let _guard = $crate::guard((), |_| $e); } } /// Macro to create a `ScopeGuard` (run on successful scope exit). /// /// The macro takes one expression `$e`, which is the body of a closure /// that will run when the scope is exited. The expression can /// be a whole block. /// /// Requires crate feature `use_std`. #[cfg(test)] macro_rules! defer_on_success { ($e:expr) => { let _guard = $crate::guard_on_success((), |_| $e); } } /// Macro to create a `ScopeGuard` (run on unwinding from panic). /// /// The macro takes one expression `$e`, which is the body of a closure /// that will run when the scope is exited. The expression can /// be a whole block. /// /// Requires crate feature `use_std`. #[macro_export] macro_rules! defer_on_unwind { ($e:expr) => { let _guard = $crate::guard_on_unwind((), |_| $e); } } /// `ScopeGuard` is a scope guard that may own a protected value. /// /// If you place a guard in a local variable, the closure can /// run regardless how you leave the scope — through regular return or panic /// (except if panic or other code aborts; so as long as destructors run). /// It is run only once. /// /// The `S` parameter for [`Strategy`](Strategy.t.html) determines if /// the closure actually runs. /// /// The guard's closure will be called with a mut ref to the held value /// in the destructor. It's called only once. /// /// The `ScopeGuard` implements `Deref` so that you can access the inner value. pub struct ScopeGuard<T, F, S: Strategy = Always> where F: FnMut(&mut T) { __dropfn: F, __value: T, strategy: PhantomData<S>, } impl<T, F, S> ScopeGuard<T, F, S> where F: FnMut(&mut T), S: Strategy, { /// Create a `ScopeGuard` that owns `v` (accessible through deref) and calls /// `dropfn` when its destructor runs. /// /// The `Strategy` decides whether the scope guard's closure should run. #[inline] pub fn with_strategy(v: T, dropfn: F) -> ScopeGuard<T, F, S> { ScopeGuard { __value: v, __dropfn: dropfn, strategy: PhantomData, } } } /// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. #[inline] pub fn guard<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, Always> where F: FnMut(&mut T) { ScopeGuard::with_strategy(v, dropfn) } /// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. /// /// Requires crate feature `use_std`. #[cfg(feature = "use_std")] #[cfg(test)] #[inline] fn guard_on_success<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnSuccess> where F: FnMut(&mut T) { ScopeGuard::with_strategy(v, dropfn) } /// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. /// /// Requires crate feature `use_std`. #[cfg(feature = "use_std")] #[inline] pub fn guard_on_unwind<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnUnwind> where F: FnMut(&mut T) { ScopeGuard::with_strategy(v, dropfn) } impl<T, F, S: Strategy> Deref for ScopeGuard<T, F, S> where F: FnMut(&mut T) { type Target = T; fn deref(&self) -> &T { &self.__value } } impl<T, F, S: Strategy> DerefMut for ScopeGuard<T, F, S> where F: FnMut(&mut T) { fn deref_mut(&mut self) -> &mut T { &mut self.__value } } impl<T, F, S: Strategy> Drop for ScopeGuard<T, F, S> where F: FnMut(&mut T) { fn drop(&mut self) { if S::should_run() { (self.__dropfn)(&mut self.__value) } } } impl<T, F, S> fmt::Debug for ScopeGuard<T, F, S> where T: fmt::Debug, F: FnMut(&mut T), S: Strategy + fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ScopeGuard") .field("value", &self.__value) .finish() } } #[cfg(test)] mod tests { use std::cell::Cell; use std::panic::catch_unwind; use std::panic::AssertUnwindSafe; #[test] fn test_defer() { let drops = Cell::new(0); defer!(drops.set(1000)); assert_eq!(drops.get(), 0); } #[test] fn test_defer_success_1() { let drops = Cell::new(0); { defer_on_success!(drops.set(1)); assert_eq!(drops.get(), 0); } assert_eq!(drops.get(), 1); } #[test] fn test_defer_success_2() { let drops = Cell::new(0); let _ = catch_unwind(AssertUnwindSafe(|| { defer_on_success!(drops.set(1)); panic!("failure") })); assert_eq!(drops.get(), 0); } #[test] fn test_defer_unwind_1() { let drops = Cell::new(0); let _ = catch_unwind(AssertUnwindSafe(|| { defer_on_unwind!(drops.set(1)); assert_eq!(drops.get(), 0); panic!("failure") })); assert_eq!(drops.get(), 1); } #[test] fn test_defer_unwind_2() { let drops = Cell::new(0); { defer_on_unwind!(drops.set(1)); } assert_eq!(drops.get(), 0); } }