1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#![cfg_attr(not(any(test, feature = "use_std")), no_std)]

//! A scope guard will run a given closure when it goes out of scope,
//! even if the code between panics.
//! (as long as panic doesn't abort)
//!
//! # Examples
//!
//! ## `defer!`
//!
//! Use the `defer` macro to run an operation at scope exit,
//! either regular scope exit or during unwinding from a panic.
//!
//! ```
//! #[macro_use(defer)] extern crate scopeguard;
//!
//! use std::cell::Cell;
//!
//! fn main() {
//!     // use a cell to observe drops during and after the scope guard is active
//!     let drop_counter = Cell::new(0);
//!     {
//!         // Create a scope guard using `defer!` for the current scope
//!         defer! {{
//!             drop_counter.set(1 + drop_counter.get());
//!         }};
//!
//!         // Do regular operations here in the meantime.
//!
//!         // Just before scope exit: it hasn't run yet.
//!         assert_eq!(drop_counter.get(), 0);
//!
//!         // The following scope end is where the defer closure is called
//!     }
//!     assert_eq!(drop_counter.get(), 1);
//! }
//! ```
//!
//! ## Scope Guard with Value
//!
//! If the scope guard closure needs to access an outer value that is also
//! mutated outside of the scope guard, then you may want to use the scope guard
//! with a value. The guard works like a smart pointer, so the inner value can
//! be accessed by reference or by mutable reference.
//!
//! ### 1. The guard owns a file
//!
//! In this example, the scope guard owns a file and ensures pending writes are
//! synced at scope exit.
//!
//! ```
//! extern crate scopeguard;
//! 
//! use std::fs::File;
//! use std::io::{self, Write};
//! 
//! fn try_main() -> io::Result<()> {
//!     let f = File::create("newfile.txt")?;
//!     let mut file = scopeguard::guard(f, |f| {
//!         // ensure we flush file at return or panic
//!         let _ = f.sync_all();
//!     });
//!     // Access the file through the scope guard itself
//!     file.write(b"test me\n").map(|_| ())
//! }
//!
//! fn main() {
//!     try_main().unwrap();
//! }
//!
//! ```
//!
//! ### 2. The guard restores an invariant on scope exit
//!
//! ```
//! extern crate scopeguard;
//!
//! use std::mem::ManuallyDrop;
//! use std::ptr;
//!
//! // This function, just for this example, takes the first element
//! // and inserts it into the assumed sorted tail of the vector.
//! //
//! // For optimization purposes we temporarily violate an invariant of the
//! // Vec, that it owns all of its elements.
//! // 
//! // The safe approach is to use swap, which means two writes to memory,
//! // the optimization is to use a “hole” which uses only one write of memory
//! // for each position it moves.
//! //
//! // We *must* use a scope guard to run this code safely. We
//! // are running arbitrary user code (comparison operators) that may panic.
//! // The scope guard ensures we restore the invariant after successful
//! // exit or during unwinding from panic.
//! fn insertion_sort_first<T>(v: &mut Vec<T>)
//!     where T: PartialOrd
//! {
//!     struct Hole<'a, T: 'a> {
//!         v: &'a mut Vec<T>,
//!         index: usize,
//!         value: ManuallyDrop<T>,
//!     }
//!
//!     unsafe {
//!         // Create a moved-from location in the vector, a “hole”.
//!         let value = ptr::read(&v[0]);
//!         let mut hole = Hole { v: v, index: 0, value: ManuallyDrop::new(value) };
//!
//!         // Use a scope guard with a value.
//!         // At scope exit, plug the hole so that the vector is fully
//!         // initialized again.
//!         // The scope guard owns the hole, but we can access it through the guard.
//!         let mut hole_guard = scopeguard::guard(hole, |hole| {
//!             // plug the hole in the vector with the value that was // taken out
//!             let index = hole.index;
//!             ptr::copy_nonoverlapping(&*hole.value, &mut hole.v[index], 1);
//!         });
//!
//!         // run algorithm that moves the hole in the vector here
//!         // move the hole until it's in a sorted position
//!         for i in 1..hole_guard.v.len() {
//!             if *hole_guard.value >= hole_guard.v[i] {
//!                 // move the element back and the hole forward
//!                 let index = hole_guard.index;
//!                 ptr::copy_nonoverlapping(&hole_guard.v[index + 1], &mut hole_guard.v[index], 1);
//!                 hole_guard.index += 1;
//!             } else {
//!                 break;
//!             }
//!         }
//!
//!         // When the scope exits here, the Vec becomes whole again!
//!     }
//! }
//!
//! fn main() {
//!     let string = String::from;
//!     let mut data = vec![string("c"), string("a"), string("b"), string("d")];
//!     insertion_sort_first(&mut data);
//!     assert_eq!(data, vec!["a", "b", "c", "d"]);
//! }
//!
//! ```
//!
//!
//! # Crate features:
//!
//! - `use_std`
//!   + Enabled by default. Enables the `OnUnwind` strategy.
//!   + Disable to use `no_std`.

#[cfg(not(any(test, feature = "use_std")))]
extern crate core as std;

use std::fmt;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};

pub trait Strategy {
    /// Return `true` if the guard’s associated code should run
    /// (in the context where this method is called).
    fn should_run() -> bool;
}

/// Always run on scope exit.
///
/// “Always” run: on regular exit from a scope or on unwinding from a panic.
/// Can not run on abort, process exit, and other catastrophic events where
/// destructors don’t run.
#[derive(Debug)]
pub enum Always {}

/// Run on scope exit through unwinding.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[derive(Debug)]
pub enum OnUnwind {}

/// Run on regular scope exit, when not unwinding.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[derive(Debug)]
#[cfg(test)]
enum OnSuccess {}

impl Strategy for Always {
    #[inline(always)]
    fn should_run() -> bool { true }
}

#[cfg(feature = "use_std")]
impl Strategy for OnUnwind {
    #[inline(always)]
    fn should_run() -> bool { std::thread::panicking() }
}

#[cfg(feature = "use_std")]
#[cfg(test)]
impl Strategy for OnSuccess {
    #[inline(always)]
    fn should_run() -> bool { !std::thread::panicking() }
}

/// Macro to create a `ScopeGuard` (always run).
///
/// The macro takes one expression `$e`, which is the body of a closure
/// that will run when the scope is exited. The expression can
/// be a whole block.
#[macro_export]
macro_rules! defer {
    ($e:expr) => {
        let _guard = $crate::guard((), |_| $e);
    }
}

/// Macro to create a `ScopeGuard` (run on successful scope exit).
///
/// The macro takes one expression `$e`, which is the body of a closure
/// that will run when the scope is exited. The expression can
/// be a whole block.
///
/// Requires crate feature `use_std`.
#[cfg(test)]
macro_rules! defer_on_success {
    ($e:expr) => {
        let _guard = $crate::guard_on_success((), |_| $e);
    }
}

/// Macro to create a `ScopeGuard` (run on unwinding from panic).
///
/// The macro takes one expression `$e`, which is the body of a closure
/// that will run when the scope is exited. The expression can
/// be a whole block.
///
/// Requires crate feature `use_std`.
#[macro_export]
macro_rules! defer_on_unwind {
    ($e:expr) => {
        let _guard = $crate::guard_on_unwind((), |_| $e);
    }
}

/// `ScopeGuard` is a scope guard that may own a protected value.
///
/// If you place a guard in a local variable, the closure can
/// run regardless how you leave the scope — through regular return or panic
/// (except if panic or other code aborts; so as long as destructors run).
/// It is run only once.
///
/// The `S` parameter for [`Strategy`](Strategy.t.html) determines if
/// the closure actually runs.
///
/// The guard's closure will be called with a mut ref to the held value
/// in the destructor. It's called only once.
///
/// The `ScopeGuard` implements `Deref` so that you can access the inner value.
pub struct ScopeGuard<T, F, S: Strategy = Always>
    where F: FnMut(&mut T)
{
    __dropfn: F,
    __value: T,
    strategy: PhantomData<S>,
}
impl<T, F, S> ScopeGuard<T, F, S>
    where F: FnMut(&mut T),
          S: Strategy,
{
    /// Create a `ScopeGuard` that owns `v` (accessible through deref) and calls
    /// `dropfn` when its destructor runs.
    ///
    /// The `Strategy` decides whether the scope guard's closure should run.
    #[inline]
    pub fn with_strategy(v: T, dropfn: F) -> ScopeGuard<T, F, S> {
        ScopeGuard {
            __value: v,
            __dropfn: dropfn,
            strategy: PhantomData,
        }
    }
}


/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
#[inline]
pub fn guard<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, Always>
    where F: FnMut(&mut T)
{
    ScopeGuard::with_strategy(v, dropfn)
}

/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[cfg(test)]
#[inline]
fn guard_on_success<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnSuccess>
    where F: FnMut(&mut T)
{
    ScopeGuard::with_strategy(v, dropfn)
}

/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[inline]
pub fn guard_on_unwind<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnUnwind>
    where F: FnMut(&mut T)
{
    ScopeGuard::with_strategy(v, dropfn)
}

impl<T, F, S: Strategy> Deref for ScopeGuard<T, F, S>
    where F: FnMut(&mut T)
{
    type Target = T;
    fn deref(&self) -> &T {
        &self.__value
    }

}

impl<T, F, S: Strategy> DerefMut for ScopeGuard<T, F, S>
    where F: FnMut(&mut T)
{
    fn deref_mut(&mut self) -> &mut T {
        &mut self.__value
    }
}

impl<T, F, S: Strategy> Drop for ScopeGuard<T, F, S>
    where F: FnMut(&mut T)
{
    fn drop(&mut self) {
        if S::should_run() {
            (self.__dropfn)(&mut self.__value)
        }
    }
}

impl<T, F, S> fmt::Debug for ScopeGuard<T, F, S>
    where T: fmt::Debug,
          F: FnMut(&mut T),
          S: Strategy + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ScopeGuard")
         .field("value", &self.__value)
         .finish()
    }
}

#[cfg(test)]
mod tests {
    use std::cell::Cell;
    use std::panic::catch_unwind;
    use std::panic::AssertUnwindSafe;

    #[test]
    fn test_defer() {
        let drops = Cell::new(0);
        defer!(drops.set(1000));
        assert_eq!(drops.get(), 0);
    }

    #[test]
    fn test_defer_success_1() {
        let drops = Cell::new(0);
        {
            defer_on_success!(drops.set(1));
            assert_eq!(drops.get(), 0);
        }
        assert_eq!(drops.get(), 1);
    }

    #[test]
    fn test_defer_success_2() {
        let drops = Cell::new(0);
        let _ = catch_unwind(AssertUnwindSafe(|| {
            defer_on_success!(drops.set(1));
            panic!("failure")
        }));
        assert_eq!(drops.get(), 0);
    }

    #[test]
    fn test_defer_unwind_1() {
        let drops = Cell::new(0);
        let _ = catch_unwind(AssertUnwindSafe(|| {
            defer_on_unwind!(drops.set(1));
            assert_eq!(drops.get(), 0);
            panic!("failure")
        }));
        assert_eq!(drops.get(), 1);
    }

    #[test]
    fn test_defer_unwind_2() {
        let drops = Cell::new(0);
        {
            defer_on_unwind!(drops.set(1));
        }
        assert_eq!(drops.get(), 0);
    }
}