1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
use executor::current_thread::{self, CurrentThread}; use executor::current_thread::Handle as ExecutorHandle; use runtime::current_thread::Builder; use tokio_reactor::{self, Reactor}; use tokio_timer::clock::{self, Clock}; use tokio_timer::timer::{self, Timer}; use tokio_executor; use futures::Future; use std::io; /// Single-threaded runtime provides a way to start reactor /// and executor on the current thread. /// /// See [module level][mod] documentation for more details. /// /// [mod]: index.html #[derive(Debug)] pub struct Runtime { reactor_handle: tokio_reactor::Handle, timer_handle: timer::Handle, clock: Clock, executor: CurrentThread<Timer<Reactor>>, } /// Handle to spawn a future on the corresponding `CurrentThread` runtime instance #[derive(Debug, Clone)] pub struct Handle(ExecutorHandle); impl Handle { /// Spawn a future onto the `CurrentThread` runtime instance corresponding to this handle /// /// # Panics /// /// This function panics if the spawn fails. Failure occurs if the `CurrentThread` /// instance of the `Handle` does not exist anymore. pub fn spawn<F>(&self, future: F) -> Result<(), tokio_executor::SpawnError> where F: Future<Item = (), Error = ()> + Send + 'static { self.0.spawn(future) } } /// Error returned by the `run` function. #[derive(Debug)] pub struct RunError { inner: current_thread::RunError, } impl Runtime { /// Returns a new runtime initialized with default configuration values. pub fn new() -> io::Result<Runtime> { Builder::new().build() } pub(super) fn new2( reactor_handle: tokio_reactor::Handle, timer_handle: timer::Handle, clock: Clock, executor: CurrentThread<Timer<Reactor>>) -> Runtime { Runtime { reactor_handle, timer_handle, clock, executor, } } /// Get a new handle to spawn futures on the single-threaded Tokio runtime /// /// Different to the runtime itself, the handle can be sent to different /// threads. pub fn handle(&self) -> Handle { Handle(self.executor.handle().clone()) } /// Spawn a future onto the single-threaded Tokio runtime. /// /// See [module level][mod] documentation for more details. /// /// [mod]: index.html /// /// # Examples /// /// ```rust /// # extern crate tokio; /// # extern crate futures; /// # use futures::{future, Future, Stream}; /// use tokio::runtime::current_thread::Runtime; /// /// # fn dox() { /// // Create the runtime /// let mut rt = Runtime::new().unwrap(); /// /// // Spawn a future onto the runtime /// rt.spawn(future::lazy(|| { /// println!("running on the runtime"); /// Ok(()) /// })); /// # } /// # pub fn main() {} /// ``` /// /// # Panics /// /// This function panics if the spawn fails. Failure occurs if the executor /// is currently at capacity and is unable to spawn a new future. pub fn spawn<F>(&mut self, future: F) -> &mut Self where F: Future<Item = (), Error = ()> + 'static, { self.executor.spawn(future); self } /// Runs the provided future, blocking the current thread until the future /// completes. /// /// This function can be used to synchronously block the current thread /// until the provided `future` has resolved either successfully or with an /// error. The result of the future is then returned from this function /// call. /// /// Note that this function will **also** execute any spawned futures on the /// current thread, but will **not** block until these other spawned futures /// have completed. Once the function returns, any uncompleted futures /// remain pending in the `Runtime` instance. These futures will not run /// until `block_on` or `run` is called again. /// /// The caller is responsible for ensuring that other spawned futures /// complete execution by calling `block_on` or `run`. pub fn block_on<F>(&mut self, f: F) -> Result<F::Item, F::Error> where F: Future { self.enter(|executor| { // Run the provided future let ret = executor.block_on(f); ret.map_err(|e| e.into_inner().expect("unexpected execution error")) }) } /// Run the executor to completion, blocking the thread until **all** /// spawned futures have completed. pub fn run(&mut self) -> Result<(), RunError> { self.enter(|executor| executor.run()) .map_err(|e| RunError { inner: e, }) } fn enter<F, R>(&mut self, f: F) -> R where F: FnOnce(&mut current_thread::Entered<Timer<Reactor>>) -> R { let Runtime { ref reactor_handle, ref timer_handle, ref clock, ref mut executor, .. } = *self; // Binds an executor to this thread let mut enter = tokio_executor::enter().expect("Multiple executors at once"); // This will set the default handle and timer to use inside the closure // and run the future. tokio_reactor::with_default(&reactor_handle, &mut enter, |enter| { clock::with_default(clock, enter, |enter| { timer::with_default(&timer_handle, enter, |enter| { // The TaskExecutor is a fake executor that looks into the // current single-threaded executor when used. This is a trick, // because we need two mutable references to the executor (one // to run the provided future, another to install as the default // one). We use the fake one here as the default one. let mut default_executor = current_thread::TaskExecutor::current(); tokio_executor::with_default(&mut default_executor, enter, |enter| { let mut executor = executor.enter(enter); f(&mut executor) }) }) }) }) } }