1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#![allow(dead_code)]

//! This module implements the transaction application algorithm described at
//! https://github.com/mozilla/mentat/wiki/Transacting and its children pages.
//!
//! The implementation proceeds in four main stages, labeled "Pipeline stage 1" through "Pipeline
//! stage 4".  _Pipeline_ may be a misnomer, since the stages as written **cannot** be interleaved
//! in parallel.  That is, a single transacted entity cannot flow through all the stages without its
//! sibling entities.
//!
//! This unintuitive architectural decision was made because the second and third stages (resolving
//! lookup refs and tempids, respectively) operate _in bulk_ to minimize the number of expensive
//! SQLite queries by processing many in one SQLite invocation.  Pipeline stage 2 doesn't need to
//! operate like this: it is easy to handle each transacted entity independently of all the others
//! (and earlier, less efficient, implementations did this).  However, Pipeline stage 3 appears to
//! require processing multiple elements at the same time, since there can be arbitrarily complex
//! graph relationships between tempids.  Pipeline stage 4 (inserting elements into the SQL store)
//! could also be expressed as an independent operation per transacted entity, but there are
//! non-trivial uniqueness relationships inside a single transaction that need to enforced.
//! Therefore, some multi-entity processing is required, and a per-entity pipeline becomes less
//! attractive.
//!
//! A note on the types in the implementation.  The pipeline stages are strongly typed: each stage
//! accepts and produces a subset of the previous.  We hope this will reduce errors as data moves
//! through the system.  In contrast the Clojure implementation rewrote the fundamental entity type
//! in place and suffered bugs where particular code paths missed cases.
//!
//! The type hierarchy accepts `Entity` instances from the transaction parser and flows `Term`
//! instances through the term-rewriting transaction applier.  `Term` is a general `[:db/add e a v]`
//! with restrictions on the `e` and `v` components.  The hierarchy is expressed using `Result` to
//! model either/or, and layers of `Result` are stripped -- we might say the `Term` instances are
//! _lowered_ as they flow through the pipeline.  This type hierarchy could have been expressed by
//! combinatorially increasing `enum` cases, but this makes it difficult to handle the `e` and `v`
//! components symmetrically.  Hence, layers of `Result` type aliases.  Hopefully the explanatory
//! names -- `TermWithTempIdsAndLookupRefs`, anyone? -- and strongly typed stage functions will help
//! keep everything straight.

use std::borrow::{
    Cow,
};
use std::collections::{
    BTreeMap,
    BTreeSet,
    VecDeque,
};
use std::iter::{
    once,
};
use std::rc::{
    Rc,
};

use db;
use db::{
    MentatStoring,
    PartitionMapping,
};
use edn::{
    Keyword,
};
use entids;
use errors;
use errors::{
    DbError,
    Result,
};
use internal_types::{
    AddAndRetract,
    AEVTrie,
    KnownEntidOr,
    LookupRef,
    LookupRefOrTempId,
    TempIdHandle,
    TempIdMap,
    Term,
    TermWithTempIds,
    TermWithTempIdsAndLookupRefs,
    TermWithoutTempIds,
    TypedValueOr,
    replace_lookup_ref,
};

use mentat_core::util::Either;

use mentat_core::{
    DateTime,
    KnownEntid,
    Schema,
    Utc,
    attribute,
    now,
};

use mentat_core::intern_set::InternSet;

use edn::entities as entmod;
use edn::entities::{
    AttributePlace,
    Entity,
    OpType,
    TempId,
};
use metadata;
use rusqlite;
use schema::{
    SchemaBuilding,
};
use tx_checking;
use types::{
    AVMap,
    AVPair,
    Attribute,
    Entid,
    PartitionMap,
    TransactableValue,
    TxReport,
    TypedValue,
    ValueType,
};
use upsert_resolution::{
    FinalPopulations,
    Generation,
};
use watcher::{
    TransactWatcher,
};

/// A transaction on its way to being applied.
#[derive(Debug)]
pub struct Tx<'conn, 'a, W> where W: TransactWatcher {
    /// The storage to apply against.  In the future, this will be a Mentat connection.
    store: &'conn rusqlite::Connection, // TODO: db::MentatStoring,

    /// The partition map to allocate entids from.
    ///
    /// The partition map is volatile in the sense that every succesful transaction updates
    /// allocates at least one tx ID, so we own and modify our own partition map.
    partition_map: PartitionMap,

    /// The schema to update from the transaction entities.
    ///
    /// Transactions only update the schema infrequently, so we borrow this schema until we need to
    /// modify it.
    schema_for_mutation: Cow<'a, Schema>,

    /// The schema to use when interpreting the transaction entities.
    ///
    /// This schema is not updated, so we just borrow it.
    schema: &'a Schema,

    watcher: W,

    /// The transaction ID of the transaction.
    tx_id: Entid,
}

/// Remove any :db/id value from the given map notation, converting the returned value into
/// something suitable for the entity position rather than something suitable for a value position.
pub fn remove_db_id<V: TransactableValue>(map: &mut entmod::MapNotation<V>) -> Result<Option<entmod::EntityPlace<V>>> {
    // TODO: extract lazy defined constant.
    let db_id_key = entmod::Entid::Ident(Keyword::namespaced("db", "id"));

    let db_id: Option<entmod::EntityPlace<V>> = if let Some(id) = map.remove(&db_id_key) {
        match id {
            entmod::ValuePlace::Entid(e) => Some(entmod::EntityPlace::Entid(e)),
            entmod::ValuePlace::LookupRef(e) => Some(entmod::EntityPlace::LookupRef(e)),
            entmod::ValuePlace::TempId(e) => Some(entmod::EntityPlace::TempId(e)),
            entmod::ValuePlace::TxFunction(e) => Some(entmod::EntityPlace::TxFunction(e)),
            entmod::ValuePlace::Atom(v) => Some(v.into_entity_place()?),
            entmod::ValuePlace::Vector(_) |
            entmod::ValuePlace::MapNotation(_) => {
                bail!(DbError::InputError(errors::InputError::BadDbId))
            },
        }
    } else {
        None
    };

    Ok(db_id)
}

impl<'conn, 'a, W> Tx<'conn, 'a, W> where W: TransactWatcher {
    pub fn new(
        store: &'conn rusqlite::Connection,
        partition_map: PartitionMap,
        schema_for_mutation: &'a Schema,
        schema: &'a Schema,
        watcher: W,
        tx_id: Entid) -> Tx<'conn, 'a, W> {
        Tx {
            store: store,
            partition_map: partition_map,
            schema_for_mutation: Cow::Borrowed(schema_for_mutation),
            schema: schema,
            watcher: watcher,
            tx_id: tx_id,
        }
    }

    /// Given a collection of tempids and the [a v] pairs that they might upsert to, resolve exactly
    /// which [a v] pairs do upsert to entids, and map each tempid that upserts to the upserted
    /// entid.  The keys of the resulting map are exactly those tempids that upserted.
    pub(crate) fn resolve_temp_id_avs<'b>(&self, temp_id_avs: &'b [(TempIdHandle, AVPair)]) -> Result<TempIdMap> {
        if temp_id_avs.is_empty() {
            return Ok(TempIdMap::default());
        }

        // Map [a v]->entid.
        let mut av_pairs: Vec<&AVPair> = vec![];
        for i in 0..temp_id_avs.len() {
            av_pairs.push(&temp_id_avs[i].1);
        }

        // Lookup in the store.
        let av_map: AVMap = self.store.resolve_avs(&av_pairs[..])?;

        debug!("looked up avs {:?}", av_map);

        // Map id->entid.
        let mut tempids: TempIdMap = TempIdMap::default();

        // Errors.  BTree* since we want deterministic results.
        let mut conflicting_upserts: BTreeMap<TempId, BTreeSet<KnownEntid>> = BTreeMap::default();

        for &(ref tempid, ref av_pair) in temp_id_avs {
            trace!("tempid {:?} av_pair {:?} -> {:?}", tempid, av_pair, av_map.get(&av_pair));
            if let Some(entid) = av_map.get(&av_pair).cloned().map(KnownEntid) {
                tempids.insert(tempid.clone(), entid).map(|previous| {
                    if entid != previous {
                        conflicting_upserts.entry((**tempid).clone()).or_insert_with(|| once(previous).collect::<BTreeSet<_>>()).insert(entid);
                    }
                });
            }
        }

        if !conflicting_upserts.is_empty() {
            bail!(DbError::SchemaConstraintViolation(errors::SchemaConstraintViolation::ConflictingUpserts { conflicting_upserts }));
        }

        Ok(tempids)
    }

    /// Pipeline stage 1: convert `Entity` instances into `Term` instances, ready for term
    /// rewriting.
    ///
    /// The `Term` instances produce share interned TempId and LookupRef handles, and we return the
    /// interned handle sets so that consumers can ensure all handles are used appropriately.
    fn entities_into_terms_with_temp_ids_and_lookup_refs<I, V: TransactableValue>(&self, entities: I) -> Result<(Vec<TermWithTempIdsAndLookupRefs>, InternSet<TempId>, InternSet<AVPair>)> where I: IntoIterator<Item=Entity<V>> {
        struct InProcess<'a> {
            partition_map: &'a PartitionMap,
            schema: &'a Schema,
            mentat_id_count: i64,
            tx_id: KnownEntid,
            temp_ids: InternSet<TempId>,
            lookup_refs: InternSet<AVPair>,
        }

        impl<'a> InProcess<'a> {
            fn with_schema_and_partition_map(schema: &'a Schema, partition_map: &'a PartitionMap, tx_id: KnownEntid) -> InProcess<'a> {
                InProcess {
                    partition_map,
                    schema,
                    mentat_id_count: 0,
                    tx_id,
                    temp_ids: InternSet::new(),
                    lookup_refs: InternSet::new(),
                }
            }

            fn ensure_entid_exists(&self, e: Entid) -> Result<KnownEntid> {
                if self.partition_map.contains_entid(e) {
                    Ok(KnownEntid(e))
                } else {
                    bail!(DbError::UnrecognizedEntid(e))
                }
            }

            fn ensure_ident_exists(&self, e: &Keyword) -> Result<KnownEntid> {
                self.schema.require_entid(e)
            }

            fn intern_lookup_ref<W: TransactableValue>(&mut self, lookup_ref: &entmod::LookupRef<W>) -> Result<LookupRef> {
                let lr_a: i64 = match lookup_ref.a {
                    AttributePlace::Entid(entmod::Entid::Entid(ref a)) => *a,
                    AttributePlace::Entid(entmod::Entid::Ident(ref a)) => self.schema.require_entid(&a)?.into(),
                };
                let lr_attribute: &Attribute = self.schema.require_attribute_for_entid(lr_a)?;

                let lr_typed_value: TypedValue = lookup_ref.v.clone().into_typed_value(&self.schema, lr_attribute.value_type)?;
                if lr_attribute.unique.is_none() {
                    bail!(DbError::NotYetImplemented(format!("Cannot resolve (lookup-ref {} {:?}) with attribute that is not :db/unique", lr_a, lr_typed_value)))
                }

                Ok(self.lookup_refs.intern((lr_a, lr_typed_value)))
            }

            fn intern_temp_id(&mut self, temp_id: TempId) -> Rc<TempId> {
                self.temp_ids.intern(temp_id)
            }

            /// Allocate private internal tempids reserved for Mentat.  Internal tempids just need to be
            /// unique within one transaction; they should never escape a transaction.
            fn allocate_mentat_id<W: TransactableValue>(&mut self) -> entmod::EntityPlace<W> {
                self.mentat_id_count += 1;
                entmod::EntityPlace::TempId(TempId::Internal(self.mentat_id_count))
            }

            fn entity_e_into_term_e<W: TransactableValue>(&mut self, x: entmod::EntityPlace<W>) -> Result<KnownEntidOr<LookupRefOrTempId>> {
                match x {
                    entmod::EntityPlace::Entid(e) => {
                        let e = match e {
                            entmod::Entid::Entid(ref e) => self.ensure_entid_exists(*e)?,
                            entmod::Entid::Ident(ref e) => self.ensure_ident_exists(&e)?,
                        };
                        Ok(Either::Left(e))
                    },

                    entmod::EntityPlace::TempId(e) => {
                        Ok(Either::Right(LookupRefOrTempId::TempId(self.intern_temp_id(e))))
                    },

                    entmod::EntityPlace::LookupRef(ref lookup_ref) => {
                        Ok(Either::Right(LookupRefOrTempId::LookupRef(self.intern_lookup_ref(lookup_ref)?)))
                    },

                    entmod::EntityPlace::TxFunction(ref tx_function) => {
                        match tx_function.op.0.as_str() {
                            "transaction-tx" => Ok(Either::Left(self.tx_id)),
                            unknown @ _ => bail!(DbError::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
                        }
                    },
                }
            }

            fn entity_a_into_term_a(&mut self, x: entmod::Entid) -> Result<Entid> {
                let a = match x {
                    entmod::Entid::Entid(ref a) => *a,
                    entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?.into(),
                };
                Ok(a)
            }

            fn entity_e_into_term_v<W: TransactableValue>(&mut self, x: entmod::EntityPlace<W>) -> Result<TypedValueOr<LookupRefOrTempId>> {
                self.entity_e_into_term_e(x).map(|r| r.map_left(|ke| TypedValue::Ref(ke.0)))
            }

            fn entity_v_into_term_e<W: TransactableValue>(&mut self, x: entmod::ValuePlace<W>, backward_a: &entmod::Entid) -> Result<KnownEntidOr<LookupRefOrTempId>> {
                match backward_a.unreversed() {
                    None => {
                        bail!(DbError::NotYetImplemented(format!("Cannot explode map notation value in :attr/_reversed notation for forward attribute")));
                    },
                    Some(forward_a) => {
                        let forward_a = self.entity_a_into_term_a(forward_a)?;
                        let forward_attribute = self.schema.require_attribute_for_entid(forward_a)?;
                        if forward_attribute.value_type != ValueType::Ref {
                            bail!(DbError::NotYetImplemented(format!("Cannot use :attr/_reversed notation for attribute {} that is not :db/valueType :db.type/ref", forward_a)))
                        }

                        match x {
                            entmod::ValuePlace::Atom(v) => {
                                // Here is where we do schema-aware typechecking: we either assert
                                // that the given value is in the attribute's value set, or (in
                                // limited cases) coerce the value into the attribute's value set.
                                match v.as_tempid() {
                                    Some(tempid) => Ok(Either::Right(LookupRefOrTempId::TempId(self.intern_temp_id(tempid)))),
                                    None => {
                                        if let TypedValue::Ref(entid) = v.into_typed_value(&self.schema, ValueType::Ref)? {
                                            Ok(Either::Left(KnownEntid(entid)))
                                        } else {
                                            // The given value is expected to be :db.type/ref, so this shouldn't happen.
                                            bail!(DbError::NotYetImplemented(format!("Cannot use :attr/_reversed notation for attribute {} with value that is not :db.valueType :db.type/ref", forward_a)))
                                        }
                                    }
                                }
                            },

                            entmod::ValuePlace::Entid(entid) =>
                                Ok(Either::Left(KnownEntid(self.entity_a_into_term_a(entid)?))),

                            entmod::ValuePlace::TempId(tempid) =>
                                Ok(Either::Right(LookupRefOrTempId::TempId(self.intern_temp_id(tempid)))),

                            entmod::ValuePlace::LookupRef(ref lookup_ref) =>
                                Ok(Either::Right(LookupRefOrTempId::LookupRef(self.intern_lookup_ref(lookup_ref)?))),

                            entmod::ValuePlace::TxFunction(ref tx_function) => {
                                match tx_function.op.0.as_str() {
                                    "transaction-tx" => Ok(Either::Left(KnownEntid(self.tx_id.0))),
                                    unknown @ _ => bail!(DbError::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
                                }
                            },

                            entmod::ValuePlace::Vector(_) =>
                                bail!(DbError::NotYetImplemented(format!("Cannot explode vector value in :attr/_reversed notation for attribute {}", forward_a))),

                            entmod::ValuePlace::MapNotation(_) =>
                                bail!(DbError::NotYetImplemented(format!("Cannot explode map notation value in :attr/_reversed notation for attribute {}", forward_a))),
                        }
                    },
                }
            }
        }

        let mut in_process = InProcess::with_schema_and_partition_map(&self.schema, &self.partition_map, KnownEntid(self.tx_id));

        // We want to handle entities in the order they're given to us, while also "exploding" some
        // entities into many.  We therefore push the initial entities onto the back of the deque,
        // take from the front of the deque, and explode onto the front as well.
        let mut deque: VecDeque<Entity<V>> = VecDeque::default();
        deque.extend(entities);

        let mut terms: Vec<TermWithTempIdsAndLookupRefs> = Vec::with_capacity(deque.len());

        while let Some(entity) = deque.pop_front() {
            match entity {
                Entity::MapNotation(mut map_notation) => {
                    // :db/id is optional; if it's not given, we generate a special internal tempid
                    // to use for upserting.  This tempid will not be reported in the TxReport.
                    let db_id: entmod::EntityPlace<V> = remove_db_id(&mut map_notation)?.unwrap_or_else(|| in_process.allocate_mentat_id());

                    // We're not nested, so :db/isComponent is not relevant.  We just explode the
                    // map notation.
                    for (a, v) in map_notation {
                        deque.push_front(Entity::AddOrRetract {
                            op: OpType::Add,
                            e: db_id.clone(),
                            a: AttributePlace::Entid(a),
                            v: v,
                        });
                    }
                },

                Entity::AddOrRetract { op, e, a, v } => {
                    let AttributePlace::Entid(a) = a;

                    if let Some(reversed_a) = a.unreversed() {
                        let reversed_e = in_process.entity_v_into_term_e(v, &a)?;
                        let reversed_a = in_process.entity_a_into_term_a(reversed_a)?;
                        let reversed_v = in_process.entity_e_into_term_v(e)?;
                        terms.push(Term::AddOrRetract(OpType::Add, reversed_e, reversed_a, reversed_v));
                    } else {
                        let a = in_process.entity_a_into_term_a(a)?;
                        let attribute = self.schema.require_attribute_for_entid(a)?;

                        let v = match v {
                            entmod::ValuePlace::Atom(v) => {
                                // Here is where we do schema-aware typechecking: we either assert
                                // that the given value is in the attribute's value set, or (in
                                // limited cases) coerce the value into the attribute's value set.
                                if attribute.value_type == ValueType::Ref {
                                    match v.as_tempid() {
                                        Some(tempid) => Either::Right(LookupRefOrTempId::TempId(in_process.intern_temp_id(tempid))),
                                        None => v.into_typed_value(&self.schema, attribute.value_type).map(Either::Left)?,
                                    }
                                } else {
                                    v.into_typed_value(&self.schema, attribute.value_type).map(Either::Left)?
                                }
                            },

                            entmod::ValuePlace::Entid(entid) =>
                                Either::Left(TypedValue::Ref(in_process.entity_a_into_term_a(entid)?)),

                            entmod::ValuePlace::TempId(tempid) =>
                                Either::Right(LookupRefOrTempId::TempId(in_process.intern_temp_id(tempid))),

                            entmod::ValuePlace::LookupRef(ref lookup_ref) => {
                                if attribute.value_type != ValueType::Ref {
                                    bail!(DbError::NotYetImplemented(format!("Cannot resolve value lookup ref for attribute {} that is not :db/valueType :db.type/ref", a)))
                                }

                                Either::Right(LookupRefOrTempId::LookupRef(in_process.intern_lookup_ref(lookup_ref)?))
                            },

                            entmod::ValuePlace::TxFunction(ref tx_function) => {
                                let typed_value = match tx_function.op.0.as_str() {
                                    "transaction-tx" => TypedValue::Ref(self.tx_id),
                                    unknown @ _ => bail!(DbError::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
                                };

                                // Here we do schema-aware typechecking: we assert that the computed
                                // value is in the attribute's value set.  If and when we have
                                // transaction functions that produce numeric values, we'll have to
                                // be more careful here, because a function that produces an integer
                                // value can be used where a double is expected.  See also
                                // `SchemaTypeChecking.to_typed_value(...)`.
                                if attribute.value_type != typed_value.value_type() {
                                    bail!(DbError::NotYetImplemented(format!("Transaction function {} produced value of type {} but expected type {}",
                                                                               tx_function.op.0.as_str(), typed_value.value_type(), attribute.value_type)));
                                }

                                Either::Left(typed_value)
                            },

                            entmod::ValuePlace::Vector(vs) => {
                                if !attribute.multival {
                                    bail!(DbError::NotYetImplemented(format!("Cannot explode vector value for attribute {} that is not :db.cardinality :db.cardinality/many", a)));
                                }

                                for vv in vs {
                                    deque.push_front(Entity::AddOrRetract {
                                        op: op.clone(),
                                        e: e.clone(),
                                        a: AttributePlace::Entid(entmod::Entid::Entid(a)),
                                        v: vv,
                                    });
                                }
                                continue
                            },

                            entmod::ValuePlace::MapNotation(mut map_notation) => {
                                // TODO: consider handling this at the tx-parser level.  That would be
                                // more strict and expressive, but it would lead to splitting
                                // AddOrRetract, which proliferates types and code, or only handling
                                // nested maps rather than map values, like Datomic does.
                                if op != OpType::Add {
                                    bail!(DbError::NotYetImplemented(format!("Cannot explode nested map value in :db/retract for attribute {}", a)));
                                }

                                if attribute.value_type != ValueType::Ref {
                                    bail!(DbError::NotYetImplemented(format!("Cannot explode nested map value for attribute {} that is not :db/valueType :db.type/ref", a)))
                                }

                                // :db/id is optional; if it's not given, we generate a special internal tempid
                                // to use for upserting.  This tempid will not be reported in the TxReport.
                                let db_id: Option<entmod::EntityPlace<V>> = remove_db_id(&mut map_notation)?;
                                let mut dangling = db_id.is_none();
                                let db_id: entmod::EntityPlace<V> = db_id.unwrap_or_else(|| in_process.allocate_mentat_id());

                                // We're nested, so we want to ensure we're not creating "dangling"
                                // entities that can't be reached.  If we're :db/isComponent, then this
                                // is not dangling.  Otherwise, the resulting map needs to have a
                                // :db/unique :db.unique/identity [a v] pair, so that it's reachable.
                                // Per http://docs.datomic.com/transactions.html: "Either the reference
                                // to the nested map must be a component attribute, or the nested map
                                // must include a unique attribute. This constraint prevents the
                                // accidental creation of easily-orphaned entities that have no identity
                                // or relation to other entities."
                                if attribute.component {
                                    dangling = false;
                                }

                                for (inner_a, inner_v) in map_notation {
                                    if let Some(reversed_a) = inner_a.unreversed() {
                                        // We definitely have a reference.  The reference might be
                                        // dangling (a bare entid, for example), but we don't yet
                                        // support nested maps and reverse notation simultaneously
                                        // (i.e., we don't accept {:reverse/_attribute {:nested map}})
                                        // so we don't need to check that the nested map reference isn't
                                        // dangling.
                                        dangling = false;

                                        let reversed_e = in_process.entity_v_into_term_e(inner_v, &inner_a)?;
                                        let reversed_a = in_process.entity_a_into_term_a(reversed_a)?;
                                        let reversed_v = in_process.entity_e_into_term_v(db_id.clone())?;
                                        terms.push(Term::AddOrRetract(OpType::Add, reversed_e, reversed_a, reversed_v));
                                    } else {
                                        let inner_a = in_process.entity_a_into_term_a(inner_a)?;
                                        let inner_attribute = self.schema.require_attribute_for_entid(inner_a)?;
                                        if inner_attribute.unique == Some(attribute::Unique::Identity) {
                                            dangling = false;
                                        }

                                        deque.push_front(Entity::AddOrRetract {
                                            op: OpType::Add,
                                            e: db_id.clone(),
                                            a: AttributePlace::Entid(entmod::Entid::Entid(inner_a)),
                                            v: inner_v,
                                        });
                                    }
                                }

                                if dangling {
                                    bail!(DbError::NotYetImplemented(format!("Cannot explode nested map value that would lead to dangling entity for attribute {}", a)));
                                }

                                in_process.entity_e_into_term_v(db_id)?
                            },
                        };

                        let e = in_process.entity_e_into_term_e(e)?;
                        terms.push(Term::AddOrRetract(op, e, a, v));
                    }
                },
            }
        };
        Ok((terms, in_process.temp_ids, in_process.lookup_refs))
    }

    /// Pipeline stage 2: rewrite `Term` instances with lookup refs into `Term` instances without
    /// lookup refs.
    ///
    /// The `Term` instances produced share interned TempId handles and have no LookupRef references.
    fn resolve_lookup_refs<I>(&self, lookup_ref_map: &AVMap, terms: I) -> Result<Vec<TermWithTempIds>> where I: IntoIterator<Item=TermWithTempIdsAndLookupRefs> {
        terms.into_iter().map(|term: TermWithTempIdsAndLookupRefs| -> Result<TermWithTempIds> {
            match term {
                Term::AddOrRetract(op, e, a, v) => {
                    let e = replace_lookup_ref(&lookup_ref_map, e, |x| KnownEntid(x))?;
                    let v = replace_lookup_ref(&lookup_ref_map, v, |x| TypedValue::Ref(x))?;
                    Ok(Term::AddOrRetract(op, e, a, v))
                },
            }
        }).collect::<Result<Vec<_>>>()
    }

    /// Transact the given `entities` against the store.
    ///
    /// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
    // TODO: move this to the transactor layer.
    pub fn transact_entities<I, V: TransactableValue>(&mut self, entities: I) -> Result<TxReport>
    where I: IntoIterator<Item=Entity<V>> {
        // Pipeline stage 1: entities -> terms with tempids and lookup refs.
        let (terms_with_temp_ids_and_lookup_refs, tempid_set, lookup_ref_set) = self.entities_into_terms_with_temp_ids_and_lookup_refs(entities)?;

        // Pipeline stage 2: resolve lookup refs -> terms with tempids.
        let lookup_ref_avs: Vec<&(i64, TypedValue)> = lookup_ref_set.inner.iter().map(|rc| &**rc).collect();
        let lookup_ref_map: AVMap = self.store.resolve_avs(&lookup_ref_avs[..])?;

        let terms_with_temp_ids = self.resolve_lookup_refs(&lookup_ref_map, terms_with_temp_ids_and_lookup_refs)?;

        self.transact_simple_terms(terms_with_temp_ids, tempid_set)
    }

    pub fn transact_simple_terms<I>(&mut self, terms: I, tempid_set: InternSet<TempId>) -> Result<TxReport>
    where I: IntoIterator<Item=TermWithTempIds> {
        // TODO: push these into an internal transaction report?
        let mut tempids: BTreeMap<TempId, KnownEntid> = BTreeMap::default();

        // Pipeline stage 3: upsert tempids -> terms without tempids or lookup refs.
        // Now we can collect upsert populations.
        let (mut generation, inert_terms) = Generation::from(terms, &self.schema)?;

        // And evolve them forward.
        while generation.can_evolve() {
            debug!("generation {:?}", generation);

            let tempid_avs = generation.temp_id_avs();
            debug!("trying to resolve avs {:?}", tempid_avs);

            // Evolve further.
            let temp_id_map: TempIdMap = self.resolve_temp_id_avs(&tempid_avs[..])?;

            debug!("resolved avs for tempids {:?}", temp_id_map);

            generation = generation.evolve_one_step(&temp_id_map);

            // Errors.  BTree* since we want deterministic results.
            let mut conflicting_upserts: BTreeMap<TempId, BTreeSet<KnownEntid>> = BTreeMap::default();

            // Report each tempid that resolves via upsert.
            for (tempid, entid) in temp_id_map {
                // Since `UpsertEV` instances always transition to `UpsertE` instances, it might be
                // that a tempid resolves in two generations, and those resolutions might conflict.
                tempids.insert((*tempid).clone(), entid).map(|previous| {
                    if entid != previous {
                        conflicting_upserts.entry((*tempid).clone()).or_insert_with(|| once(previous).collect::<BTreeSet<_>>()).insert(entid);
                    }
                });
            }

            if !conflicting_upserts.is_empty() {
                bail!(DbError::SchemaConstraintViolation(errors::SchemaConstraintViolation::ConflictingUpserts { conflicting_upserts }));
            }

            debug!("tempids {:?}", tempids);
        }

        generation.allocate_unresolved_upserts()?;

        debug!("final generation {:?}", generation);

        // Allocate entids for tempids that didn't upsert.  BTreeMap so this is deterministic.
        let unresolved_temp_ids: BTreeMap<TempIdHandle, usize> = generation.temp_ids_in_allocations(&self.schema)?;

        debug!("unresolved tempids {:?}", unresolved_temp_ids);

        // TODO: track partitions for temporary IDs.
        let entids = self.partition_map.allocate_entids(":db.part/user", unresolved_temp_ids.len());

        let temp_id_allocations = unresolved_temp_ids
            .into_iter()
            .map(|(tempid, index)| (tempid, KnownEntid(entids.start + (index as i64))))
            .collect();

        debug!("tempid allocations {:?}", temp_id_allocations);

        let final_populations = generation.into_final_populations(&temp_id_allocations)?;

        // Report each tempid that is allocated.
        for (tempid, &entid) in &temp_id_allocations {
            // Every tempid should be allocated at most once.
            assert!(!tempids.contains_key(&**tempid));
            tempids.insert((**tempid).clone(), entid);
        }

        // Verify that every tempid we interned either resolved or has been allocated.
        assert_eq!(tempids.len(), tempid_set.inner.len());
        for tempid in &tempid_set.inner {
            assert!(tempids.contains_key(&**tempid));
        }

        // Any internal tempid has been allocated by the system and is a private implementation
        // detail; it shouldn't be exposed in the final transaction report.
        let tempids = tempids.into_iter().filter_map(|(tempid, e)| tempid.into_external().map(|s| (s, e.0))).collect();

        // A transaction might try to add or retract :db/ident assertions or other metadata mutating
        // assertions , but those assertions might not make it to the store.  If we see a possible
        // metadata mutation, we will figure out if any assertions made it through later.  This is
        // strictly an optimization: it would be correct to _always_ check what made it to the
        // store.
        let mut tx_might_update_metadata = false;

        // Mutable so that we can add the transaction :db/txInstant.
        let mut aev_trie = into_aev_trie(&self.schema, final_populations, inert_terms)?;

        let tx_instant;
        { // TODO: Don't use this block to scope borrowing the schema; instead, extract a helper function.

        // Assertions that are :db.cardinality/one and not :db.fulltext.
        let mut non_fts_one: Vec<db::ReducedEntity> = vec![];

        // Assertions that are :db.cardinality/many and not :db.fulltext.
        let mut non_fts_many: Vec<db::ReducedEntity> = vec![];

        // Assertions that are :db.cardinality/one and :db.fulltext.
        let mut fts_one: Vec<db::ReducedEntity> = vec![];

        // Assertions that are :db.cardinality/many and :db.fulltext.
        let mut fts_many: Vec<db::ReducedEntity> = vec![];

        // We need to ensure that callers can't blindly transact entities that haven't been
        // allocated by this store.

        let errors = tx_checking::type_disagreements(&aev_trie);
        if !errors.is_empty() {
            bail!(DbError::SchemaConstraintViolation(errors::SchemaConstraintViolation::TypeDisagreements { conflicting_datoms: errors }));
        }

        let errors = tx_checking::cardinality_conflicts(&aev_trie);
        if !errors.is_empty() {
            bail!(DbError::SchemaConstraintViolation(errors::SchemaConstraintViolation::CardinalityConflicts { conflicts: errors }));
        }

        // Pipeline stage 4: final terms (after rewriting) -> DB insertions.
        // Collect into non_fts_*.

        tx_instant = get_or_insert_tx_instant(&mut aev_trie, &self.schema, self.tx_id)?;

        for ((a, attribute), evs) in aev_trie {
            if entids::might_update_metadata(a) {
                tx_might_update_metadata = true;
            }

            let mut queue = match (attribute.fulltext, attribute.multival) {
                (false, true) => &mut non_fts_many,
                (false, false) => &mut non_fts_one,
                (true, false) => &mut fts_one,
                (true, true) => &mut fts_many,
            };

            for (e, ars) in evs {
                for (added, v) in ars.add.into_iter().map(|v| (true, v)).chain(ars.retract.into_iter().map(|v| (false, v))) {
                    let op = match added {
                        true => OpType::Add,
                        false => OpType::Retract,
                    };
                    self.watcher.datom(op, e, a, &v);
                    queue.push((e, a, attribute, v, added));
                }
            }
        }

        if !non_fts_one.is_empty() {
            self.store.insert_non_fts_searches(&non_fts_one[..], db::SearchType::Inexact)?;
        }

        if !non_fts_many.is_empty() {
            self.store.insert_non_fts_searches(&non_fts_many[..], db::SearchType::Exact)?;
        }

        if !fts_one.is_empty() {
            self.store.insert_fts_searches(&fts_one[..], db::SearchType::Inexact)?;
        }

        if !fts_many.is_empty() {
            self.store.insert_fts_searches(&fts_many[..], db::SearchType::Exact)?;
        }

        self.store.commit_transaction(self.tx_id)?;
        }

        db::update_partition_map(self.store, &self.partition_map)?;
        self.watcher.done(&self.tx_id, self.schema)?;

        if tx_might_update_metadata {
            // Extract changes to metadata from the store.
            let metadata_assertions = self.store.committed_metadata_assertions(self.tx_id)?;

            let mut new_schema = (*self.schema_for_mutation).clone(); // Clone the underlying Schema for modification.
            let metadata_report = metadata::update_schema_from_entid_quadruples(&mut new_schema, metadata_assertions)?;

            // We might not have made any changes to the schema, even though it looked like we
            // would.  This should not happen, even during bootstrapping: we mutate an empty
            // `Schema` in this case specifically to run the bootstrapped assertions through the
            // regular transactor code paths, updating the schema and materialized views uniformly.
            // But, belt-and-braces: handle it gracefully.
            if new_schema != *self.schema_for_mutation {
                let old_schema = (*self.schema_for_mutation).clone(); // Clone the original Schema for comparison.
                *self.schema_for_mutation.to_mut() = new_schema; // Store the new Schema.
                db::update_metadata(self.store, &old_schema, &*self.schema_for_mutation, &metadata_report)?;
            }
        }

        Ok(TxReport {
            tx_id: self.tx_id,
            tx_instant,
            tempids: tempids,
        })
    }
}

/// Initialize a new Tx object with a new tx id and a tx instant. Kick off the SQLite conn, too.
fn start_tx<'conn, 'a, W>(conn: &'conn rusqlite::Connection,
                       mut partition_map: PartitionMap,
                       schema_for_mutation: &'a Schema,
                       schema: &'a Schema,
                       watcher: W) -> Result<Tx<'conn, 'a, W>>
    where W: TransactWatcher {
    let tx_id = partition_map.allocate_entid(":db.part/tx");
    conn.begin_tx_application()?;

    Ok(Tx::new(conn, partition_map, schema_for_mutation, schema, watcher, tx_id))
}

fn conclude_tx<W>(tx: Tx<W>, report: TxReport) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
where W: TransactWatcher {
    // If the schema has moved on, return it.
    let next_schema = match tx.schema_for_mutation {
        Cow::Borrowed(_) => None,
        Cow::Owned(next_schema) => Some(next_schema),
    };
    Ok((report, tx.partition_map, next_schema, tx.watcher))
}

/// Transact the given `entities` against the given SQLite `conn`, using the given metadata.
/// If you want this work to occur inside a SQLite transaction, establish one on the connection
/// prior to calling this function.
///
/// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
// TODO: move this to the transactor layer.
pub fn transact<'conn, 'a, I, V, W>(conn: &'conn rusqlite::Connection,
                                 partition_map: PartitionMap,
                                 schema_for_mutation: &'a Schema,
                                 schema: &'a Schema,
                                 watcher: W,
                                 entities: I) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
    where I: IntoIterator<Item=Entity<V>>,
          V: TransactableValue,
          W: TransactWatcher {

    let mut tx = start_tx(conn, partition_map, schema_for_mutation, schema, watcher)?;
    let report = tx.transact_entities(entities)?;
    conclude_tx(tx, report)
}

/// Just like `transact`, but accepts lower-level inputs to allow bypassing the parser interface.
pub fn transact_terms<'conn, 'a, I, W>(conn: &'conn rusqlite::Connection,
                                       partition_map: PartitionMap,
                                       schema_for_mutation: &'a Schema,
                                       schema: &'a Schema,
                                       watcher: W,
                                       terms: I,
                                       tempid_set: InternSet<TempId>) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
    where I: IntoIterator<Item=TermWithTempIds>,
          W: TransactWatcher {

    let mut tx = start_tx(conn, partition_map, schema_for_mutation, schema, watcher)?;
    let report = tx.transact_simple_terms(terms, tempid_set)?;
    conclude_tx(tx, report)
}

fn extend_aev_trie<'schema, I>(schema: &'schema Schema, terms: I, trie: &mut AEVTrie<'schema>) -> Result<()>
where I: IntoIterator<Item=TermWithoutTempIds>
{
    for Term::AddOrRetract(op, KnownEntid(e), a, v) in terms.into_iter() {
        let attribute: &Attribute = schema.require_attribute_for_entid(a)?;

        let a_and_r = trie
            .entry((a, attribute)).or_insert(BTreeMap::default())
            .entry(e).or_insert(AddAndRetract::default());

        match op {
            OpType::Add => a_and_r.add.insert(v),
            OpType::Retract => a_and_r.retract.insert(v),
        };
    }

    Ok(())
}

pub(crate) fn into_aev_trie<'schema>(schema: &'schema Schema, final_populations: FinalPopulations, inert_terms: Vec<TermWithTempIds>) -> Result<AEVTrie<'schema>> {
    let mut trie = AEVTrie::default();
    extend_aev_trie(schema, final_populations.resolved, &mut trie)?;
    extend_aev_trie(schema, final_populations.allocated, &mut trie)?;
    // Inert terms need to be unwrapped.  It is a coding error if a term can't be unwrapped.
    extend_aev_trie(schema, inert_terms.into_iter().map(|term| term.unwrap()), &mut trie)?;

    Ok(trie)
}

/// Transact [:db/add :db/txInstant tx_instant (transaction-tx)] if the trie doesn't contain it
/// already.  Return the instant from the input or the instant inserted.
fn get_or_insert_tx_instant<'schema>(aev_trie: &mut AEVTrie<'schema>, schema: &'schema Schema, tx_id: Entid) -> Result<DateTime<Utc>> {
    let ars = aev_trie
        .entry((entids::DB_TX_INSTANT, schema.require_attribute_for_entid(entids::DB_TX_INSTANT)?))
        .or_insert(BTreeMap::default())
        .entry(tx_id)
        .or_insert(AddAndRetract::default());
    if !ars.retract.is_empty() {
        // Cannot retract :db/txInstant!
    }

    // Otherwise we have a coding error -- we should have cardinality checked this already.
    assert!(ars.add.len() <= 1);

    let first = ars.add.iter().next().cloned();
    match first {
        Some(TypedValue::Instant(instant)) => Ok(instant),
        Some(_) => unreachable!(), // This is a coding error -- we should have typechecked this already.
        None => {
            let instant = now();
            ars.add.insert(instant.into());
            Ok(instant)
        },
    }
}