1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2018 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#![allow(dead_code)]

///! A pull expression is a function.
///!
///! Its inputs are a store, a schema, and a set of bindings.
///!
///! Its output is a map whose keys are the input bindings and whose values are
///! appropriate structured values to represent the pull expression.
///!
///! For example, the pull expression:
///!
///! ```edn
///! (pull ?person [:person/name
///!                :person/tattoo
///!                {:person/friend [*]}])`
///! ```
///!
///! will return values shaped like:
///!
///! ```edn
///! {:person/name "Alice"                            ; Single-valued attribute
///!                                                  ; Absence: Alice has no tattoos.
///!  :person/friend [                                ; Multi-valued attribute.
///!    {:person/name "Bob"                           ; Nesting and wildcard.
///!     :person/pet ["Harrison", "Hoppy"]}]}
///! ```
///!
///! There will be one such value for each input binding.
///!
///! We fetch layers of a pull expression iteratively: all attributes at the same
///! 'level' can be fetched at the same time and accumulated into maps.
///!
///! Those maps are wrapped in `Rc` for two reasons:
///! - They might occur multiple times when projected from a `:find` query.
///! - They might refer to each other (consider recursion).
///!
///! A nested or recursive pull expression consumes values produced by earlier stages
///! (the recursion with a smaller recursion limit and a growing 'seen' list),
///! generating another layer of mappings.
///!
///! For example, you can imagine the nesting in the earlier pull expression being
///! decomposed into two chained expressions:
///!
///! ```edn
///! (pull
///!     (pull ?person [:person/friend])
///      [*]))
///! ```

extern crate failure;

#[macro_use]
extern crate failure_derive;

extern crate rusqlite;

extern crate mentat_core;
extern crate mentat_db;
extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_sql;
extern crate mentat_sql;

use std::collections::{
    BTreeMap,
    BTreeSet,
};

use std::iter::{
    once,
};

use mentat_core::{
    Binding,
    Cloned,
    Entid,
    HasSchema,
    Keyword,
    Schema,
    StructuredMap,
    TypedValue,
    ValueRc,
};

use mentat_db::cache;

use mentat_query::{
    NamedPullAttribute,
    PullAttributeSpec,
    PullConcreteAttribute,
};

pub mod errors;

use errors::{
    PullError,
    Result,
};

type PullResults = BTreeMap<Entid, ValueRc<StructuredMap>>;

pub fn pull_attributes_for_entity<A>(schema: &Schema,
                                     db: &rusqlite::Connection,
                                     entity: Entid,
                                     attributes: A) -> Result<StructuredMap>
    where A: IntoIterator<Item=Entid> {
    let attrs = attributes.into_iter()
                          .map(|e| PullAttributeSpec::Attribute(PullConcreteAttribute::Entid(e).into()))
                          .collect();
    Puller::prepare(schema, attrs)?
        .pull(schema, db, once(entity))
        .map(|m| m.into_iter()
                  .next()
                  .map(|(k, vs)| {
                      assert_eq!(k, entity);
                      vs.cloned()
                  })
                  .unwrap_or_else(StructuredMap::default))
}

pub fn pull_attributes_for_entities<E, A>(schema: &Schema,
                                          db: &rusqlite::Connection,
                                          entities: E,
                                          attributes: A) -> Result<PullResults>
    where E: IntoIterator<Item=Entid>,
          A: IntoIterator<Item=Entid> {
    let attrs = attributes.into_iter()
                          .map(|e| PullAttributeSpec::Attribute(PullConcreteAttribute::Entid(e).into()))
                          .collect();
    Puller::prepare(schema, attrs)?
        .pull(schema, db, entities)
}

/// A `Puller` constructs on demand a map from a provided set of entity IDs to a set of structured maps.
pub struct Puller {
    // The domain of this map is the set of attributes to fetch.
    // The range is the set of aliases to use in the output.
    attributes: BTreeMap<Entid, ValueRc<Keyword>>,
    attribute_spec: cache::AttributeSpec,

    // If this is set, each pulled entity is contributed to its own output map, labeled with this
    // keyword. This is a divergence from Datomic, which has no types by which to differentiate a
    // long from an entity ID, and thus represents all entities in pull as, _e.g._, `{:db/id 1234}`.
    //  Mentat can use `TypedValue::Ref(1234)`, but it's sometimes convenient to fetch the entity ID
    // itself as part of a pull expression: `{:person 1234, :person/name "Peter"}`.
    db_id_alias: Option<ValueRc<Keyword>>,
}

impl Puller {
    pub fn prepare(schema: &Schema, attributes: Vec<PullAttributeSpec>) -> Result<Puller> {
        // TODO: eventually this entry point will handle aliasing and that kind of
        // thing. For now it's just a convenience.

        let lookup_name = |i: &Entid| {
            // In the unlikely event that we have an attribute with no name, we bail.
            schema.get_ident(*i)
                    .map(|ident| ValueRc::new(ident.clone()))
                    .ok_or_else(|| PullError::UnnamedAttribute(*i))
        };

        let mut names: BTreeMap<Entid, ValueRc<Keyword>> = Default::default();
        let mut attrs: BTreeSet<Entid> = Default::default();
        let db_id = ::std::rc::Rc::new(Keyword::namespaced("db", "id"));
        let mut db_id_alias = None;

        for attr in attributes.iter() {
            match attr {
                &PullAttributeSpec::Wildcard => {
                    let attribute_ids = schema.attribute_map.keys();
                    for id in attribute_ids {
                        names.insert(*id, lookup_name(id)?);
                        attrs.insert(*id);
                    }
                    break;
                },
                &PullAttributeSpec::Attribute(NamedPullAttribute {
                    ref attribute,
                    ref alias,
                }) => {
                    let alias = alias.as_ref()
                                     .map(|ref r| r.to_value_rc());
                    match attribute {
                        // Handle :db/id.
                        &PullConcreteAttribute::Ident(ref i) if i.as_ref() == db_id.as_ref() => {
                            // We only allow :db/id once.
                            if db_id_alias.is_some() {
                                Err(PullError::RepeatedDbId)?
                            }
                            db_id_alias = Some(alias.unwrap_or_else(|| db_id.to_value_rc()));
                        },
                        &PullConcreteAttribute::Ident(ref i) => {
                            if let Some(entid) = schema.get_entid(i) {
                                let name = alias.unwrap_or_else(|| i.to_value_rc());
                                names.insert(entid.into(), name);
                                attrs.insert(entid.into());
                            }
                        },
                        &PullConcreteAttribute::Entid(ref entid) => {
                            let name = alias.map(Ok).unwrap_or_else(|| lookup_name(entid))?;
                            names.insert(*entid, name);
                            attrs.insert(*entid);
                        },
                    }
                },
            }
        }

        Ok(Puller {
            attributes: names,
            attribute_spec: cache::AttributeSpec::specified(&attrs, schema),
            db_id_alias,
        })
    }

    pub fn pull<E>(&self,
                   schema: &Schema,
                   db: &rusqlite::Connection,
                   entities: E) -> Result<PullResults>
        where E: IntoIterator<Item=Entid> {
        // We implement pull by:
        // - Generating `AttributeCaches` for the provided attributes and entities.
        //   TODO: it would be nice to invert the cache as we build it, rather than have to invert it here.
        // - Recursing. (TODO: we'll need AttributeCaches to not overwrite in case of recursion! And
        //   ideally not do excess work when some entity/attribute pairs are known.)
        // - Building a structure by walking the pull expression with the caches.
        // TODO: limits.

        // Build a cache for these attributes and entities.
        // TODO: use the store's existing cache!
        let entities: Vec<Entid> = entities.into_iter().collect();
        let caches = cache::AttributeCaches::make_cache_for_entities_and_attributes(
            schema,
            db,
            self.attribute_spec.clone(),
            &entities)?;

        // Now construct the appropriate result format.
        // TODO: should we walk `e` then `a`, or `a` then `e`? Possibly the right answer
        // is just to collect differently!
        let mut maps = BTreeMap::new();

        // Collect :db/id if requested.
        if let Some(ref alias) = self.db_id_alias {
            for e in entities.iter() {
                let mut r = maps.entry(*e)
                                .or_insert(ValueRc::new(StructuredMap::default()));
                let mut m = ValueRc::get_mut(r).unwrap();
                m.insert(alias.clone(), Binding::Scalar(TypedValue::Ref(*e)));
            }
        }

        for (name, cache) in self.attributes.iter().filter_map(|(a, name)|
            caches.forward_attribute_cache_for_attribute(schema, *a)
                  .map(|cache| (name.clone(), cache))) {

            for e in entities.iter() {
                if let Some(binding) = cache.binding_for_e(*e) {
                    let mut r = maps.entry(*e)
                                    .or_insert(ValueRc::new(StructuredMap::default()));

                    // Get into the inner map so we can accumulate a value.
                    // We can unwrap here because we created all of these maps…
                    let mut m = ValueRc::get_mut(r).unwrap();

                    m.insert(name.clone(), binding);
                }
            }
        }

        Ok(maps)
    }

}