1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

use mentat_core::{
    Schema,
    SQLTypeAffinity,
    SQLValueType,
    SQLValueTypeSet,
    TypedValue,
    ValueType,
    ValueTypeTag,
    ValueTypeSet,
};

use mentat_core::util::{
    Either,
};

use mentat_query::{
    Limit,
};

use mentat_query_algebrizer::{
    AlgebraicQuery,
    ColumnAlternation,
    ColumnConstraint,
    ColumnConstraintOrAlternation,
    ColumnIntersection,
    ColumnName,
    ComputedTable,
    ConjoiningClauses,
    DatomsColumn,
    DatomsTable,
    OrderBy,
    QualifiedAlias,
    QueryValue,
    SourceAlias,
    TableAlias,
    VariableColumn,
};

use mentat_query_projector::{
    CombinedProjection,
    ConstantProjector,
    Projector,
    projected_column_for_var,
    query_projection,
};

use mentat_query_sql::{
    ColumnOrExpression,
    Constraint,
    FromClause,
    GroupBy,
    Op,
    ProjectedColumn,
    Projection,
    SelectQuery,
    TableList,
    TableOrSubquery,
    Values,
};

use std::collections::HashMap;

use super::Result;

trait ToConstraint {
    fn to_constraint(self) -> Constraint;
}

trait ToColumn {
    fn to_column(self) -> ColumnOrExpression;
}

impl ToColumn for QualifiedAlias {
    fn to_column(self) -> ColumnOrExpression {
        ColumnOrExpression::Column(self)
    }
}

impl ToConstraint for ColumnIntersection {
    fn to_constraint(self) -> Constraint {
        Constraint::And {
            constraints: self.into_iter().map(|x| x.to_constraint()).collect()
        }
    }
}

impl ToConstraint for ColumnAlternation {
    fn to_constraint(self) -> Constraint {
        Constraint::Or {
            constraints: self.into_iter().map(|x| x.to_constraint()).collect()
        }
    }
}

impl ToConstraint for ColumnConstraintOrAlternation {
    fn to_constraint(self) -> Constraint {
        use self::ColumnConstraintOrAlternation::*;
        match self {
            Alternation(alt) => alt.to_constraint(),
            Constraint(c) => c.to_constraint(),
        }
    }
}

fn affinity_count(tag: i32) -> usize {
    ValueTypeSet::any().into_iter()
                       .filter(|t| t.value_type_tag() == tag)
                       .count()
}

fn type_constraint(table: &TableAlias, tag: i32, to_check: Option<Vec<SQLTypeAffinity>>) -> Constraint {
    let type_column = QualifiedAlias::new(table.clone(),
                                          DatomsColumn::ValueTypeTag).to_column();
    let check_type_tag = Constraint::equal(type_column, ColumnOrExpression::Integer(tag));
    if let Some(affinities) = to_check {
        let check_affinities = Constraint::Or {
            constraints: affinities.into_iter().map(|affinity| {
                Constraint::TypeCheck {
                    value: QualifiedAlias::new(table.clone(),
                                               DatomsColumn::Value).to_column(),
                    affinity,
                }
            }).collect()
        };
        Constraint::And {
            constraints: vec![
                check_type_tag,
                check_affinities
            ]
        }
    } else {
        check_type_tag
    }
}

// Returns a map of tags to a vector of all the possible affinities that those tags can represent
// given the types in `value_types`.
fn possible_affinities(value_types: ValueTypeSet) -> HashMap<ValueTypeTag, Vec<SQLTypeAffinity>> {
    let mut result = HashMap::with_capacity(value_types.len());
    for ty in value_types {
        let (tag, affinity_to_check) = ty.sql_representation();
        let affinities = result.entry(tag).or_insert_with(Vec::new);
        if let Some(affinity) = affinity_to_check {
            affinities.push(affinity);
        }
    }
    result
}

impl ToConstraint for ColumnConstraint {
    fn to_constraint(self) -> Constraint {
        use self::ColumnConstraint::*;
        match self {
            Equals(qa, QueryValue::Entid(entid)) =>
                Constraint::equal(qa.to_column(), ColumnOrExpression::Entid(entid)),

            Equals(qa, QueryValue::TypedValue(tv)) =>
                Constraint::equal(qa.to_column(), ColumnOrExpression::Value(tv)),

            Equals(left, QueryValue::Column(right)) =>
                Constraint::equal(left.to_column(), right.to_column()),

            Equals(qa, QueryValue::PrimitiveLong(value)) => {
                let tag_column = qa.for_associated_type_tag().expect("an associated type tag alias").to_column();
                let value_column = qa.to_column();

                // A bare long in a query might match a ref, an instant, a long (obviously), or a
                // double. If it's negative, it can't match a ref, but that's OK -- it won't!
                //
                // However, '1' and '0' are used to represent booleans, and some integers are also
                // used to represent FTS values. We don't want to accidentally match those.
                //
                // We ask `SQLValueType` whether this value is in range for how booleans are
                // represented in the database.
                //
                // We only hit this code path when the attribute is unknown, so we're querying
                // `all_datoms`. That means we don't see FTS IDs at all -- they're transparently
                // replaced by their strings. If that changes, then you should also exclude the
                // string type code (10) here.
                let must_exclude_boolean = ValueType::Boolean.accommodates_integer(value);
                if must_exclude_boolean {
                    Constraint::And {
                        constraints: vec![
                            Constraint::equal(value_column,
                                              ColumnOrExpression::Value(TypedValue::Long(value))),
                            Constraint::not_equal(tag_column,
                                                  ColumnOrExpression::Integer(ValueType::Boolean.value_type_tag())),
                        ],
                    }
                } else {
                    Constraint::equal(value_column, ColumnOrExpression::Value(TypedValue::Long(value)))
                }
            },

            Inequality { operator, left, right } => {
                Constraint::Infix {
                    op: Op(operator.to_sql_operator()),
                    left: left.into(),
                    right: right.into(),
                }
            },

            Matches(left, right) => {
                Constraint::Infix {
                    op: Op("MATCH"),
                    left: ColumnOrExpression::Column(left),
                    right: right.into(),
                }
            },
            HasTypes { value: table, value_types, check_value } => {
                let constraints = if check_value {
                    possible_affinities(value_types)
                        .into_iter()
                        .map(|(tag, affinities)| {
                            let to_check = if affinities.is_empty() || affinities.len() == affinity_count(tag) {
                                None
                            } else {
                                Some(affinities)
                            };
                            type_constraint(&table, tag, to_check)
                        }).collect()
                } else {
                    value_types.into_iter()
                               .map(|vt| type_constraint(&table, vt.value_type_tag(), None))
                               .collect()
                };
                Constraint::Or { constraints }
            },

            NotExists(computed_table) => {
                let subquery = table_for_computed(computed_table, TableAlias::new());
                Constraint::NotExists {
                    subquery: subquery,
                }
            },
        }
    }
}

pub enum ProjectedSelect {
    Constant(ConstantProjector),
    Query {
        query: SelectQuery,
        projector: Box<Projector>,
    },
}

// Nasty little hack to let us move out of indexed context.
struct ConsumableVec<T> {
    inner: Vec<Option<T>>,
}

impl<T> From<Vec<T>> for ConsumableVec<T> {
    fn from(vec: Vec<T>) -> ConsumableVec<T> {
        ConsumableVec { inner: vec.into_iter().map(|x| Some(x)).collect() }
    }
}

impl<T> ConsumableVec<T> {
    fn take_dangerously(&mut self, i: usize) -> T {
        ::std::mem::replace(&mut self.inner[i], None).expect("each value to only be fetched once")
    }
}

fn table_for_computed(computed: ComputedTable, alias: TableAlias) -> TableOrSubquery {
    match computed {
        ComputedTable::Union {
            projection, type_extraction, arms,
        } => {
            // The projection list for each CC must have the same shape and the same names.
            // The values we project might be fixed or they might be columns.
            TableOrSubquery::Union(
                arms.into_iter()
                    .map(|cc| {
                        // We're going to end up with the variables being projected and also some
                        // type tag columns.
                        let mut columns: Vec<ProjectedColumn> = Vec::with_capacity(projection.len() + type_extraction.len());

                        // For each variable, find out which column it maps to within this arm, and
                        // project it as the variable name.
                        // E.g., SELECT datoms03.v AS `?x`.
                        for var in projection.iter() {
                            // TODO: chain results out.
                            let (projected_column, type_set) = projected_column_for_var(var, &cc).expect("every var to be bound");
                            columns.push(projected_column);

                            // Similarly, project type tags if they're not known conclusively in the
                            // outer query.
                            // Assumption: we'll never need to project a tag without projecting the value of a variable.
                            if type_extraction.contains(var) {
                                let expression =
                                    if let Some(tag) = type_set.unique_type_tag() {
                                        // If we know the type for sure, just project the constant.
                                        // SELECT datoms03.v AS `?x`, 10 AS `?x_value_type_tag`
                                        ColumnOrExpression::Integer(tag)
                                    } else {
                                        // Otherwise, we'll have an established type binding! This'll be
                                        // either a datoms table or, recursively, a subquery. Project
                                        // this:
                                        // SELECT datoms03.v AS `?x`,
                                        //        datoms03.value_type_tag AS `?x_value_type_tag`
                                        let extract = cc.extracted_types
                                                        .get(var)
                                                        .expect("Expected variable to have a known type or an extracted type");
                                        ColumnOrExpression::Column(extract.clone())
                                    };
                                let type_column = VariableColumn::VariableTypeTag(var.clone());
                                let proj = ProjectedColumn(expression, type_column.column_name());
                                columns.push(proj);
                            }
                        }

                        // Each arm simply turns into a subquery.
                        // The SQL translation will stuff "UNION" between each arm.
                        let projection = Projection::Columns(columns);
                        cc_to_select_query(projection, cc, false, vec![], None, Limit::None)
                  }).collect(),
                alias)
        },
        ComputedTable::Subquery(subquery) => {
            TableOrSubquery::Subquery(Box::new(cc_to_exists(subquery)))
        },
        ComputedTable::NamedValues {
            names, values,
        } => {
            // We assume column homogeneity, so we won't have any type tag columns.
            TableOrSubquery::Values(Values::Named(names, values), alias)
        },
    }
}

fn empty_query() -> SelectQuery {
    SelectQuery {
        distinct: false,
        projection: Projection::One,
        from: FromClause::Nothing,
        group_by: vec![],
        constraints: vec![],
        order: vec![],
        limit: Limit::None,
    }
}

/// Returns a `SelectQuery` that queries for the provided `cc`. Note that this _always_ returns a
/// query that runs SQL. The next level up the call stack can check for known-empty queries if
/// needed.
fn cc_to_select_query(projection: Projection,
                      cc: ConjoiningClauses,
                      distinct: bool,
                      group_by: Vec<GroupBy>,
                      order: Option<Vec<OrderBy>>,
                      limit: Limit) -> SelectQuery {
    let from = if cc.from.is_empty() {
        FromClause::Nothing
    } else {
        // Move these out of the CC.
        let from = cc.from;
        let mut computed: ConsumableVec<_> = cc.computed_tables.into();

        // Why do we put computed tables directly into the `FROM` clause? The alternative is to use
        // a CTE (`WITH`). They're typically equivalent, but some SQL systems (notably Postgres)
        // treat CTEs as optimization barriers, so a `WITH` can be significantly slower. Given that
        // this is easy enough to change later, we'll opt for using direct inclusion in `FROM`.
        let tables =
            from.into_iter().map(|source_alias| {
                match source_alias {
                    SourceAlias(DatomsTable::Computed(i), alias) => {
                        let comp = computed.take_dangerously(i);
                        table_for_computed(comp, alias)
                    },
                    _ => {
                        TableOrSubquery::Table(source_alias)
                    }
                }
            });

        FromClause::TableList(TableList(tables.collect()))
    };

    let order = order.map_or(vec![], |vec| { vec.into_iter().map(|o| o.into()).collect() });
    let limit = if cc.empty_because.is_some() { Limit::Fixed(0) } else { limit };
    SelectQuery {
        distinct: distinct,
        projection: projection,
        from: from,
        group_by: group_by,
        constraints: cc.wheres
                       .into_iter()
                       .map(|c| c.to_constraint())
                       .collect(),
        order: order,
        limit: limit,
    }
}

/// Return a query that projects `1` if the `cc` matches the store, and returns no results
/// if it doesn't.
pub fn cc_to_exists(cc: ConjoiningClauses) -> SelectQuery {
    if cc.is_known_empty() {
        // In this case we can produce a very simple query that returns no results.
        empty_query()
    } else {
        cc_to_select_query(Projection::One, cc, false, vec![], None, Limit::None)
    }
}

/// Take a query and wrap it as a subquery of a new query with the provided projection list.
/// All limits, ordering, and grouping move to the outer query. The inner query is marked as
/// distinct.
fn re_project(mut inner: SelectQuery, projection: Projection) -> SelectQuery {
    let outer_distinct = inner.distinct;
    inner.distinct = true;
    let group_by = inner.group_by;
    inner.group_by = vec![];
    let order_by = inner.order;
    inner.order = vec![];
    let limit = inner.limit;
    inner.limit = Limit::None;

    use self::Projection::*;

    let nullable = match &projection {
        &Columns(ref columns) => {
            columns.iter().filter_map(|pc| {
                match pc {
                    &ProjectedColumn(ColumnOrExpression::NullableAggregate(_, _), ref name) => {
                        Some(Constraint::IsNotNull {
                            value: ColumnOrExpression::ExistingColumn(name.clone()),
                        })
                    },
                    _ => None,
                }
            }).collect()
        },
        &Star => vec![],
        &One => vec![],
    };

    if nullable.is_empty() {
        return SelectQuery {
            distinct: outer_distinct,
            projection: projection,
            from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(inner))])),
            constraints: vec![],
            group_by: group_by,
            order: order_by,
            limit: limit,
        };
    }

    // Our pattern is `SELECT * FROM (SELECT ...) WHERE (nullable aggregate) IS NOT NULL`.  If
    // there's an `ORDER BY` in the subselect, SQL does not guarantee that the outer select will
    // respect that order.  But `ORDER BY` is relevant to the subselect when we have a `LIMIT`.
    // Thus we lift the `ORDER BY` if there’s no `LIMIT` in the subselect, and repeat the `ORDER BY`
    // if there is.
    let subselect = SelectQuery {
        distinct: outer_distinct,
        projection: projection,
        from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(inner))])),
        constraints: vec![],
        group_by: group_by,
        order: match &limit {
            &Limit::None => vec![],
            &Limit::Fixed(_) | &Limit::Variable(_) => order_by.clone(),
        },
        limit,
    };

    SelectQuery {
        distinct: false,
        projection: Projection::Star,
        from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(subselect))])),
        constraints: nullable,
        group_by: vec![],
        order: order_by,
        limit: Limit::None, // Any limiting comes from the internal query.
    }
}

/// Consume a provided `AlgebraicQuery` to yield a new
/// `ProjectedSelect`.
pub fn query_to_select(schema: &Schema, query: AlgebraicQuery) -> Result<ProjectedSelect> {
    // TODO: we can't pass `query.limit` here if we aggregate during projection.
    // SQL-based aggregation -- `SELECT SUM(datoms00.e)` -- is fine.
    query_projection(schema, &query).map(|e| match e {
        Either::Left(constant) => ProjectedSelect::Constant(constant),
        Either::Right(CombinedProjection {
            sql_projection,
            pre_aggregate_projection,
            datalog_projector,
            distinct,
            group_by_cols,
        }) => {
            ProjectedSelect::Query {
                query: match pre_aggregate_projection {
                    // If we know we need a nested query for aggregation, build that first.
                    Some(pre_aggregate) => {
                        let inner = cc_to_select_query(pre_aggregate,
                                                       query.cc,
                                                       distinct,
                                                       group_by_cols,
                                                       query.order,
                                                       query.limit);
                        let outer = re_project(inner, sql_projection);
                        outer
                    },
                    None => {
                        cc_to_select_query(sql_projection, query.cc, distinct, group_by_cols, query.order, query.limit)
                    },
                },
                projector: datalog_projector,
            }
        },
    }).map_err(|e| e.into())
}