1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use hir::{self, Hir, HirKind}; /// A trait for visiting the high-level IR (HIR) in depth first order. /// /// The principle aim of this trait is to enable callers to perform case /// analysis on a high-level intermediate representation of a regular /// expression without necessarily using recursion. In particular, this permits /// callers to do case analysis with constant stack usage, which can be /// important since the size of an HIR may be proportional to end user input. /// /// Typical usage of this trait involves providing an implementation and then /// running it using the [`visit`](fn.visit.html) function. pub trait Visitor { /// The result of visiting an HIR. type Output; /// An error that visiting an HIR might return. type Err; /// All implementors of `Visitor` must provide a `finish` method, which /// yields the result of visiting the HIR or an error. fn finish(self) -> Result<Self::Output, Self::Err>; /// This method is called before beginning traversal of the HIR. fn start(&mut self) {} /// This method is called on an `Hir` before descending into child `Hir` /// nodes. fn visit_pre(&mut self, _hir: &Hir) -> Result<(), Self::Err> { Ok(()) } /// This method is called on an `Hir` after descending all of its child /// `Hir` nodes. fn visit_post(&mut self, _hir: &Hir) -> Result<(), Self::Err> { Ok(()) } /// This method is called between child nodes of an alternation. fn visit_alternation_in(&mut self) -> Result<(), Self::Err> { Ok(()) } } /// Executes an implementation of `Visitor` in constant stack space. /// /// This function will visit every node in the given `Hir` while calling /// appropriate methods provided by the /// [`Visitor`](trait.Visitor.html) trait. /// /// The primary use case for this method is when one wants to perform case /// analysis over an `Hir` without using a stack size proportional to the depth /// of the `Hir`. Namely, this method will instead use constant stack space, /// but will use heap space proportional to the size of the `Hir`. This may be /// desirable in cases where the size of `Hir` is proportional to end user /// input. /// /// If the visitor returns an error at any point, then visiting is stopped and /// the error is returned. pub fn visit<V: Visitor>(hir: &Hir, visitor: V) -> Result<V::Output, V::Err> { HeapVisitor::new().visit(hir, visitor) } /// HeapVisitor visits every item in an `Hir` recursively using constant stack /// size and a heap size proportional to the size of the `Hir`. struct HeapVisitor<'a> { /// A stack of `Hir` nodes. This is roughly analogous to the call stack /// used in a typical recursive visitor. stack: Vec<(&'a Hir, Frame<'a>)>, } /// Represents a single stack frame while performing structural induction over /// an `Hir`. enum Frame<'a> { /// A stack frame allocated just before descending into a repetition /// operator's child node. Repetition(&'a hir::Repetition), /// A stack frame allocated just before descending into a group's child /// node. Group(&'a hir::Group), /// The stack frame used while visiting every child node of a concatenation /// of expressions. Concat { /// The child node we are currently visiting. head: &'a Hir, /// The remaining child nodes to visit (which may be empty). tail: &'a [Hir], }, /// The stack frame used while visiting every child node of an alternation /// of expressions. Alternation { /// The child node we are currently visiting. head: &'a Hir, /// The remaining child nodes to visit (which may be empty). tail: &'a [Hir], }, } impl<'a> HeapVisitor<'a> { fn new() -> HeapVisitor<'a> { HeapVisitor { stack: vec![] } } fn visit<V: Visitor>( &mut self, mut hir: &'a Hir, mut visitor: V, ) -> Result<V::Output, V::Err> { self.stack.clear(); visitor.start(); loop { visitor.visit_pre(hir)?; if let Some(x) = self.induct(hir) { let child = x.child(); self.stack.push((hir, x)); hir = child; continue; } // No induction means we have a base case, so we can post visit // it now. visitor.visit_post(hir)?; // At this point, we now try to pop our call stack until it is // either empty or we hit another inductive case. loop { let (post_hir, frame) = match self.stack.pop() { None => return visitor.finish(), Some((post_hir, frame)) => (post_hir, frame), }; // If this is a concat/alternate, then we might have additional // inductive steps to process. if let Some(x) = self.pop(frame) { if let Frame::Alternation {..} = x { visitor.visit_alternation_in()?; } hir = x.child(); self.stack.push((post_hir, x)); break; } // Otherwise, we've finished visiting all the child nodes for // this HIR, so we can post visit it now. visitor.visit_post(post_hir)?; } } } /// Build a stack frame for the given HIR if one is needed (which occurs if /// and only if there are child nodes in the HIR). Otherwise, return None. fn induct(&mut self, hir: &'a Hir) -> Option<Frame<'a>> { match *hir.kind() { HirKind::Repetition(ref x) => Some(Frame::Repetition(x)), HirKind::Group(ref x) => Some(Frame::Group(x)), HirKind::Concat(ref x) if x.is_empty() => None, HirKind::Concat(ref x) => { Some(Frame::Concat { head: &x[0], tail: &x[1..], }) } HirKind::Alternation(ref x) if x.is_empty() => None, HirKind::Alternation(ref x) => { Some(Frame::Alternation { head: &x[0], tail: &x[1..], }) } _ => None, } } /// Pops the given frame. If the frame has an additional inductive step, /// then return it, otherwise return `None`. fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> { match induct { Frame::Repetition(_) => None, Frame::Group(_) => None, Frame::Concat { tail, .. } => { if tail.is_empty() { None } else { Some(Frame::Concat { head: &tail[0], tail: &tail[1..], }) } } Frame::Alternation { tail, .. } => { if tail.is_empty() { None } else { Some(Frame::Alternation { head: &tail[0], tail: &tail[1..], }) } } } } } impl<'a> Frame<'a> { /// Perform the next inductive step on this frame and return the next /// child HIR node to visit. fn child(&self) -> &'a Hir { match *self { Frame::Repetition(rep) => &rep.hir, Frame::Group(group) => &group.hir, Frame::Concat { head, .. } => head, Frame::Alternation { head, .. } => head, } } }