Function petgraph::algo::astar [] [src]

pub fn astar<G, F, H, K, IsGoal>(
    graph: G,
    start: G::NodeId,
    is_goal: IsGoal,
    edge_cost: F,
    estimate_cost: H
) -> Option<(K, Vec<G::NodeId>)> where
    G: IntoEdges + Visitable,
    IsGoal: FnMut(G::NodeId) -> bool,
    G::NodeId: Eq + Hash,
    F: FnMut(G::EdgeRef) -> K,
    H: FnMut(G::NodeId) -> K,
    K: Measure + Copy

[Generic] A* shortest path algorithm.

Computes the shortest path from start to finish, including the total path cost.

finish is implicitly given via the is_goal callback, which should return true if the given node is the finish node.

The function edge_cost should return the cost for a particular edge. Edge costs must be non-negative.

The function estimate_cost should return the estimated cost to the finish for a particular node. For the algorithm to find the actual shortest path, it should be admissible, meaning that it should never overestimate the actual cost to get to the nearest goal node. Estimate costs must also be non-negative.

The graph should be Visitable and implement IntoEdges.

use petgraph::Graph;
use petgraph::algo::astar;

let mut g = Graph::new();
let a = g.add_node((0., 0.));
let b = g.add_node((2., 0.));
let c = g.add_node((1., 1.));
let d = g.add_node((0., 2.));
let e = g.add_node((3., 3.));
let f = g.add_node((4., 2.));
g.extend_with_edges(&[
    (a, b, 2),
    (a, d, 4),
    (b, c, 1),
    (b, f, 7),
    (c, e, 5),
    (e, f, 1),
    (d, e, 1),
]);

let path = astar(&g, a, |finish| finish == f, |e| *e.weight(), |_| 0);
assert_eq!(path, Some((6, vec![a, d, e, f])));

Returns the total cost + the path of subsequent NodeId from start to finish, if one was found.