1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use core::fmt;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr;


cfg_if! {
    if #[cfg(feature = "nightly")] {
        // This trick allows use to support rustc 1.12.1, which does not support the
        // #[repr(align(n))] syntax. Using the attribute makes the parser fail over.
        // It is, however, okay to use it within a macro, since it would be parsed
        // in a later stage, but that never occurs due to the cfg_if.
        // TODO(Vtec234): remove this crap when we drop support for 1.12.
        macro_rules! nightly_inner {
            () => (
                #[derive(Clone)]
                #[repr(align(64))]
                pub(crate) struct Inner<T> {
                    value: T,
                }
            )
        }
        nightly_inner!();

        impl<T> Inner<T> {
            pub(crate) fn new(t: T) -> Inner<T> {
                Self {
                    value: t
                }
            }
        }

        impl<T> Deref for Inner<T> {
            type Target = T;

            fn deref(&self) -> &T {
                &self.value
            }
        }

        impl<T> DerefMut for Inner<T> {
            fn deref_mut(&mut self) -> &mut T {
                &mut self.value
            }
        }
    } else {
        use core::marker::PhantomData;

        struct Inner<T> {
            bytes: [u8; 64],

            /// `[T; 0]` ensures alignment is at least that of `T`.
            /// `PhantomData<T>` signals that `CachePadded<T>` contains a `T`.
            _marker: ([T; 0], PhantomData<T>),
        }

        impl<T> Inner<T> {
            fn new(t: T) -> Inner<T> {
                assert!(mem::size_of::<T>() <= mem::size_of::<Self>());
                assert!(mem::align_of::<T>() <= mem::align_of::<Self>());

                unsafe {
                    let mut inner: Self = mem::uninitialized();
                    let p: *mut T = &mut *inner;
                    ptr::write(p, t);
                    inner
                }
            }
        }

        impl<T> Deref for Inner<T> {
            type Target = T;

            fn deref(&self) -> &T {
                unsafe { &*(self.bytes.as_ptr() as *const T) }
            }
        }

        impl<T> DerefMut for Inner<T> {
            fn deref_mut(&mut self) -> &mut T {
                unsafe { &mut *(self.bytes.as_ptr() as *mut T) }
            }
        }

        impl<T> Drop for CachePadded<T> {
            fn drop(&mut self) {
                let p: *mut T = self.deref_mut();
                unsafe {
                    ptr::drop_in_place(p);
                }
            }
        }

        impl<T: Clone> Clone for Inner<T> {
            fn clone(&self) -> Inner<T> {
                let val = self.deref().clone();
                Self::new(val)
            }
        }
    }
}

/// Pads `T` to the length of a cache line.
///
/// Sometimes concurrent programming requires a piece of data to be padded out to the size of a
/// cacheline to avoid "false sharing": cache lines being invalidated due to unrelated concurrent
/// activity. Use this type when you want to *avoid* cache locality.
///
/// At the moment, cache lines are assumed to be 64 bytes on all architectures.
///
/// # Size and alignment
///
/// By default, the size of `CachePadded<T>` is 64 bytes. If `T` is larger than that, then
/// `CachePadded::<T>::new` will panic. Alignment of `CachePadded<T>` is the same as that of `T`.
///
/// However, if the `nightly` feature is enabled, arbitrarily large types `T` can be stored inside
/// a `CachePadded<T>`. The size will then be a multiple of 64 at least the size of `T`, and the
/// alignment will be the maximum of 64 and the alignment of `T`.
pub struct CachePadded<T> {
    inner: Inner<T>,
}

unsafe impl<T: Send> Send for CachePadded<T> {}
unsafe impl<T: Sync> Sync for CachePadded<T> {}

impl<T> CachePadded<T> {
    /// Pads a value to the length of a cache line.
    ///
    /// # Panics
    ///
    /// If `nightly` is not enabled and `T` is larger than 64 bytes, this function will panic.
    pub fn new(t: T) -> CachePadded<T> {
        CachePadded::<T> { inner: Inner::new(t) }
    }
}

impl<T> Deref for CachePadded<T> {
    type Target = T;

    fn deref(&self) -> &T {
        self.inner.deref()
    }
}

impl<T> DerefMut for CachePadded<T> {
    fn deref_mut(&mut self) -> &mut T {
        self.inner.deref_mut()
    }
}

impl<T: Default> Default for CachePadded<T> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T: Clone> Clone for CachePadded<T> {
    fn clone(&self) -> Self {
        CachePadded { inner: self.inner.clone() }
    }
}

impl<T: fmt::Debug> fmt::Debug for CachePadded<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let inner: &T = &*self;
        write!(f, "CachePadded {{ {:?} }}", inner)
    }
}

impl<T> From<T> for CachePadded<T> {
    fn from(t: T) -> Self {
        CachePadded::new(t)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::cell::Cell;

    #[test]
    fn store_u64() {
        let x: CachePadded<u64> = CachePadded::new(17);
        assert_eq!(*x, 17);
    }

    #[test]
    fn store_pair() {
        let x: CachePadded<(u64, u64)> = CachePadded::new((17, 37));
        assert_eq!(x.0, 17);
        assert_eq!(x.1, 37);
    }

    #[test]
    fn distance() {
        let arr = [CachePadded::new(17u8), CachePadded::new(37u8)];
        let a = &*arr[0] as *const u8;
        let b = &*arr[1] as *const u8;
        assert!(unsafe { a.offset(64) } <= b);
    }

    #[test]
    fn different_sizes() {
        CachePadded::new(17u8);
        CachePadded::new(17u16);
        CachePadded::new(17u32);
        CachePadded::new([17u64; 0]);
        CachePadded::new([17u64; 1]);
        CachePadded::new([17u64; 2]);
        CachePadded::new([17u64; 3]);
        CachePadded::new([17u64; 4]);
        CachePadded::new([17u64; 5]);
        CachePadded::new([17u64; 6]);
        CachePadded::new([17u64; 7]);
        CachePadded::new([17u64; 8]);
    }

    cfg_if! {
        if #[cfg(feature = "nightly")] {
            #[test]
            fn large() {
                let a = [17u64; 9];
                let b = CachePadded::new(a);
                assert!(mem::size_of_val(&a) <= mem::size_of_val(&b));
            }
        } else {
            #[test]
            #[should_panic]
            fn large() {
                CachePadded::new([17u64; 9]);
            }
        }
    }

    #[test]
    fn debug() {
        assert_eq!(
            format!("{:?}", CachePadded::new(17u64)),
            "CachePadded { 17 }"
        );
    }

    #[test]
    fn drops() {
        let count = Cell::new(0);

        struct Foo<'a>(&'a Cell<usize>);

        impl<'a> Drop for Foo<'a> {
            fn drop(&mut self) {
                self.0.set(self.0.get() + 1);
            }
        }

        let a = CachePadded::new(Foo(&count));
        let b = CachePadded::new(Foo(&count));

        assert_eq!(count.get(), 0);
        drop(a);
        assert_eq!(count.get(), 1);
        drop(b);
        assert_eq!(count.get(), 2);
    }

    #[test]
    fn clone() {
        let a = CachePadded::new(17);
        let b = a.clone();
        assert_eq!(*a, *b);
    }

    #[test]
    fn runs_custom_clone() {
        let count = Cell::new(0);

        struct Foo<'a>(&'a Cell<usize>);

        impl<'a> Clone for Foo<'a> {
            fn clone(&self) -> Foo<'a> {
                self.0.set(self.0.get() + 1);
                Foo::<'a>(self.0)
            }
        }

        let a = CachePadded::new(Foo(&count));
        a.clone();

        assert_eq!(count.get(), 1);
    }
}