1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Based on jitterentropy-library, http://www.chronox.de/jent.html.
// Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2017.
//
// With permission from Stephan Mueller to relicense the Rust translation under
// the MIT license.

//! Non-physical true random number generator based on timing jitter.

use Rng;

use core::{fmt, mem, ptr};
#[cfg(feature="std")]
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};

const MEMORY_BLOCKS: usize = 64;
const MEMORY_BLOCKSIZE: usize = 32;
const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE;

/// A true random number generator based on jitter in the CPU execution time,
/// and jitter in memory access time.
///
/// This is a true random number generator, as opposed to pseudo-random
/// generators. Random numbers generated by `JitterRng` can be seen as fresh
/// entropy. A consequence is that is orders of magnitude slower than `OsRng`
/// and PRNGs (about 10^3 .. 10^6 slower).
///
/// There are very few situations where using this RNG is appropriate. Only very
/// few applications require true entropy. A normal PRNG can be statistically
/// indistinguishable, and a cryptographic PRNG should also be as impossible to
/// predict.
///
/// Use of `JitterRng` is recommended for initializing cryptographic PRNGs when
/// `OsRng` is not available.
///
/// This implementation is based on
/// [Jitterentropy](http://www.chronox.de/jent.html) version 2.1.0.
//
// Note: the C implementation relies on being compiled without optimizations.
// This implementation goes through lengths to make the compiler not optimise
// out what is technically dead code, but that does influence timing jitter.
pub struct JitterRng {
    data: u64, // Actual random number
    // Number of rounds to run the entropy collector per 64 bits
    rounds: u32,
    // Timer and previous time stamp, used by `measure_jitter`
    timer: fn() -> u64,
    prev_time: u64,
    // Deltas used for the stuck test
    last_delta: i64,
    last_delta2: i64,
    // Memory for the Memory Access noise source
    mem_prev_index: usize,
    mem: [u8; MEMORY_SIZE],
    // Make `next_u32` not waste 32 bits
    data_remaining: Option<u32>,
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for JitterRng {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "JitterRng {{}}")
    }
}

/// An error that can occur when `test_timer` fails.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum TimerError {
    /// No timer available.
    NoTimer,
    /// Timer too coarse to use as an entropy source.
    CoarseTimer,
    /// Timer is not monotonically increasing.
    NotMonotonic,
    /// Variations of deltas of time too small.
    TinyVariantions,
    /// Too many stuck results (indicating no added entropy).
    TooManyStuck,
    #[doc(hidden)]
    __Nonexhaustive,
}

impl TimerError {
    fn description(&self) -> &'static str {
        match *self {
            TimerError::NoTimer => "no timer available",
            TimerError::CoarseTimer => "coarse timer",
            TimerError::NotMonotonic => "timer not monotonic",
            TimerError::TinyVariantions => "time delta variations too small",
            TimerError::TooManyStuck => "too many stuck results",
            TimerError::__Nonexhaustive => unreachable!(),
        }
    }
}

impl fmt::Display for TimerError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}

#[cfg(feature="std")]
impl ::std::error::Error for TimerError {
    fn description(&self) -> &str {
        self.description()
    }
}

// Initialise to zero; must be positive
#[cfg(feature="std")]
static JITTER_ROUNDS: AtomicUsize = ATOMIC_USIZE_INIT;

impl JitterRng {
    /// Create a new `JitterRng`.
    /// Makes use of `std::time` for a timer.
    ///
    /// During initialization CPU execution timing jitter is measured a few
    /// hundred times. If this does not pass basic quality tests, an error is
    /// returned. The test result is cached to make subsequent calls faster.
    #[cfg(feature="std")]
    pub fn new() -> Result<JitterRng, TimerError> {
        let mut ec = JitterRng::new_with_timer(platform::get_nstime);
        let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u32;
        if rounds == 0 {
            // No result yet: run test.
            // This allows the timer test to run multiple times; we don't care.
            rounds = ec.test_timer()?;
            JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed);
        }
        ec.set_rounds(rounds);
        Ok(ec)
    }

    /// Create a new `JitterRng`.
    /// A custom timer can be supplied, making it possible to use `JitterRng` in
    /// `no_std` environments.
    ///
    /// The timer must have nanosecond precision.
    ///
    /// This method is more low-level than `new()`. It is the responsibility of
    /// the caller to run `test_timer` before using any numbers generated with
    /// `JitterRng`, and optionally call `set_rounds()`.
    pub fn new_with_timer(timer: fn() -> u64) -> JitterRng {
        let mut ec = JitterRng {
            data: 0,
            rounds: 64,
            timer: timer,
            prev_time: 0,
            last_delta: 0,
            last_delta2: 0,
            mem_prev_index: 0,
            mem: [0; MEMORY_SIZE],
            data_remaining: None,
        };

        // Fill `data`, `prev_time`, `last_delta` and `last_delta2` with
        // non-zero values.
        ec.prev_time = timer();
        ec.gen_entropy();

        // Do a single read from `self.mem` to make sure the Memory Access noise
        // source is not optimised out.
        // Note: this read is important, it effects optimisations for the entire
        // module!
        black_box(ec.mem[0]);

        ec
    }

    /// Configures how many rounds are used to generate each 64-bit value.
    /// This must be greater than zero, and has a big impact on performance
    /// and output quality.
    ///
    /// `new_with_timer` conservatively uses 64 rounds, but often less rounds
    /// can be used. The `test_timer()` function returns the minimum number of
    /// rounds required for full strength (platform dependent), so one may use
    /// `rng.set_rounds(rng.test_timer()?);` or cache the value.
    pub fn set_rounds(&mut self, rounds: u32) {
        assert!(rounds > 0);
        self.rounds = rounds;
    }

    // Calculate a random loop count used for the next round of an entropy
    // collection, based on bits from a fresh value from the timer.
    //
    // The timer is folded to produce a number that contains at most `n_bits`
    // bits.
    //
    // Note: A constant should be added to the resulting random loop count to
    // prevent loops that run 0 times.
    #[inline(never)]
    fn random_loop_cnt(&mut self, n_bits: u32) -> u32 {
        let mut rounds = 0;

        let mut time = (self.timer)();
        // Mix with the current state of the random number balance the random
        // loop counter a bit more.
        time ^= self.data;

        // We fold the time value as much as possible to ensure that as many
        // bits of the time stamp are included as possible.
        let folds = (64 + n_bits - 1) / n_bits;
        let mask = (1 << n_bits) - 1;
        for _ in 0..folds {
            rounds ^= time & mask;
            time = time >> n_bits;
        }

        rounds as u32
    }

    // CPU jitter noise source
    // Noise source based on the CPU execution time jitter
    //
    // This function injects the individual bits of the time value into the
    // entropy pool using an LFSR.
    //
    // The code is deliberately inefficient with respect to the bit shifting.
    // This function not only acts as folding operation, but this function's
    // execution is used to measure the CPU execution time jitter. Any change to
    // the loop in this function implies that careful retesting must be done.
    #[inline(never)]
    fn lfsr_time(&mut self, time: u64, var_rounds: bool) {
        fn lfsr(mut data: u64, time: u64) -> u64{
            for i in 1..65 {
                let mut tmp = time << (64 - i);
                tmp = tmp >> (64 - 1);

                // Fibonacci LSFR with polynomial of
                // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
                // primitive according to
                // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
                // (the shift values are the polynomial values minus one
                // due to counting bits from 0 to 63). As the current
                // position is always the LSB, the polynomial only needs
                // to shift data in from the left without wrap.
                data ^= tmp;
                data ^= (data >> 63) & 1;
                data ^= (data >> 60) & 1;
                data ^= (data >> 55) & 1;
                data ^= (data >> 30) & 1;
                data ^= (data >> 27) & 1;
                data ^= (data >> 22) & 1;
                data = data.rotate_left(1);
            }
            data
        }

        // Note: in the reference implementation only the last round effects
        // `self.data`, all the other results are ignored. To make sure the
        // other rounds are not optimised out, we first run all but the last
        // round on a throw-away value instead of the real `self.data`.
        let mut lfsr_loop_cnt = 0;
        if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) };

        let mut throw_away: u64 = 0;
        for _ in 0..lfsr_loop_cnt {
            throw_away = lfsr(throw_away, time);
        }
        black_box(throw_away);

        self.data = lfsr(self.data, time);
    }

    // Memory Access noise source
    // This is a noise source based on variations in memory access times
    //
    // This function performs memory accesses which will add to the timing
    // variations due to an unknown amount of CPU wait states that need to be
    // added when accessing memory. The memory size should be larger than the L1
    // caches as outlined in the documentation and the associated testing.
    //
    // The L1 cache has a very high bandwidth, albeit its access rate is usually
    // slower than accessing CPU registers. Therefore, L1 accesses only add
    // minimal variations as the CPU has hardly to wait. Starting with L2,
    // significant variations are added because L2 typically does not belong to
    // the CPU any more and therefore a wider range of CPU wait states is
    // necessary for accesses. L3 and real memory accesses have even a wider
    // range of wait states. However, to reliably access either L3 or memory,
    // the `self.mem` memory must be quite large which is usually not desirable.
    #[inline(never)]
    fn memaccess(&mut self, var_rounds: bool) {
        let mut acc_loop_cnt = 128;
        if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) };

        let mut index = self.mem_prev_index;
        for _ in 0..acc_loop_cnt {
            // Addition of memblocksize - 1 to index with wrap around logic to
            // ensure that every memory location is hit evenly.
            // The modulus also allows the compiler to remove the indexing
            // bounds check.
            index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE;

            // memory access: just add 1 to one byte
            // memory access implies read from and write to memory location
            let tmp = self.mem[index];
            self.mem[index] = tmp.wrapping_add(1);
        }
        self.mem_prev_index = index;
    }


    // Stuck test by checking the:
    // - 1st derivation of the jitter measurement (time delta)
    // - 2nd derivation of the jitter measurement (delta of time deltas)
    // - 3rd derivation of the jitter measurement (delta of delta of time
    //   deltas)
    //
    // All values must always be non-zero.
    // This test is a heuristic to see whether the last measurement holds
    // entropy.
    fn stuck(&mut self, current_delta: i64) -> bool {
        let delta2 = self.last_delta - current_delta;
        let delta3 = delta2 - self.last_delta2;

        self.last_delta = current_delta;
        self.last_delta2 = delta2;

        current_delta == 0 || delta2 == 0 || delta3 == 0
    }

    // This is the heart of the entropy generation: calculate time deltas and
    // use the CPU jitter in the time deltas. The jitter is injected into the
    // entropy pool.
    //
    // Ensure that `self.prev_time` is primed before using the output of this
    // function. This can be done by calling this function and not using its
    // result.
    fn measure_jitter(&mut self) -> Option<()> {
        // Invoke one noise source before time measurement to add variations
        self.memaccess(true);

        // Get time stamp and calculate time delta to previous
        // invocation to measure the timing variations
        let time = (self.timer)();
        // Note: wrapping_sub combined with a cast to `i64` generates a correct
        // delta, even in the unlikely case this is a timer that is not strictly
        // monotonic.
        let current_delta = time.wrapping_sub(self.prev_time) as i64;
        self.prev_time = time;

        // Call the next noise source which also injects the data
        self.lfsr_time(current_delta as u64, true);

        // Check whether we have a stuck measurement (i.e. does the last
        // measurement holds entropy?).
        if self.stuck(current_delta) { return None };

        // Rotate the data buffer by a prime number (any odd number would
        // do) to ensure that every bit position of the input time stamp
        // has an even chance of being merged with a bit position in the
        // entropy pool. We do not use one here as the adjacent bits in
        // successive time deltas may have some form of dependency. The
        // chosen value of 7 implies that the low 7 bits of the next
        // time delta value is concatenated with the current time delta.
        self.data = self.data.rotate_left(7);

        Some(())
    }

    // Shuffle the pool a bit by mixing some value with a bijective function
    // (XOR) into the pool.
    //
    // The function generates a mixer value that depends on the bits set and
    // the location of the set bits in the random number generated by the
    // entropy source. Therefore, based on the generated random number, this
    // mixer value can have 2^64 different values. That mixer value is
    // initialized with the first two SHA-1 constants. After obtaining the
    // mixer value, it is XORed into the random number.
    //
    // The mixer value is not assumed to contain any entropy. But due to the
    // XOR operation, it can also not destroy any entropy present in the
    // entropy pool.
    #[inline(never)]
    fn stir_pool(&mut self) {
        // This constant is derived from the first two 32 bit initialization
        // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
        // The order does not really matter as we do not rely on the specific
        // numbers. We just pick the SHA-1 constants as they have a good mix of
        // bit set and unset.
        const CONSTANT: u64 = 0x67452301efcdab89;

        // The start value of the mixer variable is derived from the third
        // and fourth 32 bit initialization vector of SHA-1 as defined in
        // FIPS 180-4 section 5.3.1
        let mut mixer = 0x98badcfe10325476;

        // This is a constant time function to prevent leaking timing
        // information about the random number.
        // The normal code is:
        // ```
        // for i in 0..64 {
        //     if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; }
        // }
        // ```
        // This is a bit fragile, as LLVM really wants to use branches here, and
        // we rely on it to not recognise the opportunity.
        for i in 0..64 {
            let apply = (self.data >> i) & 1;
            let mask = !apply.wrapping_sub(1);
            mixer ^= CONSTANT & mask;
            mixer = mixer.rotate_left(1);
        }

        self.data ^= mixer;
    }

    fn gen_entropy(&mut self) -> u64 {
        // Prime `self.prev_time`, and run the noice sources to make sure the
        // first loop round collects the expected entropy.
        let _ = self.measure_jitter();

        for _ in 0..self.rounds {
            // If a stuck measurement is received, repeat measurement
            // Note: we do not guard against an infinite loop, that would mean
            // the timer suddenly became broken.
            while self.measure_jitter().is_none() {}
        }

        self.stir_pool();
        self.data
    }

    /// Basic quality tests on the timer, by measuring CPU timing jitter a few
    /// hundred times.
    ///
    /// If succesful, this will return the estimated number of rounds necessary
    /// to collect 64 bits of entropy. Otherwise a `TimerError` with the cause
    /// of the failure will be returned.
    pub fn test_timer(&mut self) -> Result<u32, TimerError> {
        // We could add a check for system capabilities such as `clock_getres`
        // or check for `CONFIG_X86_TSC`, but it does not make much sense as the
        // following sanity checks verify that we have a high-resolution timer.

        #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))]
        return Err(TimerError::NoTimer);

        let mut delta_sum = 0;
        let mut old_delta = 0;

        let mut time_backwards = 0;
        let mut count_mod = 0;
        let mut count_stuck = 0;

        // TESTLOOPCOUNT needs some loops to identify edge systems.
        // 100 is definitely too little.
        const TESTLOOPCOUNT: u64 = 300;
        const CLEARCACHE: u64 = 100;

        for i in 0..(CLEARCACHE + TESTLOOPCOUNT) {
            // Measure time delta of core entropy collection logic
            let time = (self.timer)();
            self.memaccess(true);
            self.lfsr_time(time, true);
            let time2 = (self.timer)();

            // Test whether timer works
            if time == 0 || time2 == 0 {
                return Err(TimerError::NoTimer);
            }
            let delta = time2.wrapping_sub(time) as i64;

            // Test whether timer is fine grained enough to provide delta even
            // when called shortly after each other -- this implies that we also
            // have a high resolution timer
            if delta == 0 {
                return Err(TimerError::CoarseTimer);
            }

            // Up to here we did not modify any variable that will be
            // evaluated later, but we already performed some work. Thus we
            // already have had an impact on the caches, branch prediction,
            // etc. with the goal to clear it to get the worst case
            // measurements.
            if i < CLEARCACHE { continue; }

            if self.stuck(delta) { count_stuck += 1; }

            // Test whether we have an increasing timer.
            if !(time2 > time) { time_backwards += 1; }

            // Count the number of times the counter increases in steps of 100ns
            // or greater.
            if (delta % 100) == 0 { count_mod += 1; }

            // Ensure that we have a varying delta timer which is necessary for
            // the calculation of entropy -- perform this check only after the
            // first loop is executed as we need to prime the old_delta value
            delta_sum += (delta - old_delta).abs() as u64;
            old_delta = delta;
        }

        // We allow the time to run backwards for up to three times.
        // This can happen if the clock is being adjusted by NTP operations.
        // If such an operation just happens to interfere with our test, it
        // should not fail. The value of 3 should cover the NTP case being
        // performed during our test run.
        if time_backwards > 3 {
            return Err(TimerError::NotMonotonic);
        }

        // Test that the available amount of entropy per round does not get to
        // low. We expect 1 bit of entropy per round as a reasonable minimum
        // (although less is possible, it means the collector loop has to run
        // much more often).
        // `assert!(delta_average >= log2(1))`
        // `assert!(delta_sum / TESTLOOPCOUNT >= 1)`
        // `assert!(delta_sum >= TESTLOOPCOUNT)`
        if delta_sum < TESTLOOPCOUNT {
            return Err(TimerError::TinyVariantions);
        }

        // Ensure that we have variations in the time stamp below 100 for at
        // least 10% of all checks -- on some platforms, the counter increments
        // in multiples of 100, but not always
        if count_mod > (TESTLOOPCOUNT * 9 / 10) {
            return Err(TimerError::CoarseTimer);
        }

        // If we have more than 90% stuck results, then this Jitter RNG is
        // likely to not work well.
        if count_stuck > (TESTLOOPCOUNT * 9 / 10) {
            return Err(TimerError::TooManyStuck);
        }

        // Estimate the number of `measure_jitter` rounds necessary for 64 bits
        // of entropy.
        //
        // We don't try very hard to come up with a good estimate of the
        // available bits of entropy per round here for two reasons:
        // 1. Simple estimates of the available bits (like Shannon entropy) are
        //    too optimistic.
        // 2)  Unless we want to waste a lot of time during intialization, there
        //     only a small number of samples are available.
        //
        // Therefore we use a very simple and conservative estimate:
        // `let bits_of_entropy = log2(delta_average) / 2`.
        //
        // The number of rounds `measure_jitter` should run to collect 64 bits
        // of entropy is `64 / bits_of_entropy`.
        //
        // To have smaller rounding errors, intermediate values are multiplied
        // by `FACTOR`. To compensate for `log2` and division rounding down,
        // add 1.
        let delta_average = delta_sum / TESTLOOPCOUNT;
        // println!("delta_average: {}", delta_average);

        const FACTOR: u32  = 3;
        fn log2(x: u64) -> u32 { 64 - x.leading_zeros() }

        // pow(δ, FACTOR) must be representable; if you have overflow reduce FACTOR
        Ok(64 * 2 * FACTOR / (log2(delta_average.pow(FACTOR)) + 1))
    }

    /// Statistical test: return the timer delta of one normal run of the
    /// `JitterEntropy` entropy collector.
    ///
    /// Setting `var_rounds` to `true` will execute the memory access and the
    /// CPU jitter noice sources a variable amount of times (just like a real
    /// `JitterEntropy` round).
    ///
    /// Setting `var_rounds` to `false` will execute the noice sources the
    /// minimal number of times. This can be used to measure the minimum amount
    /// of entropy one round of entropy collector can collect in the worst case.
    ///
    /// # Example
    ///
    /// Use `timer_stats` to run the [NIST SP 800-90B Entropy Estimation Suite]
    /// (https://github.com/usnistgov/SP800-90B_EntropyAssessment).
    ///
    /// This is the recommended way to test the quality of `JitterRng`. It
    /// should be run before using the RNG on untested hardware, after changes
    /// that could effect how the code is optimised, and after major compiler
    /// compiler changes, like a new LLVM version.
    ///
    /// First generate two files `jitter_rng_var.bin` and `jitter_rng_var.min`.
    ///
    /// Execute `python noniid_main.py -v jitter_rng_var.bin 8`, and validate it
    /// with `restart.py -v jitter_rng_var.bin 8 <min-entropy>`.
    /// This number is the expected amount of entropy that is at least available
    /// for each round of the entropy collector. This number should be greater
    /// than the amount estimated with `64 / test_timer()`.
    ///
    /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and
    /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`.
    /// This number is the expected amount of entropy that is available in the
    /// last 4 bits of the timer delta after running noice sources. Note that
    /// a value of 3.70 is the minimum estimated entropy for true randomness.
    ///
    /// Execute `python noniid_main.py -v -u 4 jitter_rng_var.bin 4`, and
    /// validate it with `restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>`.
    /// This number is the expected amount of entropy that is available to the
    /// entropy collecter if both noice sources only run their minimal number of
    /// times. This measures the absolute worst-case, and gives a lower bound
    /// for the available entropy.
    ///
    /// ```rust,no_run
    /// use rand::JitterRng;
    ///
    /// # use std::error::Error;
    /// # use std::fs::File;
    /// # use std::io::Write;
    /// #
    /// # fn try_main() -> Result<(), Box<Error>> {
    /// fn get_nstime() -> u64 {
    ///     use std::time::{SystemTime, UNIX_EPOCH};
    ///
    ///     let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
    ///     // The correct way to calculate the current time is
    ///     // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
    ///     // But this is faster, and the difference in terms of entropy is
    ///     // negligible (log2(10^9) == 29.9).
    ///     dur.as_secs() << 30 | dur.subsec_nanos() as u64
    /// }
    ///
    /// // Do not initialize with `JitterRng::new`, but with `new_with_timer`.
    /// // 'new' always runst `test_timer`, and can therefore fail to
    /// // initialize. We want to be able to get the statistics even when the
    /// // timer test fails.
    /// let mut rng = JitterRng::new_with_timer(get_nstime);
    ///
    /// // 1_000_000 results are required for the NIST SP 800-90B Entropy
    /// // Estimation Suite
    /// // FIXME: this number is smaller here, otherwise the Doc-test is too slow
    /// const ROUNDS: usize = 10_000;
    /// let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS);
    /// let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS);
    ///
    /// for _ in 0..ROUNDS {
    ///     deltas_variable.push(rng.timer_stats(true) as u8);
    ///     deltas_minimal.push(rng.timer_stats(false) as u8);
    /// }
    ///
    /// // Write out after the statistics collection loop, to not disturb the
    /// // test results.
    /// File::create("jitter_rng_var.bin")?.write(&deltas_variable)?;
    /// File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?;
    /// #
    /// # Ok(())
    /// # }
    /// #
    /// # fn main() {
    /// #     try_main().unwrap();
    /// # }
    /// ```
    #[cfg(feature="std")]
    pub fn timer_stats(&mut self, var_rounds: bool) -> i64 {
        let time = platform::get_nstime();
        self.memaccess(var_rounds);
        self.lfsr_time(time, var_rounds);
        let time2 = platform::get_nstime();
        time2.wrapping_sub(time) as i64
    }
}

#[cfg(feature="std")]
mod platform {
    #[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows", all(target_arch = "wasm32", not(target_os = "emscripten")))))]
    pub fn get_nstime() -> u64 {
        use std::time::{SystemTime, UNIX_EPOCH};

        let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
        // The correct way to calculate the current time is
        // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
        // But this is faster, and the difference in terms of entropy is negligible
        // (log2(10^9) == 29.9).
        dur.as_secs() << 30 | dur.subsec_nanos() as u64
    }

    #[cfg(any(target_os = "macos", target_os = "ios"))]
    pub fn get_nstime() -> u64 {
        extern crate libc;
        // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution.
        // We use `mach_absolute_time` instead. This provides a CPU dependent unit,
        // to get real nanoseconds the result should by multiplied by numer/denom
        // from `mach_timebase_info`.
        // But we are not interested in the exact nanoseconds, just entropy. So we
        // use the raw result.
        unsafe { libc::mach_absolute_time() }
    }

    #[cfg(target_os = "windows")]
    pub fn get_nstime() -> u64 {
        extern crate winapi;
        unsafe {
            let mut t = super::mem::zeroed();
            winapi::um::profileapi::QueryPerformanceCounter(&mut t);
            *t.QuadPart() as u64
        }
    }

    #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))]
    pub fn get_nstime() -> u64 {
        unreachable!()
    }
}

// A function that is opaque to the optimizer to assist in avoiding dead-code
// elimination. Taken from `bencher`.
fn black_box<T>(dummy: T) -> T {
    unsafe {
        let ret = ptr::read_volatile(&dummy);
        mem::forget(dummy);
        ret
    }
}

impl Rng for JitterRng {
    fn next_u32(&mut self) -> u32 {
        // We want to use both parts of the generated entropy
        if let Some(high) = self.data_remaining.take() {
            high
        } else {
            let data = self.next_u64();
            self.data_remaining = Some((data >> 32) as u32);
            data as u32
        }
    }

    fn next_u64(&mut self) -> u64 {
       self.gen_entropy()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        let mut left = dest;
        while left.len() >= 8 {
            let (l, r) = {left}.split_at_mut(8);
            left = r;
            let chunk: [u8; 8] = unsafe {
                mem::transmute(self.next_u64().to_le())
            };
            l.copy_from_slice(&chunk);
        }
        let n = left.len();
        if n > 0 {
            let chunk: [u8; 8] = unsafe {
                mem::transmute(self.next_u64().to_le())
            };
            left.copy_from_slice(&chunk[..n]);
        }
    }
}

// There are no tests included because (1) this is an "external" RNG, so output
// is not reproducible and (2) `test_timer` *will* fail on some platforms.