1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
// Copyright 2018 Syn Developers // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A stably addressed token buffer supporting efficient traversal based on a //! cheaply copyable cursor. //! //! The [`Synom`] trait is implemented for syntax tree types that can be parsed //! from one of these token cursors. //! //! [`Synom`]: ../synom/trait.Synom.html //! //! *This module is available if Syn is built with the `"parsing"` feature.* //! //! # Example //! //! This example shows a basic token parser for parsing a token stream without //! using Syn's parser combinator macros. //! //! ``` //! #![feature(proc_macro_diagnostic)] //! //! extern crate syn; //! extern crate proc_macro; //! //! #[macro_use] //! extern crate quote; //! //! use syn::{token, ExprTuple}; //! use syn::buffer::{Cursor, TokenBuffer}; //! use syn::spanned::Spanned; //! use syn::synom::Synom; //! use proc_macro::{Diagnostic, Span, TokenStream}; //! //! /// A basic token parser for parsing a token stream without using Syn's //! /// parser combinator macros. //! pub struct Parser<'a> { //! cursor: Cursor<'a>, //! } //! //! impl<'a> Parser<'a> { //! pub fn new(cursor: Cursor<'a>) -> Self { //! Parser { cursor } //! } //! //! pub fn current_span(&self) -> Span { //! self.cursor.span().unstable() //! } //! //! pub fn parse<T: Synom>(&mut self) -> Result<T, Diagnostic> { //! let (val, rest) = T::parse(self.cursor) //! .map_err(|e| match T::description() { //! Some(desc) => { //! self.current_span().error(format!("{}: expected {}", e, desc)) //! } //! None => { //! self.current_span().error(e.to_string()) //! } //! })?; //! //! self.cursor = rest; //! Ok(val) //! } //! //! pub fn expect_eof(&mut self) -> Result<(), Diagnostic> { //! if !self.cursor.eof() { //! return Err(self.current_span().error("trailing characters; expected eof")); //! } //! //! Ok(()) //! } //! } //! //! fn eval(input: TokenStream) -> Result<TokenStream, Diagnostic> { //! let buffer = TokenBuffer::new(input); //! let mut parser = Parser::new(buffer.begin()); //! //! // Parse some syntax tree types out of the input tokens. In this case we //! // expect something like: //! // //! // (a, b, c) = (1, 2, 3) //! let a = parser.parse::<ExprTuple>()?; //! parser.parse::<token::Eq>()?; //! let b = parser.parse::<ExprTuple>()?; //! parser.expect_eof()?; //! //! // Perform some validation and report errors. //! let (a_len, b_len) = (a.elems.len(), b.elems.len()); //! if a_len != b_len { //! let diag = b.span().unstable() //! .error(format!("expected {} element(s), got {}", a_len, b_len)) //! .span_note(a.span().unstable(), "because of this"); //! //! return Err(diag); //! } //! //! // Build the output tokens. //! let out = quote! { //! println!("All good! Received two tuples of size {}", #a_len); //! }; //! //! Ok(out.into()) //! } //! # //! # extern crate proc_macro2; //! # //! # // This method exists on proc_macro2::Span but is behind the "nightly" //! # // feature. //! # trait ToUnstableSpan { //! # fn unstable(&self) -> Span; //! # } //! # //! # impl ToUnstableSpan for proc_macro2::Span { //! # fn unstable(&self) -> Span { //! # unimplemented!() //! # } //! # } //! # //! # fn main() {} //! ``` // This module is heavily commented as it contains the only unsafe code in Syn, // and caution should be used when editing it. The public-facing interface is // 100% safe but the implementation is fragile internally. #[cfg(all( not(all(target_arch = "wasm32", target_os = "unknown")), feature = "proc-macro" ))] use proc_macro as pm; use proc_macro2::{Delimiter, Ident, Literal, Span, TokenStream}; use proc_macro2::{Group, Punct, TokenTree}; use std::marker::PhantomData; use std::ptr; #[cfg(synom_verbose_trace)] use std::fmt::{self, Debug}; /// Internal type which is used instead of `TokenTree` to represent a token tree /// within a `TokenBuffer`. enum Entry { // Mimicking types from proc-macro. Group(Span, Delimiter, TokenBuffer), Ident(Ident), Punct(Punct), Literal(Literal), // End entries contain a raw pointer to the entry from the containing // token tree, or null if this is the outermost level. End(*const Entry), } /// A buffer that can be efficiently traversed multiple times, unlike /// `TokenStream` which requires a deep copy in order to traverse more than /// once. /// /// See the [module documentation] for an example of `TokenBuffer` in action. /// /// [module documentation]: index.html /// /// *This type is available if Syn is built with the `"parsing"` feature.* pub struct TokenBuffer { // NOTE: Do not derive clone on this - there are raw pointers inside which // will be messed up. Moving the `TokenBuffer` itself is safe as the actual // backing slices won't be moved. data: Box<[Entry]>, } impl TokenBuffer { // NOTE: DO NOT MUTATE THE `Vec` RETURNED FROM THIS FUNCTION ONCE IT // RETURNS, THE ADDRESS OF ITS BACKING MEMORY MUST REMAIN STABLE. fn inner_new(stream: TokenStream, up: *const Entry) -> TokenBuffer { // Build up the entries list, recording the locations of any Groups // in the list to be processed later. let mut entries = Vec::new(); let mut seqs = Vec::new(); for tt in stream { match tt { TokenTree::Ident(sym) => { entries.push(Entry::Ident(sym)); } TokenTree::Punct(op) => { entries.push(Entry::Punct(op)); } TokenTree::Literal(l) => { entries.push(Entry::Literal(l)); } TokenTree::Group(g) => { // Record the index of the interesting entry, and store an // `End(null)` there temporarially. seqs.push((entries.len(), g.span(), g.delimiter(), g.stream().clone())); entries.push(Entry::End(ptr::null())); } } } // Add an `End` entry to the end with a reference to the enclosing token // stream which was passed in. entries.push(Entry::End(up)); // NOTE: This is done to ensure that we don't accidentally modify the // length of the backing buffer. The backing buffer must remain at a // constant address after this point, as we are going to store a raw // pointer into it. let mut entries = entries.into_boxed_slice(); for (idx, span, delim, seq_stream) in seqs { // We know that this index refers to one of the temporary // `End(null)` entries, and we know that the last entry is // `End(up)`, so the next index is also valid. let seq_up = &entries[idx + 1] as *const Entry; // The end entry stored at the end of this Entry::Group should // point to the Entry which follows the Group in the list. let inner = Self::inner_new(seq_stream, seq_up); entries[idx] = Entry::Group(span, delim, inner); } TokenBuffer { data: entries } } /// Creates a `TokenBuffer` containing all the tokens from the input /// `TokenStream`. /// /// *This method is available if Syn is built with both the `"parsing"` and /// `"proc-macro"` features.* #[cfg(all( not(all(target_arch = "wasm32", target_os = "unknown")), feature = "proc-macro" ))] pub fn new(stream: pm::TokenStream) -> TokenBuffer { Self::new2(stream.into()) } /// Creates a `TokenBuffer` containing all the tokens from the input /// `TokenStream`. pub fn new2(stream: TokenStream) -> TokenBuffer { Self::inner_new(stream, ptr::null()) } /// Creates a cursor referencing the first token in the buffer and able to /// traverse until the end of the buffer. pub fn begin(&self) -> Cursor { unsafe { Cursor::create(&self.data[0], &self.data[self.data.len() - 1]) } } } /// A cheaply copyable cursor into a `TokenBuffer`. /// /// This cursor holds a shared reference into the immutable data which is used /// internally to represent a `TokenStream`, and can be efficiently manipulated /// and copied around. /// /// An empty `Cursor` can be created directly, or one may create a `TokenBuffer` /// object and get a cursor to its first token with `begin()`. /// /// Two cursors are equal if they have the same location in the same input /// stream, and have the same scope. /// /// See the [module documentation] for an example of a `Cursor` in action. /// /// [module documentation]: index.html /// /// *This type is available if Syn is built with the `"parsing"` feature.* #[derive(Copy, Clone, Eq, PartialEq)] pub struct Cursor<'a> { /// The current entry which the `Cursor` is pointing at. ptr: *const Entry, /// This is the only `Entry::End(..)` object which this cursor is allowed to /// point at. All other `End` objects are skipped over in `Cursor::create`. scope: *const Entry, /// This uses the &'a reference which guarantees that these pointers are /// still valid. marker: PhantomData<&'a Entry>, } impl<'a> Cursor<'a> { /// Creates a cursor referencing a static empty TokenStream. pub fn empty() -> Self { // It's safe in this situation for us to put an `Entry` object in global // storage, despite it not actually being safe to send across threads // (`Ident` is a reference into a thread-local table). This is because // this entry never includes a `Ident` object. // // This wrapper struct allows us to break the rules and put a `Sync` // object in global storage. struct UnsafeSyncEntry(Entry); unsafe impl Sync for UnsafeSyncEntry {} static EMPTY_ENTRY: UnsafeSyncEntry = UnsafeSyncEntry(Entry::End(0 as *const Entry)); Cursor { ptr: &EMPTY_ENTRY.0, scope: &EMPTY_ENTRY.0, marker: PhantomData, } } /// This create method intelligently exits non-explicitly-entered /// `None`-delimited scopes when the cursor reaches the end of them, /// allowing for them to be treated transparently. unsafe fn create(mut ptr: *const Entry, scope: *const Entry) -> Self { // NOTE: If we're looking at a `End(..)`, we want to advance the cursor // past it, unless `ptr == scope`, which means that we're at the edge of // our cursor's scope. We should only have `ptr != scope` at the exit // from None-delimited groups entered with `ignore_none`. while let Entry::End(exit) = *ptr { if ptr == scope { break; } ptr = exit; } Cursor { ptr: ptr, scope: scope, marker: PhantomData, } } /// Get the current entry. fn entry(self) -> &'a Entry { unsafe { &*self.ptr } } /// Bump the cursor to point at the next token after the current one. This /// is undefined behavior if the cursor is currently looking at an /// `Entry::End`. unsafe fn bump(self) -> Cursor<'a> { Cursor::create(self.ptr.offset(1), self.scope) } /// If the cursor is looking at a `None`-delimited group, move it to look at /// the first token inside instead. If the group is empty, this will move /// the cursor past the `None`-delimited group. /// /// WARNING: This mutates its argument. fn ignore_none(&mut self) { if let Entry::Group(_, Delimiter::None, ref buf) = *self.entry() { // NOTE: We call `Cursor::create` here to make sure that situations // where we should immediately exit the span after entering it are // handled correctly. unsafe { *self = Cursor::create(&buf.data[0], self.scope); } } } /// Checks whether the cursor is currently pointing at the end of its valid /// scope. #[inline] pub fn eof(self) -> bool { // We're at eof if we're at the end of our scope. self.ptr == self.scope } /// If the cursor is pointing at a `Group` with the given delimiter, returns /// a cursor into that group and one pointing to the next `TokenTree`. pub fn group(mut self, delim: Delimiter) -> Option<(Cursor<'a>, Span, Cursor<'a>)> { // If we're not trying to enter a none-delimited group, we want to // ignore them. We have to make sure to _not_ ignore them when we want // to enter them, of course. For obvious reasons. if delim != Delimiter::None { self.ignore_none(); } if let Entry::Group(span, group_delim, ref buf) = *self.entry() { if group_delim == delim { return Some((buf.begin(), span, unsafe { self.bump() })); } } None } /// If the cursor is pointing at a `Ident`, returns it along with a cursor /// pointing at the next `TokenTree`. pub fn ident(mut self) -> Option<(Ident, Cursor<'a>)> { self.ignore_none(); match *self.entry() { Entry::Ident(ref ident) => Some((ident.clone(), unsafe { self.bump() })), _ => None, } } /// If the cursor is pointing at an `Punct`, returns it along with a cursor /// pointing at the next `TokenTree`. pub fn punct(mut self) -> Option<(Punct, Cursor<'a>)> { self.ignore_none(); match *self.entry() { Entry::Punct(ref op) => Some((op.clone(), unsafe { self.bump() })), _ => None, } } /// If the cursor is pointing at a `Literal`, return it along with a cursor /// pointing at the next `TokenTree`. pub fn literal(mut self) -> Option<(Literal, Cursor<'a>)> { self.ignore_none(); match *self.entry() { Entry::Literal(ref lit) => Some((lit.clone(), unsafe { self.bump() })), _ => None, } } /// Copies all remaining tokens visible from this cursor into a /// `TokenStream`. pub fn token_stream(self) -> TokenStream { let mut tts = Vec::new(); let mut cursor = self; while let Some((tt, rest)) = cursor.token_tree() { tts.push(tt); cursor = rest; } tts.into_iter().collect() } /// If the cursor is pointing at a `TokenTree`, returns it along with a /// cursor pointing at the next `TokenTree`. /// /// Returns `None` if the cursor has reached the end of its stream. /// /// This method does not treat `None`-delimited groups as transparent, and /// will return a `Group(None, ..)` if the cursor is looking at one. pub fn token_tree(self) -> Option<(TokenTree, Cursor<'a>)> { let tree = match *self.entry() { Entry::Group(span, delim, ref buf) => { let stream = buf.begin().token_stream(); let mut g = Group::new(delim, stream); g.set_span(span); TokenTree::from(g) } Entry::Literal(ref lit) => lit.clone().into(), Entry::Ident(ref ident) => ident.clone().into(), Entry::Punct(ref op) => op.clone().into(), Entry::End(..) => { return None; } }; Some((tree, unsafe { self.bump() })) } /// Returns the `Span` of the current token, or `Span::call_site()` if this /// cursor points to eof. pub fn span(self) -> Span { match *self.entry() { Entry::Group(span, ..) => span, Entry::Literal(ref l) => l.span(), Entry::Ident(ref t) => t.span(), Entry::Punct(ref o) => o.span(), Entry::End(..) => Span::call_site(), } } } // We do a custom implementation for `Debug` as the default implementation is // pretty useless. #[cfg(synom_verbose_trace)] impl<'a> Debug for Cursor<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Print what the cursor is currently looking at. // This will look like Cursor("some remaining tokens here") f.debug_tuple("Cursor") .field(&self.token_stream().to_string()) .finish() } }