1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
//! Execute many tasks concurrently on the current thread.
//!
//! [`CurrentThread`] is an executor that keeps tasks on the same thread that
//! they were spawned from. This allows it to execute futures that are not
//! `Send`.
//!
//! A single [`CurrentThread`] instance is able to efficiently manage a large
//! number of tasks and will attempt to schedule all tasks fairly.
//!
//! All tasks that are being managed by a [`CurrentThread`] executor are able to
//! spawn additional tasks by calling [`spawn`]. This function only works from
//! within the context of a running [`CurrentThread`] instance.
//!
//! The easiest way to start a new [`CurrentThread`] executor is to call
//! [`block_on_all`] with an initial task to seed the executor.
//!
//! For example:
//!
//! ```
//! # extern crate tokio;
//! # extern crate futures;
//! # use tokio::executor::current_thread;
//! use futures::future::lazy;
//!
//! // Calling execute here results in a panic
//! // current_thread::spawn(my_future);
//!
//! # pub fn main() {
//! current_thread::block_on_all(lazy(|| {
//!     // The execution context is setup, futures may be executed.
//!     current_thread::spawn(lazy(|| {
//!         println!("called from the current thread executor");
//!         Ok(())
//!     }));
//!
//!     Ok::<_, ()>(())
//! }));
//! # }
//! ```
//!
//! The `block_on_all` function will block the current thread until **all**
//! tasks that have been spawned onto the [`CurrentThread`] instance have
//! completed.
//!
//! More fine-grain control can be achieved by using [`CurrentThread`] directly.
//!
//! ```
//! # extern crate tokio;
//! # extern crate futures;
//! # use tokio::executor::current_thread::CurrentThread;
//! use futures::future::{lazy, empty};
//! use std::time::Duration;
//!
//! // Calling execute here results in a panic
//! // current_thread::spawn(my_future);
//!
//! # pub fn main() {
//! let mut current_thread = CurrentThread::new();
//!
//! // Spawn a task, the task is not executed yet.
//! current_thread.spawn(lazy(|| {
//!     println!("Spawning a task");
//!     Ok(())
//! }));
//!
//! // Spawn a task that never completes
//! current_thread.spawn(empty());
//!
//! // Run the executor, but only until the provided future completes. This
//! // provides the opportunity to start executing previously spawned tasks.
//! let res = current_thread.block_on(lazy(|| {
//!     Ok::<_, ()>("Hello")
//! })).unwrap();
//!
//! // Now, run the executor for *at most* 1 second. Since a task was spawned
//! // that never completes, this function will return with an error.
//! current_thread.run_timeout(Duration::from_secs(1)).unwrap_err();
//! # }
//! ```
//!
//! # Execution model
//!
//! Internally, [`CurrentThread`] maintains a queue. When one of its tasks is
//! notified, the task gets added to the queue. The executor will pop tasks from
//! the queue and call [`Future::poll`]. If the task gets notified while it is
//! being executed, it won't get re-executed until all other tasks currently in
//! the queue get polled.
//!
//! Before the task is polled, a thread-local variable referencing the current
//! [`CurrentThread`] instance is set. This enables [`spawn`] to spawn new tasks
//! onto the same executor without having to thread through a handle value.
//!
//! If the [`CurrentThread`] instance still has uncompleted tasks, but none of
//! these tasks are ready to be polled, the current thread is put to sleep. When
//! a task is notified, the thread is woken up and processing resumes.
//!
//! All tasks managed by [`CurrentThread`] remain on the current thread. When a
//! task completes, it is dropped.
//!
//! [`spawn`]: fn.spawn.html
//! [`block_on_all`]: fn.block_on_all.html
//! [`CurrentThread`]: struct.CurrentThread.html
//! [`Future::poll`]: https://docs.rs/futures/0.1/futures/future/trait.Future.html#tymethod.poll

#![allow(deprecated)]

mod scheduler;
use self::scheduler::Scheduler;

use tokio_executor::{self, Enter, SpawnError};
use tokio_executor::park::{Park, Unpark, ParkThread};

use futures::{executor, Async, Future};
use futures::future::{self, Executor, ExecuteError, ExecuteErrorKind};

use std::fmt;
use std::cell::Cell;
use std::marker::PhantomData;
use std::rc::Rc;
use std::time::{Duration, Instant};
use std::sync::mpsc;

#[cfg(feature = "unstable-futures")]
use futures2;

/// Executes tasks on the current thread
pub struct CurrentThread<P: Park = ParkThread> {
    /// Execute futures and receive unpark notifications.
    scheduler: Scheduler<P::Unpark>,

    /// Current number of futures being executed
    num_futures: usize,

    /// Thread park handle
    park: P,

    /// Handle for spawning new futures from other threads
    spawn_handle: Handle,

    /// Receiver for futures spawned from other threads
    spawn_receiver: mpsc::Receiver<Box<Future<Item = (), Error = ()> + Send + 'static>>,
}

/// Executes futures on the current thread.
///
/// All futures executed using this executor will be executed on the current
/// thread. As such, `run` will wait for these futures to complete before
/// returning.
///
/// For more details, see the [module level](index.html) documentation.
#[derive(Debug, Clone)]
pub struct TaskExecutor {
    // Prevent the handle from moving across threads.
    _p: ::std::marker::PhantomData<Rc<()>>,
}

/// Returned by the `turn` function.
#[derive(Debug)]
pub struct Turn {
    polled: bool
}

impl Turn {
    /// `true` if any futures were polled at all and `false` otherwise.
    pub fn has_polled(&self) -> bool {
        self.polled
    }
}

/// A `CurrentThread` instance bound to a supplied execution context.
pub struct Entered<'a, P: Park + 'a> {
    executor: &'a mut CurrentThread<P>,
    enter: &'a mut Enter,
}

#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
#[doc(hidden)]
#[derive(Debug)]
pub struct Context<'a> {
    cancel: Cell<bool>,
    _p: PhantomData<&'a ()>,
}

/// Error returned by the `run` function.
#[derive(Debug)]
pub struct RunError {
    _p: (),
}

/// Error returned by the `run_timeout` function.
#[derive(Debug)]
pub struct RunTimeoutError {
    timeout: bool,
}

/// Error returned by the `turn` function.
#[derive(Debug)]
pub struct TurnError {
    _p: (),
}

/// Error returned by the `block_on` function.
#[derive(Debug)]
pub struct BlockError<T> {
    inner: Option<T>,
}

/// This is mostly split out to make the borrow checker happy.
struct Borrow<'a, U: 'a> {
    scheduler: &'a mut Scheduler<U>,
    num_futures: &'a mut usize,
}

trait SpawnLocal {
    fn spawn_local(&mut self, future: Box<Future<Item = (), Error = ()>>);
}

struct CurrentRunner {
    spawn: Cell<Option<*mut SpawnLocal>>,
}

/// Current thread's task runner. This is set in `TaskRunner::with`
thread_local!(static CURRENT: CurrentRunner = CurrentRunner {
    spawn: Cell::new(None),
});

#[deprecated(since = "0.1.2", note = "use block_on_all instead")]
#[doc(hidden)]
#[allow(deprecated)]
pub fn run<F, R>(f: F) -> R
where F: FnOnce(&mut Context) -> R
{
    let mut context = Context {
        cancel: Cell::new(false),
        _p: PhantomData,
    };

    let mut current_thread = CurrentThread::new();

    let ret = current_thread
        .block_on(future::lazy(|| Ok::<_, ()>(f(&mut context))))
        .unwrap();

    if context.cancel.get() {
        return ret;
    }

    current_thread.run().unwrap();
    ret
}

/// Run the executor bootstrapping the execution with the provided future.
///
/// This creates a new [`CurrentThread`] executor, spawns the provided future,
/// and blocks the current thread until the provided future and **all**
/// subsequently spawned futures complete. In other words:
///
/// * If the provided bootstrap future does **not** spawn any additional tasks,
///   `block_on_all` returns once `future` completes.
/// * If the provided bootstrap future **does** spawn additional tasks, then
///   `block_on_all` returns once **all** spawned futures complete.
///
/// See [module level][mod] documentation for more details.
///
/// [`CurrentThread`]: struct.CurrentThread.html
/// [mod]: index.html
pub fn block_on_all<F>(future: F) -> Result<F::Item, F::Error>
where F: Future,
{
    let mut current_thread = CurrentThread::new();

    let ret = current_thread.block_on(future);
    current_thread.run().unwrap();

    ret.map_err(|e| e.into_inner().expect("unexpected execution error"))
}

/// Executes a future on the current thread.
///
/// The provided future must complete or be canceled before `run` will return.
///
/// Unlike [`tokio::spawn`], this function will always spawn on a
/// `CurrentThread` executor and is able to spawn futures that are not `Send`.
///
/// # Panics
///
/// This function can only be invoked from the context of a `run` call; any
/// other use will result in a panic.
///
/// [`tokio::spawn`]: ../fn.spawn.html
pub fn spawn<F>(future: F)
where F: Future<Item = (), Error = ()> + 'static
{
    TaskExecutor::current()
        .spawn_local(Box::new(future))
        .unwrap();
}

// ===== impl CurrentThread =====

impl CurrentThread<ParkThread> {
    /// Create a new instance of `CurrentThread`.
    pub fn new() -> Self {
        CurrentThread::new_with_park(ParkThread::new())
    }
}

impl<P: Park> CurrentThread<P> {
    /// Create a new instance of `CurrentThread` backed by the given park
    /// handle.
    pub fn new_with_park(park: P) -> Self {
        let unpark = park.unpark();

        let (spawn_sender, spawn_receiver) = mpsc::channel();

        let scheduler = Scheduler::new(unpark);
        let notify = scheduler.notify();

        CurrentThread {
            scheduler: scheduler,
            num_futures: 0,
            park,
            spawn_handle: Handle { sender: spawn_sender, notify: notify },
            spawn_receiver: spawn_receiver,
        }
    }

    /// Returns `true` if the executor is currently idle.
    ///
    /// An idle executor is defined by not currently having any spawned tasks.
    pub fn is_idle(&self) -> bool {
        self.num_futures == 0
    }

    /// Spawn the future on the executor.
    ///
    /// This internally queues the future to be executed once `run` is called.
    pub fn spawn<F>(&mut self, future: F) -> &mut Self
    where F: Future<Item = (), Error = ()> + 'static,
    {
        self.borrow().spawn_local(Box::new(future));
        self
    }

    /// Synchronously waits for the provided `future` to complete.
    ///
    /// This function can be used to synchronously block the current thread
    /// until the provided `future` has resolved either successfully or with an
    /// error. The result of the future is then returned from this function
    /// call.
    ///
    /// Note that this function will **also** execute any spawned futures on the
    /// current thread, but will **not** block until these other spawned futures
    /// have completed.
    ///
    /// The caller is responsible for ensuring that other spawned futures
    /// complete execution.
    pub fn block_on<F>(&mut self, future: F)
        -> Result<F::Item, BlockError<F::Error>>
    where F: Future
    {
        let mut enter = tokio_executor::enter().unwrap();
        self.enter(&mut enter).block_on(future)
    }

    /// Run the executor to completion, blocking the thread until **all**
    /// spawned futures have completed.
    pub fn run(&mut self) -> Result<(), RunError> {
        let mut enter = tokio_executor::enter().unwrap();
        self.enter(&mut enter).run()
    }

    /// Run the executor to completion, blocking the thread until all
    /// spawned futures have completed **or** `duration` time has elapsed.
    pub fn run_timeout(&mut self, duration: Duration)
        -> Result<(), RunTimeoutError>
    {
        let mut enter = tokio_executor::enter().unwrap();
        self.enter(&mut enter).run_timeout(duration)
    }

    /// Perform a single iteration of the event loop.
    ///
    /// This function blocks the current thread even if the executor is idle.
    pub fn turn(&mut self, duration: Option<Duration>)
        -> Result<Turn, TurnError>
    {
        let mut enter = tokio_executor::enter().unwrap();
        self.enter(&mut enter).turn(duration)
    }

    /// Bind `CurrentThread` instance with an execution context.
    pub fn enter<'a>(&'a mut self, enter: &'a mut Enter) -> Entered<'a, P> {
        Entered {
            executor: self,
            enter,
        }
    }

    /// Returns a reference to the underlying `Park` instance.
    pub fn get_park(&self) -> &P {
        &self.park
    }

    /// Returns a mutable reference to the underlying `Park` instance.
    pub fn get_park_mut(&mut self) -> &mut P {
        &mut self.park
    }

    fn borrow(&mut self) -> Borrow<P::Unpark> {
        Borrow {
            scheduler: &mut self.scheduler,
            num_futures: &mut self.num_futures,
        }
    }

    /// Get a new handle to spawn futures on the executor
    ///
    /// Different to the executor itself, the handle can be sent to different
    /// threads and can be used to spawn futures on the executor.
    pub fn handle(&self) -> Handle {
        self.spawn_handle.clone()
    }
}

impl tokio_executor::Executor for CurrentThread {
    fn spawn(&mut self, future: Box<Future<Item = (), Error = ()> + Send>)
        -> Result<(), SpawnError>
    {
        self.borrow().spawn_local(future);
        Ok(())
    }

    #[cfg(feature = "unstable-futures")]
    fn spawn2(&mut self, _future: Box<futures2::Future<Item = (), Error = futures2::Never> + Send>)
        -> Result<(), futures2::executor::SpawnError>
    {
        panic!("Futures 0.2 integration is not available for current_thread");
    }
}

impl<P: Park> fmt::Debug for CurrentThread<P> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("CurrentThread")
            .field("scheduler", &self.scheduler)
            .field("num_futures", &self.num_futures)
            .finish()
    }
}

// ===== impl Entered =====

impl<'a, P: Park> Entered<'a, P> {
    /// Spawn the future on the executor.
    ///
    /// This internally queues the future to be executed once `run` is called.
    pub fn spawn<F>(&mut self, future: F) -> &mut Self
    where F: Future<Item = (), Error = ()> + 'static,
    {
        self.executor.borrow().spawn_local(Box::new(future));
        self
    }

    /// Synchronously waits for the provided `future` to complete.
    ///
    /// This function can be used to synchronously block the current thread
    /// until the provided `future` has resolved either successfully or with an
    /// error. The result of the future is then returned from this function
    /// call.
    ///
    /// Note that this function will **also** execute any spawned futures on the
    /// current thread, but will **not** block until these other spawned futures
    /// have completed.
    ///
    /// The caller is responsible for ensuring that other spawned futures
    /// complete execution.
    pub fn block_on<F>(&mut self, future: F)
        -> Result<F::Item, BlockError<F::Error>>
    where F: Future
    {
        let mut future = executor::spawn(future);
        let notify = self.executor.scheduler.notify();

        loop {
            let res = self.executor.borrow().enter(self.enter, || {
                future.poll_future_notify(&notify, 0)
            });

            match res {
                Ok(Async::Ready(e)) => return Ok(e),
                Err(e) => return Err(BlockError { inner: Some(e) }),
                Ok(Async::NotReady) => {}
            }

            self.tick();

            if let Err(_) = self.executor.park.park() {
                return Err(BlockError { inner: None });
            }
        }
    }

    /// Run the executor to completion, blocking the thread until **all**
    /// spawned futures have completed.
    pub fn run(&mut self) -> Result<(), RunError> {
        self.run_timeout2(None)
            .map_err(|_| RunError { _p: () })
    }

    /// Run the executor to completion, blocking the thread until all
    /// spawned futures have completed **or** `duration` time has elapsed.
    pub fn run_timeout(&mut self, duration: Duration)
        -> Result<(), RunTimeoutError>
    {
        self.run_timeout2(Some(duration))
    }

    /// Perform a single iteration of the event loop.
    ///
    /// This function blocks the current thread even if the executor is idle.
    pub fn turn(&mut self, duration: Option<Duration>)
        -> Result<Turn, TurnError>
    {
        let res = if self.executor.scheduler.has_pending_futures() {
            self.executor.park.park_timeout(Duration::from_millis(0))
        } else {
            match duration {
                Some(duration) => self.executor.park.park_timeout(duration),
                None => self.executor.park.park(),
            }
        };

        if res.is_err() {
            return Err(TurnError { _p: () });
        }

        let polled = self.tick();

        Ok(Turn { polled })
    }

    /// Returns a reference to the underlying `Park` instance.
    pub fn get_park(&self) -> &P {
        &self.executor.park
    }

    /// Returns a mutable reference to the underlying `Park` instance.
    pub fn get_park_mut(&mut self) -> &mut P {
        &mut self.executor.park
    }

    fn run_timeout2(&mut self, dur: Option<Duration>)
        -> Result<(), RunTimeoutError>
    {
        if self.executor.is_idle() {
            // Nothing to do
            return Ok(());
        }

        let mut time = dur.map(|dur| (Instant::now() + dur, dur));

        loop {
            self.tick();

            if self.executor.is_idle() {
                return Ok(());
            }

            match time {
                Some((until, rem)) => {
                    if let Err(_) = self.executor.park.park_timeout(rem) {
                        return Err(RunTimeoutError::new(false));
                    }

                    let now = Instant::now();

                    if now >= until {
                        return Err(RunTimeoutError::new(true));
                    }

                    time = Some((until, until - now));
                }
                None => {
                    if let Err(_) = self.executor.park.park() {
                        return Err(RunTimeoutError::new(false));
                    }
                }
            }
        }
    }

    /// Returns `true` if any futures were processed
    fn tick(&mut self) -> bool {
        // Spawn any futures that were spawned from other threads by manually
        // looping over the receiver stream

        // FIXME: Slightly ugly but needed to make the borrow checker happy
        let (mut borrow, spawn_receiver) = (
            Borrow {
                scheduler: &mut self.executor.scheduler,
                num_futures: &mut self.executor.num_futures,
            },
            &mut self.executor.spawn_receiver,
        );

        while let Ok(future) = spawn_receiver.try_recv() {
            borrow.spawn_local(future);
        }

        // After any pending futures were scheduled, do the actual tick
        borrow.scheduler.tick(
            &mut *self.enter,
            borrow.num_futures)
    }
}

impl<'a, P: Park> fmt::Debug for Entered<'a, P> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Entered")
            .field("executor", &self.executor)
            .field("enter", &self.enter)
            .finish()
    }
}

// ===== impl Handle =====

/// Handle to spawn a future on the corresponding `CurrentThread` instance
#[derive(Clone)]
pub struct Handle {
    sender: mpsc::Sender<Box<Future<Item = (), Error = ()> + Send + 'static>>,
    notify: executor::NotifyHandle,
}

// Manual implementation because the Sender does not implement Debug
impl fmt::Debug for Handle {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Handle")
            .finish()
    }
}

impl Handle {
    /// Spawn a future onto the `CurrentThread` instance corresponding to this handle
    ///
    /// # Panics
    ///
    /// This function panics if the spawn fails. Failure occurs if the `CurrentThread`
    /// instance of the `Handle` does not exist anymore.
    pub fn spawn<F>(&self, future: F) -> Result<(), SpawnError>
    where F: Future<Item = (), Error = ()> + Send + 'static {
        self.sender.send(Box::new(future))
            .expect("CurrentThread does not exist anymore");
        // use 0 for the id, CurrentThread does not make use of it
        self.notify.notify(0);

        Ok(())
    }
}

// ===== impl TaskExecutor =====

#[deprecated(since = "0.1.2", note = "use TaskExecutor::current instead")]
#[doc(hidden)]
pub fn task_executor() -> TaskExecutor {
    TaskExecutor {
        _p: ::std::marker::PhantomData,
    }
}

impl TaskExecutor {
    /// Returns an executor that executes futures on the current thread.
    ///
    /// The user of `TaskExecutor` must ensure that when a future is submitted,
    /// that it is done within the context of a call to `run`.
    ///
    /// For more details, see the [module level](index.html) documentation.
    pub fn current() -> TaskExecutor {
        TaskExecutor {
            _p: ::std::marker::PhantomData,
        }
    }

    /// Spawn a future onto the current `CurrentThread` instance.
    pub fn spawn_local(&mut self, future: Box<Future<Item = (), Error = ()>>)
        -> Result<(), SpawnError>
    {
        CURRENT.with(|current| {
            match current.spawn.get() {
                Some(spawn) => {
                    unsafe { (*spawn).spawn_local(future) };
                    Ok(())
                }
                None => {
                    Err(SpawnError::shutdown())
                }
            }
        })
    }
}

impl tokio_executor::Executor for TaskExecutor {
    fn spawn(&mut self, future: Box<Future<Item = (), Error = ()> + Send>)
        -> Result<(), SpawnError>
    {
        self.spawn_local(future)
    }

    #[cfg(feature = "unstable-futures")]
    fn spawn2(&mut self, _future: Box<futures2::Future<Item = (), Error = futures2::Never> + Send>)
        -> Result<(), futures2::executor::SpawnError>
    {
        panic!("Futures 0.2 integration is not available for current_thread");
    }

    fn status(&self) -> Result<(), SpawnError> {
        CURRENT.with(|current| {
            if current.spawn.get().is_some() {
                Ok(())
            } else {
                Err(SpawnError::shutdown())
            }
        })
    }
}

impl<F> Executor<F> for TaskExecutor
where F: Future<Item = (), Error = ()> + 'static
{
    fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
        CURRENT.with(|current| {
            match current.spawn.get() {
                Some(spawn) => {
                    unsafe { (*spawn).spawn_local(Box::new(future)) };
                    Ok(())
                }
                None => {
                    Err(ExecuteError::new(ExecuteErrorKind::Shutdown, future))
                }
            }
        })
    }
}

// ===== impl Context =====

impl<'a> Context<'a> {
    /// Cancels *all* executing futures.
    pub fn cancel_all_spawned(&self) {
        self.cancel.set(true);
    }
}

// ===== impl Borrow =====

impl<'a, U: Unpark> Borrow<'a, U> {
    fn enter<F, R>(&mut self, _: &mut Enter, f: F) -> R
    where F: FnOnce() -> R,
    {
        CURRENT.with(|current| {
            current.set_spawn(self, || {
                f()
            })
        })
    }
}

impl<'a, U: Unpark> SpawnLocal for Borrow<'a, U> {
    fn spawn_local(&mut self, future: Box<Future<Item = (), Error = ()>>) {
        *self.num_futures += 1;
        self.scheduler.schedule(future);
    }
}

// ===== impl CurrentRunner =====

impl CurrentRunner {
    fn set_spawn<F, R>(&self, spawn: &mut SpawnLocal, f: F) -> R
    where F: FnOnce() -> R
    {
        struct Reset<'a>(&'a CurrentRunner);

        impl<'a> Drop for Reset<'a> {
            fn drop(&mut self) {
                self.0.spawn.set(None);
            }
        }

        let _reset = Reset(self);

        let spawn = unsafe { hide_lt(spawn as *mut SpawnLocal) };
        self.spawn.set(Some(spawn));

        f()
    }
}

unsafe fn hide_lt<'a>(p: *mut (SpawnLocal + 'a)) -> *mut (SpawnLocal + 'static) {
    use std::mem;
    mem::transmute(p)
}

// ===== impl RunTimeoutError =====

impl RunTimeoutError {
    fn new(timeout: bool) -> Self {
        RunTimeoutError { timeout }
    }

    /// Returns `true` if the error was caused by the operation timing out.
    pub fn is_timeout(&self) -> bool {
        self.timeout
    }
}

impl From<tokio_executor::EnterError> for RunTimeoutError {
    fn from(_: tokio_executor::EnterError) -> Self {
        RunTimeoutError::new(false)
    }
}

// ===== impl BlockError =====

impl<T> BlockError<T> {
    /// Returns the error yielded by the future being blocked on
    pub fn into_inner(self) -> Option<T> {
        self.inner
    }
}

impl<T> From<tokio_executor::EnterError> for BlockError<T> {
    fn from(_: tokio_executor::EnterError) -> Self {
        BlockError { inner: None }
    }
}