mentat/core-traits/lib.rs

1086 lines
31 KiB
Rust

// Copyright 2018 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
extern crate chrono;
extern crate enum_set;
extern crate indexmap;
extern crate ordered_float;
#[macro_use]
extern crate serde_derive;
extern crate edn;
extern crate uuid;
#[macro_use]
extern crate lazy_static;
use std::fmt;
use std::ffi::CString;
use std::ops::Deref;
use std::os::raw::c_char;
use std::rc::Rc;
use std::sync::Arc;
use std::collections::BTreeMap;
use indexmap::IndexMap;
use enum_set::EnumSet;
use ordered_float::OrderedFloat;
use chrono::{DateTime, Timelike};
use uuid::Uuid;
use edn::{Cloned, FromMicros, FromRc, Keyword, Utc, ValueRc};
use edn::entities::{
AttributePlace, EntidOrIdent, EntityPlace, TransactableValueMarker, ValuePlace,
};
mod value_type_set;
pub mod values;
pub use crate::value_type_set::ValueTypeSet;
#[macro_export]
macro_rules! bail {
($e:expr) => {
return Err($e.into());
};
}
/// Represents one entid in the entid space.
///
/// Per https://www.sqlite.org/datatype3.html (see also http://stackoverflow.com/a/8499544), SQLite
/// stores signed integers up to 64 bits in size. Since u32 is not appropriate for our use case, we
/// use i64 rather than manually truncating u64 to u63 and casting to i64 throughout the codebase.
pub type Entid = i64;
/// An entid that's either already in the store, or newly allocated to a tempid.
/// TODO: we'd like to link this in some way to the lifetime of a particular PartitionMap.
#[derive(Clone, Copy, Debug, Hash, Eq, PartialEq, Ord, PartialOrd)]
pub struct KnownEntid(pub Entid);
impl From<KnownEntid> for Entid {
fn from(k: KnownEntid) -> Entid {
k.0
}
}
impl<V: TransactableValueMarker> Into<EntityPlace<V>> for KnownEntid {
fn into(self) -> EntityPlace<V> {
EntityPlace::Entid(EntidOrIdent::Entid(self.0))
}
}
impl Into<AttributePlace> for KnownEntid {
fn into(self) -> AttributePlace {
AttributePlace::Entid(EntidOrIdent::Entid(self.0))
}
}
impl<V: TransactableValueMarker> Into<ValuePlace<V>> for KnownEntid {
fn into(self) -> ValuePlace<V> {
ValuePlace::Entid(EntidOrIdent::Entid(self.0))
}
}
/// Bit flags used in `flags0` column in temporary tables created during search,
/// such as the `search_results`, `inexact_searches` and `exact_searches` tables.
/// When moving to a more concrete table, such as `datoms`, they are expanded out
/// via these flags and put into their own column rather than a bit field.
pub enum AttributeBitFlags {
IndexAVET = 1,
IndexVAET = 1 << 1,
IndexFulltext = 1 << 2,
UniqueValue = 1 << 3,
}
pub mod attribute {
use crate::TypedValue;
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub enum Unique {
Value,
Identity,
}
impl Unique {
// This is easier than rejigging DB_UNIQUE_VALUE to not be EDN.
pub fn into_typed_value(self) -> TypedValue {
match self {
Unique::Value => TypedValue::typed_ns_keyword("db.unique", "value"),
Unique::Identity => TypedValue::typed_ns_keyword("db.unique", "identity"),
}
}
}
}
/// A Mentat schema attribute has a value type and several other flags determining how assertions
/// with the attribute are interpreted.
///
/// TODO: consider packing this into a bitfield or similar.
#[derive(Clone, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub struct Attribute {
/// The associated value type, i.e., `:db/valueType`?
pub value_type: ValueType,
/// `true` if this attribute is multi-valued, i.e., it is `:db/cardinality
/// :db.cardinality/many`. `false` if this attribute is single-valued (the default), i.e., it
/// is `:db/cardinality :db.cardinality/one`.
pub multival: bool,
/// `None` if this attribute is neither unique-value nor unique-identity.
///
/// `Some(attribute::Unique::Value)` if this attribute is unique-value, i.e., it is `:db/unique
/// :db.unique/value`.
///
/// *Unique-value* means that there is at most one assertion with the attribute and a
/// particular value in the datom store. Unique-value attributes can be used in lookup-refs.
///
/// `Some(attribute::Unique::Identity)` if this attribute is unique-identity, i.e., it is `:db/unique
/// :db.unique/identity`.
///
/// Unique-identity attributes always have value type `Ref`.
///
/// *Unique-identity* means that the attribute is *unique-value* and that they can be used in
/// lookup-refs and will automatically upsert where appropriate.
pub unique: Option<attribute::Unique>,
/// `true` if this attribute is automatically indexed, i.e., it is `:db/indexing true`.
pub index: bool,
/// `true` if this attribute is automatically fulltext indexed, i.e., it is `:db/fulltext true`.
///
/// Fulltext attributes always have string values.
pub fulltext: bool,
/// `true` if this attribute is a component, i.e., it is `:db/isComponent true`.
///
/// Component attributes always have value type `Ref`.
///
/// They are used to compose entities from component sub-entities: they are fetched recursively
/// by pull expressions, and they are automatically recursively deleted where appropriate.
pub component: bool,
/// `true` if this attribute doesn't require history to be kept, i.e., it is `:db/noHistory true`.
pub no_history: bool,
}
impl Attribute {
/// Combine several attribute flags into a bitfield used in temporary search tables.
pub fn flags(&self) -> u8 {
let mut flags: u8 = 0;
if self.index {
flags |= AttributeBitFlags::IndexAVET as u8;
}
if self.value_type == ValueType::Ref {
flags |= AttributeBitFlags::IndexVAET as u8;
}
if self.fulltext {
flags |= AttributeBitFlags::IndexFulltext as u8;
}
if self.unique.is_some() {
flags |= AttributeBitFlags::UniqueValue as u8;
}
flags
}
pub fn to_edn_value(&self, ident: Option<Keyword>) -> edn::Value {
let mut attribute_map: BTreeMap<edn::Value, edn::Value> = BTreeMap::default();
if let Some(ident) = ident {
attribute_map.insert(values::DB_IDENT.clone(), edn::Value::Keyword(ident));
}
attribute_map.insert(
values::DB_VALUE_TYPE.clone(),
self.value_type.into_edn_value(),
);
attribute_map.insert(
values::DB_CARDINALITY.clone(),
if self.multival {
values::DB_CARDINALITY_MANY.clone()
} else {
values::DB_CARDINALITY_ONE.clone()
},
);
match self.unique {
Some(attribute::Unique::Value) => {
attribute_map.insert(values::DB_UNIQUE.clone(), values::DB_UNIQUE_VALUE.clone());
}
Some(attribute::Unique::Identity) => {
attribute_map.insert(
values::DB_UNIQUE.clone(),
values::DB_UNIQUE_IDENTITY.clone(),
);
}
None => (),
}
if self.index {
attribute_map.insert(values::DB_INDEX.clone(), edn::Value::Boolean(true));
}
if self.fulltext {
attribute_map.insert(values::DB_FULLTEXT.clone(), edn::Value::Boolean(true));
}
if self.component {
attribute_map.insert(values::DB_IS_COMPONENT.clone(), edn::Value::Boolean(true));
}
if self.no_history {
attribute_map.insert(values::DB_NO_HISTORY.clone(), edn::Value::Boolean(true));
}
edn::Value::Map(attribute_map)
}
}
impl Default for Attribute {
fn default() -> Attribute {
Attribute {
// There's no particular reason to favour one value type, so Ref it is.
value_type: ValueType::Ref,
fulltext: false,
index: false,
multival: false,
unique: None,
component: false,
no_history: false,
}
}
}
/// The attribute of each Mentat assertion has a :db/valueType constraining the value to a
/// particular set. Mentat recognizes the following :db/valueType values.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
#[repr(u32)]
pub enum ValueType {
Ref,
Boolean,
Instant,
Long,
Double,
String,
Keyword,
Uuid,
}
impl ValueType {
pub fn all_enums() -> EnumSet<ValueType> {
// TODO: lazy_static.
let mut s = EnumSet::new();
s.insert(ValueType::Ref);
s.insert(ValueType::Boolean);
s.insert(ValueType::Instant);
s.insert(ValueType::Long);
s.insert(ValueType::Double);
s.insert(ValueType::String);
s.insert(ValueType::Keyword);
s.insert(ValueType::Uuid);
s
}
}
impl ::enum_set::CLike for ValueType {
fn to_u32(&self) -> u32 {
*self as u32
}
unsafe fn from_u32(v: u32) -> ValueType {
::std::mem::transmute(v)
}
}
impl ValueType {
pub fn into_keyword(self) -> Keyword {
Keyword::namespaced(
"db.type",
match self {
ValueType::Ref => "ref",
ValueType::Boolean => "boolean",
ValueType::Instant => "instant",
ValueType::Long => "long",
ValueType::Double => "double",
ValueType::String => "string",
ValueType::Keyword => "keyword",
ValueType::Uuid => "uuid",
},
)
}
pub fn from_keyword(keyword: &Keyword) -> Option<Self> {
if keyword.namespace() != Some("db.type") {
None
} else {
match keyword.name() {
"ref" => Some(ValueType::Ref),
"boolean" => Some(ValueType::Boolean),
"instant" => Some(ValueType::Instant),
"long" => Some(ValueType::Long),
"double" => Some(ValueType::Double),
"string" => Some(ValueType::String),
"keyword" => Some(ValueType::Keyword),
"uuid" => Some(ValueType::Uuid),
_ => None,
}
}
}
pub fn into_typed_value(self) -> TypedValue {
TypedValue::typed_ns_keyword(
"db.type",
match self {
ValueType::Ref => "ref",
ValueType::Boolean => "boolean",
ValueType::Instant => "instant",
ValueType::Long => "long",
ValueType::Double => "double",
ValueType::String => "string",
ValueType::Keyword => "keyword",
ValueType::Uuid => "uuid",
},
)
}
pub fn into_edn_value(self) -> edn::Value {
match self {
ValueType::Ref => values::DB_TYPE_REF.clone(),
ValueType::Boolean => values::DB_TYPE_BOOLEAN.clone(),
ValueType::Instant => values::DB_TYPE_INSTANT.clone(),
ValueType::Long => values::DB_TYPE_LONG.clone(),
ValueType::Double => values::DB_TYPE_DOUBLE.clone(),
ValueType::String => values::DB_TYPE_STRING.clone(),
ValueType::Keyword => values::DB_TYPE_KEYWORD.clone(),
ValueType::Uuid => values::DB_TYPE_UUID.clone(),
}
}
pub fn is_numeric(self) -> bool {
matches!(self, ValueType::Long | ValueType::Double)
}
}
impl fmt::Display for ValueType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}",
match *self {
ValueType::Ref => ":db.type/ref",
ValueType::Boolean => ":db.type/boolean",
ValueType::Instant => ":db.type/instant",
ValueType::Long => ":db.type/long",
ValueType::Double => ":db.type/double",
ValueType::String => ":db.type/string",
ValueType::Keyword => ":db.type/keyword",
ValueType::Uuid => ":db.type/uuid",
}
)
}
}
/// `TypedValue` is the value type for programmatic use in transaction builders.
impl TransactableValueMarker for TypedValue {}
/// Represents a value that can be stored in a Mentat store.
// TODO: expand to include :db.type/uri. https://github.com/mozilla/mentat/issues/201
// TODO: JSON data type? https://github.com/mozilla/mentat/issues/31
// TODO: BigInt? Bytes?
#[derive(Clone, Debug, Eq, Hash, Ord, PartialOrd, PartialEq, Serialize, Deserialize)]
pub enum TypedValue {
Ref(Entid),
Boolean(bool),
Long(i64),
Double(OrderedFloat<f64>),
Instant(DateTime<Utc>), // Use `into()` to ensure truncation.
// TODO: &str throughout?
String(ValueRc<String>),
Keyword(ValueRc<Keyword>),
Uuid(Uuid), // It's only 128 bits, so this should be acceptable to clone.
}
impl From<KnownEntid> for TypedValue {
fn from(k: KnownEntid) -> TypedValue {
TypedValue::Ref(k.0)
}
}
impl TypedValue {
/// Returns true if the provided type is `Some` and matches this value's type, or if the
/// provided type is `None`.
#[inline]
pub fn is_congruent_with<T: Into<Option<ValueType>>>(&self, t: T) -> bool {
t.into().map_or(true, |x| self.matches_type(x))
}
#[inline]
pub fn matches_type(&self, t: ValueType) -> bool {
self.value_type() == t
}
pub fn value_type(&self) -> ValueType {
match self {
TypedValue::Ref(_) => ValueType::Ref,
TypedValue::Boolean(_) => ValueType::Boolean,
TypedValue::Long(_) => ValueType::Long,
TypedValue::Instant(_) => ValueType::Instant,
TypedValue::Double(_) => ValueType::Double,
TypedValue::String(_) => ValueType::String,
TypedValue::Keyword(_) => ValueType::Keyword,
TypedValue::Uuid(_) => ValueType::Uuid,
}
}
/// Construct a new `TypedValue::Keyword` instance by cloning the provided
/// values and wrapping them in a new `ValueRc`. This is expensive, so this might
/// be best limited to tests.
pub fn typed_ns_keyword<S: AsRef<str>, T: AsRef<str>>(ns: S, name: T) -> TypedValue {
Keyword::namespaced(ns.as_ref(), name.as_ref()).into()
}
/// Construct a new `TypedValue::String` instance by cloning the provided
/// value and wrapping it in a new `ValueRc`. This is expensive, so this might
/// be best limited to tests.
pub fn typed_string<S: AsRef<str>>(s: S) -> TypedValue {
s.as_ref().into()
}
pub fn current_instant() -> TypedValue {
Utc::now().into()
}
/// Construct a new `TypedValue::Instant` instance from the provided
/// microsecond timestamp.
pub fn instant(micros: i64) -> TypedValue {
DateTime::<Utc>::from_micros(micros).into()
}
pub fn into_known_entid(self) -> Option<KnownEntid> {
match self {
TypedValue::Ref(v) => Some(KnownEntid(v)),
_ => None,
}
}
pub fn into_entid(self) -> Option<Entid> {
match self {
TypedValue::Ref(v) => Some(v),
_ => None,
}
}
pub fn into_kw(self) -> Option<ValueRc<Keyword>> {
match self {
TypedValue::Keyword(v) => Some(v),
_ => None,
}
}
pub fn into_boolean(self) -> Option<bool> {
match self {
TypedValue::Boolean(v) => Some(v),
_ => None,
}
}
pub fn into_long(self) -> Option<i64> {
match self {
TypedValue::Long(v) => Some(v),
_ => None,
}
}
pub fn into_double(self) -> Option<f64> {
match self {
TypedValue::Double(v) => Some(v.into_inner()),
_ => None,
}
}
pub fn into_instant(self) -> Option<DateTime<Utc>> {
match self {
TypedValue::Instant(v) => Some(v),
_ => None,
}
}
pub fn into_timestamp(self) -> Option<i64> {
match self {
TypedValue::Instant(v) => Some(v.timestamp()),
_ => None,
}
}
pub fn into_string(self) -> Option<ValueRc<String>> {
match self {
TypedValue::String(v) => Some(v),
_ => None,
}
}
pub fn into_c_string(self) -> Option<*mut c_char> {
match self {
TypedValue::String(v) => {
// Get an independent copy of the string.
let s: String = v.cloned();
// Make a CString out of the new bytes.
let c: CString = CString::new(s).expect("String conversion failed!");
// Return a C-owned pointer.
Some(c.into_raw())
}
_ => None,
}
}
pub fn into_kw_c_string(self) -> Option<*mut c_char> {
match self {
TypedValue::Keyword(v) => {
// Get an independent copy of the string.
let s: String = v.to_string();
// Make a CString out of the new bytes.
let c: CString = CString::new(s).expect("String conversion failed!");
// Return a C-owned pointer.
Some(c.into_raw())
}
_ => None,
}
}
pub fn into_uuid_c_string(self) -> Option<*mut c_char> {
match self {
TypedValue::Uuid(v) => {
// Get an independent copy of the string.
let s: String = v.to_hyphenated().to_string();
// Make a CString out of the new bytes.
let c: CString = CString::new(s).expect("String conversion failed!");
// Return a C-owned pointer.
Some(c.into_raw())
}
_ => None,
}
}
pub fn into_uuid(self) -> Option<Uuid> {
match self {
TypedValue::Uuid(v) => Some(v),
_ => None,
}
}
pub fn into_uuid_string(self) -> Option<String> {
match self {
TypedValue::Uuid(v) => Some(v.to_hyphenated().to_string()),
_ => None,
}
}
}
// We don't do From<i64> or From<Entid> 'cos it's ambiguous.
impl From<bool> for TypedValue {
fn from(value: bool) -> TypedValue {
TypedValue::Boolean(value)
}
}
/// Truncate the provided `DateTime` to microsecond precision, and return the corresponding
/// `TypedValue::Instant`.
impl From<DateTime<Utc>> for TypedValue {
fn from(value: DateTime<Utc>) -> TypedValue {
TypedValue::Instant(value.microsecond_precision())
}
}
impl From<Uuid> for TypedValue {
fn from(value: Uuid) -> TypedValue {
TypedValue::Uuid(value)
}
}
impl<'a> From<&'a str> for TypedValue {
fn from(value: &'a str) -> TypedValue {
TypedValue::String(ValueRc::new(value.to_string()))
}
}
impl From<Arc<String>> for TypedValue {
fn from(value: Arc<String>) -> TypedValue {
TypedValue::String(ValueRc::from_arc(value))
}
}
impl From<Rc<String>> for TypedValue {
fn from(value: Rc<String>) -> TypedValue {
TypedValue::String(ValueRc::from_rc(value))
}
}
impl From<Box<String>> for TypedValue {
fn from(value: Box<String>) -> TypedValue {
TypedValue::String(ValueRc::new(*value))
}
}
impl From<String> for TypedValue {
fn from(value: String) -> TypedValue {
TypedValue::String(ValueRc::new(value))
}
}
impl From<Arc<Keyword>> for TypedValue {
fn from(value: Arc<Keyword>) -> TypedValue {
TypedValue::Keyword(ValueRc::from_arc(value))
}
}
impl From<Rc<Keyword>> for TypedValue {
fn from(value: Rc<Keyword>) -> TypedValue {
TypedValue::Keyword(ValueRc::from_rc(value))
}
}
impl From<Keyword> for TypedValue {
fn from(value: Keyword) -> TypedValue {
TypedValue::Keyword(ValueRc::new(value))
}
}
impl From<u32> for TypedValue {
fn from(value: u32) -> TypedValue {
TypedValue::Long(value as i64)
}
}
impl From<i32> for TypedValue {
fn from(value: i32) -> TypedValue {
TypedValue::Long(value as i64)
}
}
impl From<f64> for TypedValue {
fn from(value: f64) -> TypedValue {
TypedValue::Double(OrderedFloat(value))
}
}
trait MicrosecondPrecision {
/// Truncate the provided `DateTime` to microsecond precision.
fn microsecond_precision(self) -> Self;
}
impl MicrosecondPrecision for DateTime<Utc> {
fn microsecond_precision(self) -> DateTime<Utc> {
let nanoseconds = self.nanosecond();
if nanoseconds % 1000 == 0 {
return self;
}
let microseconds = nanoseconds / 1000;
let truncated = microseconds * 1000;
self.with_nanosecond(truncated).expect("valid timestamp")
}
}
/// The values bound in a query specification can be:
///
/// * Vecs of structured values, for multi-valued component attributes or nested expressions.
/// * Single structured values, for single-valued component attributes or nested expressions.
/// * Single typed values, for simple attributes.
///
/// The `Binding` enum defines these three options.
///
/// Datomic also supports structured inputs; at present Mentat does not, but this type
/// would also serve that purpose.
///
/// Note that maps are not ordered, and so `Binding` is neither `Ord` nor `PartialOrd`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Binding {
Scalar(TypedValue),
Vec(ValueRc<Vec<Binding>>),
Map(ValueRc<StructuredMap>),
}
impl<T> From<T> for Binding
where
T: Into<TypedValue>,
{
fn from(value: T) -> Self {
Binding::Scalar(value.into())
}
}
impl From<StructuredMap> for Binding {
fn from(value: StructuredMap) -> Self {
Binding::Map(ValueRc::new(value))
}
}
impl From<Vec<Binding>> for Binding {
fn from(value: Vec<Binding>) -> Self {
Binding::Vec(ValueRc::new(value))
}
}
impl Binding {
pub fn into_scalar(self) -> Option<TypedValue> {
match self {
Binding::Scalar(v) => Some(v),
_ => None,
}
}
pub fn into_vec(self) -> Option<ValueRc<Vec<Binding>>> {
match self {
Binding::Vec(v) => Some(v),
_ => None,
}
}
pub fn into_map(self) -> Option<ValueRc<StructuredMap>> {
match self {
Binding::Map(v) => Some(v),
_ => None,
}
}
pub fn as_scalar(&self) -> Option<&TypedValue> {
match self {
Binding::Scalar(ref v) => Some(v),
_ => None,
}
}
pub fn as_vec(&self) -> Option<&Vec<Binding>> {
match self {
Binding::Vec(ref v) => Some(v),
_ => None,
}
}
pub fn as_map(&self) -> Option<&StructuredMap> {
match self {
Binding::Map(ref v) => Some(v),
_ => None,
}
}
}
/// A pull expression expands a binding into a structure. The returned structure
/// associates attributes named in the input or retrieved from the store with values.
/// This association is a `StructuredMap`.
///
/// Note that 'attributes' in Datomic's case can mean:
/// - Reversed attribute keywords (:artist/_country).
/// - An alias using `:as` (:artist/name :as "Band name").
///
/// We entirely support the former, and partially support the latter -- you can alias
/// using a different keyword only.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct StructuredMap(pub IndexMap<ValueRc<Keyword>, Binding>);
impl Deref for StructuredMap {
type Target = IndexMap<ValueRc<Keyword>, Binding>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl StructuredMap {
pub fn insert<N, B>(&mut self, name: N, value: B)
where
N: Into<ValueRc<Keyword>>,
B: Into<Binding>,
{
self.0.insert(name.into(), value.into());
}
}
impl From<IndexMap<ValueRc<Keyword>, Binding>> for StructuredMap {
fn from(src: IndexMap<ValueRc<Keyword>, Binding>) -> Self {
StructuredMap(src)
}
}
// Mostly for testing.
impl<T> From<Vec<(Keyword, T)>> for StructuredMap
where
T: Into<Binding>,
{
fn from(value: Vec<(Keyword, T)>) -> Self {
let mut sm = StructuredMap::default();
for (k, v) in value.into_iter() {
sm.insert(k, v);
}
sm
}
}
impl Binding {
/// Returns true if the provided type is `Some` and matches this value's type, or if the
/// provided type is `None`.
#[inline]
pub fn is_congruent_with<T: Into<Option<ValueType>>>(&self, t: T) -> bool {
t.into().map_or(true, |x| self.matches_type(x))
}
#[inline]
pub fn matches_type(&self, t: ValueType) -> bool {
self.value_type() == Some(t)
}
pub fn value_type(&self) -> Option<ValueType> {
match self {
Binding::Scalar(ref v) => Some(v.value_type()),
Binding::Map(_) => None,
Binding::Vec(_) => None,
}
}
}
/// Return the current time as a UTC `DateTime` instance with microsecond precision.
pub fn now() -> DateTime<Utc> {
Utc::now().microsecond_precision()
}
impl Binding {
pub fn into_known_entid(self) -> Option<KnownEntid> {
match self {
Binding::Scalar(TypedValue::Ref(v)) => Some(KnownEntid(v)),
_ => None,
}
}
pub fn into_entid(self) -> Option<Entid> {
match self {
Binding::Scalar(TypedValue::Ref(v)) => Some(v),
_ => None,
}
}
pub fn into_kw(self) -> Option<ValueRc<Keyword>> {
match self {
Binding::Scalar(TypedValue::Keyword(v)) => Some(v),
_ => None,
}
}
pub fn into_boolean(self) -> Option<bool> {
match self {
Binding::Scalar(TypedValue::Boolean(v)) => Some(v),
_ => None,
}
}
pub fn into_long(self) -> Option<i64> {
match self {
Binding::Scalar(TypedValue::Long(v)) => Some(v),
_ => None,
}
}
pub fn into_double(self) -> Option<f64> {
match self {
Binding::Scalar(TypedValue::Double(v)) => Some(v.into_inner()),
_ => None,
}
}
pub fn into_instant(self) -> Option<DateTime<Utc>> {
match self {
Binding::Scalar(TypedValue::Instant(v)) => Some(v),
_ => None,
}
}
pub fn into_timestamp(self) -> Option<i64> {
match self {
Binding::Scalar(TypedValue::Instant(v)) => Some(v.timestamp()),
_ => None,
}
}
pub fn into_string(self) -> Option<ValueRc<String>> {
match self {
Binding::Scalar(TypedValue::String(v)) => Some(v),
_ => None,
}
}
pub fn into_uuid(self) -> Option<Uuid> {
match self {
Binding::Scalar(TypedValue::Uuid(v)) => Some(v),
_ => None,
}
}
pub fn into_uuid_string(self) -> Option<String> {
match self {
Binding::Scalar(TypedValue::Uuid(v)) => Some(v.to_hyphenated().to_string()),
_ => None,
}
}
pub fn into_c_string(self) -> Option<*mut c_char> {
match self {
Binding::Scalar(v) => v.into_c_string(),
_ => None,
}
}
pub fn into_kw_c_string(self) -> Option<*mut c_char> {
match self {
Binding::Scalar(v) => v.into_kw_c_string(),
_ => None,
}
}
pub fn into_uuid_c_string(self) -> Option<*mut c_char> {
match self {
Binding::Scalar(v) => v.into_uuid_c_string(),
_ => None,
}
}
pub fn as_entid(&self) -> Option<&Entid> {
match self {
Binding::Scalar(TypedValue::Ref(ref v)) => Some(v),
_ => None,
}
}
pub fn as_kw(&self) -> Option<&ValueRc<Keyword>> {
match self {
Binding::Scalar(TypedValue::Keyword(ref v)) => Some(v),
_ => None,
}
}
pub fn as_boolean(&self) -> Option<&bool> {
match self {
Binding::Scalar(TypedValue::Boolean(ref v)) => Some(v),
_ => None,
}
}
pub fn as_long(&self) -> Option<&i64> {
match self {
Binding::Scalar(TypedValue::Long(ref v)) => Some(v),
_ => None,
}
}
pub fn as_double(&self) -> Option<&f64> {
match self {
Binding::Scalar(TypedValue::Double(ref v)) => Some(&v.0),
_ => None,
}
}
pub fn as_instant(&self) -> Option<&DateTime<Utc>> {
match self {
Binding::Scalar(TypedValue::Instant(ref v)) => Some(v),
_ => None,
}
}
pub fn as_string(&self) -> Option<&ValueRc<String>> {
match self {
Binding::Scalar(TypedValue::String(ref v)) => Some(v),
_ => None,
}
}
pub fn as_uuid(&self) -> Option<&Uuid> {
match self {
Binding::Scalar(TypedValue::Uuid(ref v)) => Some(v),
_ => None,
}
}
}
#[test]
fn test_typed_value() {
assert!(TypedValue::Boolean(false).is_congruent_with(None));
assert!(TypedValue::Boolean(false).is_congruent_with(ValueType::Boolean));
assert!(!TypedValue::typed_string("foo").is_congruent_with(ValueType::Boolean));
assert!(TypedValue::typed_string("foo").is_congruent_with(ValueType::String));
assert!(TypedValue::typed_string("foo").is_congruent_with(None));
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_attribute_flags() {
let attr1 = Attribute {
index: true,
value_type: ValueType::Ref,
fulltext: false,
unique: None,
multival: false,
component: false,
no_history: false,
};
assert!(attr1.flags() & AttributeBitFlags::IndexAVET as u8 != 0);
assert!(attr1.flags() & AttributeBitFlags::IndexVAET as u8 != 0);
assert!(attr1.flags() & AttributeBitFlags::IndexFulltext as u8 == 0);
assert!(attr1.flags() & AttributeBitFlags::UniqueValue as u8 == 0);
let attr2 = Attribute {
index: false,
value_type: ValueType::Boolean,
fulltext: true,
unique: Some(attribute::Unique::Value),
multival: false,
component: false,
no_history: false,
};
assert!(attr2.flags() & AttributeBitFlags::IndexAVET as u8 == 0);
assert!(attr2.flags() & AttributeBitFlags::IndexVAET as u8 == 0);
assert!(attr2.flags() & AttributeBitFlags::IndexFulltext as u8 != 0);
assert!(attr2.flags() & AttributeBitFlags::UniqueValue as u8 != 0);
let attr3 = Attribute {
index: false,
value_type: ValueType::Boolean,
fulltext: true,
unique: Some(attribute::Unique::Identity),
multival: false,
component: false,
no_history: false,
};
assert!(attr3.flags() & AttributeBitFlags::IndexAVET as u8 == 0);
assert!(attr3.flags() & AttributeBitFlags::IndexVAET as u8 == 0);
assert!(attr3.flags() & AttributeBitFlags::IndexFulltext as u8 != 0);
assert!(attr3.flags() & AttributeBitFlags::UniqueValue as u8 != 0);
}
}