mentat/query-projector/src/lib.rs
Richard Newman bc63744aba Add :limit to queries (#420) r=nalexander
* Pre: put query parts in alphabetical order.
* Pre: rename 'input' to 'query' in translate tests.
* Part 1: parse :limit.
* Part 2: validate and escape variable parameters in SQL.
* Part 3: algebrize and translate limits.
2017-04-19 16:16:19 -07:00

499 lines
No EOL
16 KiB
Rust

// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#[macro_use]
extern crate error_chain;
extern crate rusqlite;
extern crate mentat_core;
extern crate mentat_db; // For value conversion.
extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_sql;
extern crate mentat_sql;
use std::iter;
use rusqlite::{
Row,
Rows,
};
use mentat_core::{
SQLValueType,
TypedValue,
};
use mentat_db::{
TypedSQLValue,
};
use mentat_query::{
Element,
FindSpec,
Limit,
Variable,
};
use mentat_query_algebrizer::{
AlgebraicQuery,
ColumnName,
VariableColumn,
};
use mentat_query_sql::{
ColumnOrExpression,
Name,
Projection,
ProjectedColumn,
};
error_chain! {
types {
Error, ErrorKind, ResultExt, Result;
}
foreign_links {
Rusqlite(rusqlite::Error);
}
links {
DbError(mentat_db::Error, mentat_db::ErrorKind);
}
}
#[derive(Debug)]
pub enum QueryResults {
Scalar(Option<TypedValue>),
Tuple(Option<Vec<TypedValue>>),
Coll(Vec<TypedValue>),
Rel(Vec<Vec<TypedValue>>),
}
impl QueryResults {
pub fn len(&self) -> usize {
use QueryResults::*;
match self {
&Scalar(ref o) => if o.is_some() { 1 } else { 0 },
&Tuple(ref o) => if o.is_some() { 1 } else { 0 },
&Coll(ref v) => v.len(),
&Rel(ref v) => v.len(),
}
}
pub fn is_empty(&self) -> bool {
use QueryResults::*;
match self {
&Scalar(ref o) => o.is_none(),
&Tuple(ref o) => o.is_none(),
&Coll(ref v) => v.is_empty(),
&Rel(ref v) => v.is_empty(),
}
}
pub fn empty(spec: &FindSpec) -> QueryResults {
use self::FindSpec::*;
match spec {
&FindScalar(_) => QueryResults::Scalar(None),
&FindTuple(_) => QueryResults::Tuple(None),
&FindColl(_) => QueryResults::Coll(vec![]),
&FindRel(_) => QueryResults::Rel(vec![]),
}
}
pub fn empty_factory(spec: &FindSpec) -> Box<Fn() -> QueryResults> {
use self::FindSpec::*;
match spec {
&FindScalar(_) => Box::new(|| QueryResults::Scalar(None)),
&FindTuple(_) => Box::new(|| QueryResults::Tuple(None)),
&FindColl(_) => Box::new(|| QueryResults::Coll(vec![])),
&FindRel(_) => Box::new(|| QueryResults::Rel(vec![])),
}
}
}
type Index = i32; // See rusqlite::RowIndex.
type ValueTypeTag = i32;
enum TypedIndex {
Known(Index, ValueTypeTag),
Unknown(Index, Index),
}
impl TypedIndex {
/// Look up this index and type(index) pair in the provided row.
/// This function will panic if:
///
/// - This is an `Unknown` and the retrieved type code isn't an i32.
/// - If the retrieved value can't be coerced to a rusqlite `Value`.
/// - Either index is out of bounds.
///
/// Because we construct our SQL projection list, the code that stored the data, and this
/// consumer, a panic here implies that we have a bad bug — we put data of a very wrong type in
/// a row, and thus can't coerce to Value, we're retrieving from the wrong place, or our
/// generated SQL is junk.
///
/// This function will return a runtime error if the type code is unknown, or the value is
/// otherwise not convertible by the DB layer.
fn lookup<'a, 'stmt>(&self, row: &Row<'a, 'stmt>) -> Result<TypedValue> {
use TypedIndex::*;
match self {
&Known(value_index, value_type) => {
let v: rusqlite::types::Value = row.get(value_index);
TypedValue::from_sql_value_pair(v, value_type).map_err(|e| e.into())
},
&Unknown(value_index, type_index) => {
let v: rusqlite::types::Value = row.get(value_index);
let value_type_tag: i32 = row.get(type_index);
TypedValue::from_sql_value_pair(v, value_type_tag).map_err(|e| e.into())
},
}
}
}
fn candidate_column(query: &AlgebraicQuery, var: &Variable) -> (ColumnOrExpression, Name) {
// Every variable should be bound by the top-level CC to at least
// one column in the query. If that constraint is violated it's a
// bug in our code, so it's appropriate to panic here.
let columns = query.cc
.column_bindings
.get(var)
.expect("Every variable has a binding");
let qa = columns[0].clone();
let name = VariableColumn::Variable(var.clone()).column_name();
(ColumnOrExpression::Column(qa), name)
}
fn candidate_type_column(query: &AlgebraicQuery, var: &Variable) -> (ColumnOrExpression, Name) {
let extracted_alias = query.cc
.extracted_types
.get(var)
.expect("Every variable has a known type or an extracted type");
let type_name = VariableColumn::VariableTypeTag(var.clone()).column_name();
(ColumnOrExpression::Column(extracted_alias.clone()), type_name)
}
/// Walk an iterator of `Element`s, collecting projector templates and columns.
///
/// Returns a pair: the SQL projection (which should always be a `Projection::Columns`)
/// and a `Vec` of `TypedIndex` 'keys' to use when looking up values.
///
/// Callers must ensure that every `Element` is distinct -- a query like
///
/// ```edn
/// [:find ?x ?x :where [?x _ _]]
/// ```
///
/// should fail to parse. See #358.
fn project_elements<'a, I: IntoIterator<Item = &'a Element>>(
count: usize,
elements: I,
query: &AlgebraicQuery) -> (Projection, Vec<TypedIndex>) {
let mut cols = Vec::with_capacity(count);
let mut i: i32 = 0;
let mut templates = vec![];
let mut with = query.with.clone();
for e in elements {
match e {
// Each time we come across a variable, we push a SQL column
// into the SQL projection, aliased to the name of the variable,
// and we push an annotated index into the projector.
&Element::Variable(ref var) => {
// If we're projecting this, we don't need it in :with.
with.remove(var);
let (column, name) = candidate_column(query, var);
cols.push(ProjectedColumn(column, name));
if let Some(t) = query.cc.known_type(var) {
let tag = t.value_type_tag();
templates.push(TypedIndex::Known(i, tag));
i += 1; // We used one SQL column.
} else {
templates.push(TypedIndex::Unknown(i, i + 1));
i += 2; // We used two SQL columns.
// Also project the type from the SQL query.
let (type_column, type_name) = candidate_type_column(query, &var);
cols.push(ProjectedColumn(type_column, type_name));
}
}
}
}
for var in with {
// We need to collect these into the SQL column list, but they don't affect projection.
// If a variable is of a non-fixed type, also project the type tag column, so we don't
// accidentally unify across types when considering uniqueness!
let (column, name) = candidate_column(query, &var);
cols.push(ProjectedColumn(column, name));
if query.cc.known_type(&var).is_none() {
let (type_column, type_name) = candidate_type_column(query, &var);
cols.push(ProjectedColumn(type_column, type_name));
}
}
(Projection::Columns(cols), templates)
}
pub trait Projector {
fn project<'stmt>(&self, rows: Rows<'stmt>) -> Result<QueryResults>;
}
/// A projector that produces a `QueryResult` containing fixed data.
/// Takes a boxed function that should return an empty result set of the desired type.
struct ConstantProjector {
results_factory: Box<Fn() -> QueryResults>,
}
impl ConstantProjector {
fn new(results_factory: Box<Fn() -> QueryResults>) -> ConstantProjector {
ConstantProjector { results_factory: results_factory }
}
}
impl Projector for ConstantProjector {
fn project<'stmt>(&self, _: Rows<'stmt>) -> Result<QueryResults> {
Ok((self.results_factory)())
}
}
struct ScalarProjector {
template: TypedIndex,
}
impl ScalarProjector {
fn with_template(template: TypedIndex) -> ScalarProjector {
ScalarProjector {
template: template,
}
}
fn combine(sql: Projection, mut templates: Vec<TypedIndex>) -> CombinedProjection {
let template = templates.pop().expect("Expected a single template");
CombinedProjection {
sql_projection: sql,
datalog_projector: Box::new(ScalarProjector::with_template(template)),
distinct: false,
}
}
}
impl Projector for ScalarProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
if let Some(r) = rows.next() {
let row = r?;
let binding = self.template.lookup(&row)?;
Ok(QueryResults::Scalar(Some(binding)))
} else {
Ok(QueryResults::Scalar(None))
}
}
}
/// A tuple projector produces a single vector. It's the single-result version of rel.
struct TupleProjector {
len: usize,
templates: Vec<TypedIndex>,
}
impl TupleProjector {
fn with_templates(len: usize, templates: Vec<TypedIndex>) -> TupleProjector {
TupleProjector {
len: len,
templates: templates,
}
}
// This is exactly the same as for rel.
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
assert_eq!(row.column_count(), self.len as i32);
self.templates
.iter()
.map(|ti| ti.lookup(&row))
.collect::<Result<Vec<TypedValue>>>()
}
fn combine(column_count: usize, sql: Projection, templates: Vec<TypedIndex>) -> CombinedProjection {
let p = TupleProjector::with_templates(column_count, templates);
CombinedProjection {
sql_projection: sql,
datalog_projector: Box::new(p),
distinct: false,
}
}
}
impl Projector for TupleProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
if let Some(r) = rows.next() {
let row = r?;
let bindings = self.collect_bindings(row)?;
Ok(QueryResults::Tuple(Some(bindings)))
} else {
Ok(QueryResults::Tuple(None))
}
}
}
/// A rel projector produces a vector of vectors.
/// Each inner vector is the same size, and sourced from the same columns.
/// One inner vector is produced per `Row`.
/// Each column in the inner vector is the result of taking one or two columns from
/// the `Row`: one for the value and optionally one for the type tag.
struct RelProjector {
len: usize,
templates: Vec<TypedIndex>,
}
impl RelProjector {
fn with_templates(len: usize, templates: Vec<TypedIndex>) -> RelProjector {
RelProjector {
len: len,
templates: templates,
}
}
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
assert_eq!(row.column_count(), self.len as i32);
self.templates
.iter()
.map(|ti| ti.lookup(&row))
.collect::<Result<Vec<TypedValue>>>()
}
fn combine(column_count: usize, sql: Projection, templates: Vec<TypedIndex>) -> CombinedProjection {
let p = RelProjector::with_templates(column_count, templates);
CombinedProjection {
sql_projection: sql,
datalog_projector: Box::new(p),
distinct: true,
}
}
}
impl Projector for RelProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
let mut out: Vec<Vec<TypedValue>> = vec![];
while let Some(r) = rows.next() {
let row = r?;
let bindings = self.collect_bindings(row)?;
out.push(bindings);
}
Ok(QueryResults::Rel(out))
}
}
/// A coll projector produces a vector of values.
/// Each value is sourced from the same column.
struct CollProjector {
template: TypedIndex,
}
impl CollProjector {
fn with_template(template: TypedIndex) -> CollProjector {
CollProjector {
template: template,
}
}
fn combine(sql: Projection, mut templates: Vec<TypedIndex>) -> CombinedProjection {
let template = templates.pop().expect("Expected a single template");
CombinedProjection {
sql_projection: sql,
datalog_projector: Box::new(CollProjector::with_template(template)),
distinct: true,
}
}
}
impl Projector for CollProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
let mut out: Vec<TypedValue> = vec![];
while let Some(r) = rows.next() {
let row = r?;
let binding = self.template.lookup(&row)?;
out.push(binding);
}
Ok(QueryResults::Coll(out))
}
}
/// Combines the two things you need to turn a query into SQL and turn its results into
/// `QueryResults`.
pub struct CombinedProjection {
/// A SQL projection, mapping columns mentioned in the body of the query to columns in the
/// output.
pub sql_projection: Projection,
/// A Datalog projection. This consumes rows of the appropriate shape (as defined by
/// the SQL projection) to yield one of the four kinds of Datalog query result.
pub datalog_projector: Box<Projector>,
/// True if this query requires the SQL query to include DISTINCT.
pub distinct: bool,
}
impl CombinedProjection {
fn flip_distinct_for_limit(mut self, limit: &Limit) -> Self {
if *limit == Limit::Fixed(1) {
self.distinct = false;
}
self
}
}
/// Compute a suitable SQL projection for an algebrized query.
/// This takes into account a number of things:
/// - The variable list in the find spec.
/// - The presence of any aggregate operations in the find spec. TODO: for now we only handle
/// simple variables
/// - The bindings established by the topmost CC.
/// - The types known at algebrizing time.
/// - The types extracted from the store for unknown attributes.
pub fn query_projection(query: &AlgebraicQuery) -> CombinedProjection {
use self::FindSpec::*;
if query.is_known_empty() {
// Do a few gyrations to produce empty results of the right kind for the query.
let empty = QueryResults::empty_factory(&query.find_spec);
let constant_projector = ConstantProjector::new(empty);
CombinedProjection {
sql_projection: Projection::One,
datalog_projector: Box::new(constant_projector),
distinct: false,
}
} else {
match query.find_spec {
FindColl(ref element) => {
let (cols, templates) = project_elements(1, iter::once(element), query);
CollProjector::combine(cols, templates).flip_distinct_for_limit(&query.limit)
},
FindScalar(ref element) => {
let (cols, templates) = project_elements(1, iter::once(element), query);
ScalarProjector::combine(cols, templates)
},
FindRel(ref elements) => {
let column_count = query.find_spec.expected_column_count();
let (cols, templates) = project_elements(column_count, elements, query);
RelProjector::combine(column_count, cols, templates).flip_distinct_for_limit(&query.limit)
},
FindTuple(ref elements) => {
let column_count = query.find_spec.expected_column_count();
let (cols, templates) = project_elements(column_count, elements, query);
TupleProjector::combine(column_count, cols, templates)
},
}
}
}