bc63744aba
* Pre: put query parts in alphabetical order. * Pre: rename 'input' to 'query' in translate tests. * Part 1: parse :limit. * Part 2: validate and escape variable parameters in SQL. * Part 3: algebrize and translate limits.
499 lines
No EOL
16 KiB
Rust
499 lines
No EOL
16 KiB
Rust
// Copyright 2016 Mozilla
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
|
|
// this file except in compliance with the License. You may obtain a copy of the
|
|
// License at http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#[macro_use]
|
|
extern crate error_chain;
|
|
extern crate rusqlite;
|
|
|
|
extern crate mentat_core;
|
|
extern crate mentat_db; // For value conversion.
|
|
extern crate mentat_query;
|
|
extern crate mentat_query_algebrizer;
|
|
extern crate mentat_query_sql;
|
|
extern crate mentat_sql;
|
|
|
|
use std::iter;
|
|
use rusqlite::{
|
|
Row,
|
|
Rows,
|
|
};
|
|
|
|
use mentat_core::{
|
|
SQLValueType,
|
|
TypedValue,
|
|
};
|
|
|
|
use mentat_db::{
|
|
TypedSQLValue,
|
|
};
|
|
|
|
use mentat_query::{
|
|
Element,
|
|
FindSpec,
|
|
Limit,
|
|
Variable,
|
|
};
|
|
|
|
use mentat_query_algebrizer::{
|
|
AlgebraicQuery,
|
|
ColumnName,
|
|
VariableColumn,
|
|
};
|
|
|
|
use mentat_query_sql::{
|
|
ColumnOrExpression,
|
|
Name,
|
|
Projection,
|
|
ProjectedColumn,
|
|
};
|
|
|
|
error_chain! {
|
|
types {
|
|
Error, ErrorKind, ResultExt, Result;
|
|
}
|
|
|
|
foreign_links {
|
|
Rusqlite(rusqlite::Error);
|
|
}
|
|
|
|
links {
|
|
DbError(mentat_db::Error, mentat_db::ErrorKind);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub enum QueryResults {
|
|
Scalar(Option<TypedValue>),
|
|
Tuple(Option<Vec<TypedValue>>),
|
|
Coll(Vec<TypedValue>),
|
|
Rel(Vec<Vec<TypedValue>>),
|
|
}
|
|
|
|
impl QueryResults {
|
|
pub fn len(&self) -> usize {
|
|
use QueryResults::*;
|
|
match self {
|
|
&Scalar(ref o) => if o.is_some() { 1 } else { 0 },
|
|
&Tuple(ref o) => if o.is_some() { 1 } else { 0 },
|
|
&Coll(ref v) => v.len(),
|
|
&Rel(ref v) => v.len(),
|
|
}
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
use QueryResults::*;
|
|
match self {
|
|
&Scalar(ref o) => o.is_none(),
|
|
&Tuple(ref o) => o.is_none(),
|
|
&Coll(ref v) => v.is_empty(),
|
|
&Rel(ref v) => v.is_empty(),
|
|
}
|
|
}
|
|
|
|
pub fn empty(spec: &FindSpec) -> QueryResults {
|
|
use self::FindSpec::*;
|
|
match spec {
|
|
&FindScalar(_) => QueryResults::Scalar(None),
|
|
&FindTuple(_) => QueryResults::Tuple(None),
|
|
&FindColl(_) => QueryResults::Coll(vec![]),
|
|
&FindRel(_) => QueryResults::Rel(vec![]),
|
|
}
|
|
}
|
|
|
|
pub fn empty_factory(spec: &FindSpec) -> Box<Fn() -> QueryResults> {
|
|
use self::FindSpec::*;
|
|
match spec {
|
|
&FindScalar(_) => Box::new(|| QueryResults::Scalar(None)),
|
|
&FindTuple(_) => Box::new(|| QueryResults::Tuple(None)),
|
|
&FindColl(_) => Box::new(|| QueryResults::Coll(vec![])),
|
|
&FindRel(_) => Box::new(|| QueryResults::Rel(vec![])),
|
|
}
|
|
}
|
|
}
|
|
|
|
type Index = i32; // See rusqlite::RowIndex.
|
|
type ValueTypeTag = i32;
|
|
enum TypedIndex {
|
|
Known(Index, ValueTypeTag),
|
|
Unknown(Index, Index),
|
|
}
|
|
|
|
impl TypedIndex {
|
|
/// Look up this index and type(index) pair in the provided row.
|
|
/// This function will panic if:
|
|
///
|
|
/// - This is an `Unknown` and the retrieved type code isn't an i32.
|
|
/// - If the retrieved value can't be coerced to a rusqlite `Value`.
|
|
/// - Either index is out of bounds.
|
|
///
|
|
/// Because we construct our SQL projection list, the code that stored the data, and this
|
|
/// consumer, a panic here implies that we have a bad bug — we put data of a very wrong type in
|
|
/// a row, and thus can't coerce to Value, we're retrieving from the wrong place, or our
|
|
/// generated SQL is junk.
|
|
///
|
|
/// This function will return a runtime error if the type code is unknown, or the value is
|
|
/// otherwise not convertible by the DB layer.
|
|
fn lookup<'a, 'stmt>(&self, row: &Row<'a, 'stmt>) -> Result<TypedValue> {
|
|
use TypedIndex::*;
|
|
|
|
match self {
|
|
&Known(value_index, value_type) => {
|
|
let v: rusqlite::types::Value = row.get(value_index);
|
|
TypedValue::from_sql_value_pair(v, value_type).map_err(|e| e.into())
|
|
},
|
|
&Unknown(value_index, type_index) => {
|
|
let v: rusqlite::types::Value = row.get(value_index);
|
|
let value_type_tag: i32 = row.get(type_index);
|
|
TypedValue::from_sql_value_pair(v, value_type_tag).map_err(|e| e.into())
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn candidate_column(query: &AlgebraicQuery, var: &Variable) -> (ColumnOrExpression, Name) {
|
|
// Every variable should be bound by the top-level CC to at least
|
|
// one column in the query. If that constraint is violated it's a
|
|
// bug in our code, so it's appropriate to panic here.
|
|
let columns = query.cc
|
|
.column_bindings
|
|
.get(var)
|
|
.expect("Every variable has a binding");
|
|
|
|
let qa = columns[0].clone();
|
|
let name = VariableColumn::Variable(var.clone()).column_name();
|
|
(ColumnOrExpression::Column(qa), name)
|
|
}
|
|
|
|
fn candidate_type_column(query: &AlgebraicQuery, var: &Variable) -> (ColumnOrExpression, Name) {
|
|
let extracted_alias = query.cc
|
|
.extracted_types
|
|
.get(var)
|
|
.expect("Every variable has a known type or an extracted type");
|
|
let type_name = VariableColumn::VariableTypeTag(var.clone()).column_name();
|
|
(ColumnOrExpression::Column(extracted_alias.clone()), type_name)
|
|
}
|
|
|
|
/// Walk an iterator of `Element`s, collecting projector templates and columns.
|
|
///
|
|
/// Returns a pair: the SQL projection (which should always be a `Projection::Columns`)
|
|
/// and a `Vec` of `TypedIndex` 'keys' to use when looking up values.
|
|
///
|
|
/// Callers must ensure that every `Element` is distinct -- a query like
|
|
///
|
|
/// ```edn
|
|
/// [:find ?x ?x :where [?x _ _]]
|
|
/// ```
|
|
///
|
|
/// should fail to parse. See #358.
|
|
fn project_elements<'a, I: IntoIterator<Item = &'a Element>>(
|
|
count: usize,
|
|
elements: I,
|
|
query: &AlgebraicQuery) -> (Projection, Vec<TypedIndex>) {
|
|
|
|
let mut cols = Vec::with_capacity(count);
|
|
let mut i: i32 = 0;
|
|
let mut templates = vec![];
|
|
let mut with = query.with.clone();
|
|
|
|
for e in elements {
|
|
match e {
|
|
// Each time we come across a variable, we push a SQL column
|
|
// into the SQL projection, aliased to the name of the variable,
|
|
// and we push an annotated index into the projector.
|
|
&Element::Variable(ref var) => {
|
|
// If we're projecting this, we don't need it in :with.
|
|
with.remove(var);
|
|
|
|
let (column, name) = candidate_column(query, var);
|
|
cols.push(ProjectedColumn(column, name));
|
|
if let Some(t) = query.cc.known_type(var) {
|
|
let tag = t.value_type_tag();
|
|
templates.push(TypedIndex::Known(i, tag));
|
|
i += 1; // We used one SQL column.
|
|
} else {
|
|
templates.push(TypedIndex::Unknown(i, i + 1));
|
|
i += 2; // We used two SQL columns.
|
|
|
|
// Also project the type from the SQL query.
|
|
let (type_column, type_name) = candidate_type_column(query, &var);
|
|
cols.push(ProjectedColumn(type_column, type_name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for var in with {
|
|
// We need to collect these into the SQL column list, but they don't affect projection.
|
|
// If a variable is of a non-fixed type, also project the type tag column, so we don't
|
|
// accidentally unify across types when considering uniqueness!
|
|
let (column, name) = candidate_column(query, &var);
|
|
cols.push(ProjectedColumn(column, name));
|
|
if query.cc.known_type(&var).is_none() {
|
|
let (type_column, type_name) = candidate_type_column(query, &var);
|
|
cols.push(ProjectedColumn(type_column, type_name));
|
|
}
|
|
}
|
|
|
|
(Projection::Columns(cols), templates)
|
|
}
|
|
|
|
pub trait Projector {
|
|
fn project<'stmt>(&self, rows: Rows<'stmt>) -> Result<QueryResults>;
|
|
}
|
|
|
|
/// A projector that produces a `QueryResult` containing fixed data.
|
|
/// Takes a boxed function that should return an empty result set of the desired type.
|
|
struct ConstantProjector {
|
|
results_factory: Box<Fn() -> QueryResults>,
|
|
}
|
|
|
|
impl ConstantProjector {
|
|
fn new(results_factory: Box<Fn() -> QueryResults>) -> ConstantProjector {
|
|
ConstantProjector { results_factory: results_factory }
|
|
}
|
|
}
|
|
|
|
impl Projector for ConstantProjector {
|
|
fn project<'stmt>(&self, _: Rows<'stmt>) -> Result<QueryResults> {
|
|
Ok((self.results_factory)())
|
|
}
|
|
}
|
|
|
|
struct ScalarProjector {
|
|
template: TypedIndex,
|
|
}
|
|
|
|
impl ScalarProjector {
|
|
fn with_template(template: TypedIndex) -> ScalarProjector {
|
|
ScalarProjector {
|
|
template: template,
|
|
}
|
|
}
|
|
|
|
fn combine(sql: Projection, mut templates: Vec<TypedIndex>) -> CombinedProjection {
|
|
let template = templates.pop().expect("Expected a single template");
|
|
CombinedProjection {
|
|
sql_projection: sql,
|
|
datalog_projector: Box::new(ScalarProjector::with_template(template)),
|
|
distinct: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Projector for ScalarProjector {
|
|
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
|
|
if let Some(r) = rows.next() {
|
|
let row = r?;
|
|
let binding = self.template.lookup(&row)?;
|
|
Ok(QueryResults::Scalar(Some(binding)))
|
|
} else {
|
|
Ok(QueryResults::Scalar(None))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A tuple projector produces a single vector. It's the single-result version of rel.
|
|
struct TupleProjector {
|
|
len: usize,
|
|
templates: Vec<TypedIndex>,
|
|
}
|
|
|
|
impl TupleProjector {
|
|
fn with_templates(len: usize, templates: Vec<TypedIndex>) -> TupleProjector {
|
|
TupleProjector {
|
|
len: len,
|
|
templates: templates,
|
|
}
|
|
}
|
|
|
|
// This is exactly the same as for rel.
|
|
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
|
|
assert_eq!(row.column_count(), self.len as i32);
|
|
self.templates
|
|
.iter()
|
|
.map(|ti| ti.lookup(&row))
|
|
.collect::<Result<Vec<TypedValue>>>()
|
|
}
|
|
|
|
fn combine(column_count: usize, sql: Projection, templates: Vec<TypedIndex>) -> CombinedProjection {
|
|
let p = TupleProjector::with_templates(column_count, templates);
|
|
CombinedProjection {
|
|
sql_projection: sql,
|
|
datalog_projector: Box::new(p),
|
|
distinct: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Projector for TupleProjector {
|
|
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
|
|
if let Some(r) = rows.next() {
|
|
let row = r?;
|
|
let bindings = self.collect_bindings(row)?;
|
|
Ok(QueryResults::Tuple(Some(bindings)))
|
|
} else {
|
|
Ok(QueryResults::Tuple(None))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A rel projector produces a vector of vectors.
|
|
/// Each inner vector is the same size, and sourced from the same columns.
|
|
/// One inner vector is produced per `Row`.
|
|
/// Each column in the inner vector is the result of taking one or two columns from
|
|
/// the `Row`: one for the value and optionally one for the type tag.
|
|
struct RelProjector {
|
|
len: usize,
|
|
templates: Vec<TypedIndex>,
|
|
}
|
|
|
|
impl RelProjector {
|
|
fn with_templates(len: usize, templates: Vec<TypedIndex>) -> RelProjector {
|
|
RelProjector {
|
|
len: len,
|
|
templates: templates,
|
|
}
|
|
}
|
|
|
|
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
|
|
assert_eq!(row.column_count(), self.len as i32);
|
|
self.templates
|
|
.iter()
|
|
.map(|ti| ti.lookup(&row))
|
|
.collect::<Result<Vec<TypedValue>>>()
|
|
}
|
|
|
|
fn combine(column_count: usize, sql: Projection, templates: Vec<TypedIndex>) -> CombinedProjection {
|
|
let p = RelProjector::with_templates(column_count, templates);
|
|
CombinedProjection {
|
|
sql_projection: sql,
|
|
datalog_projector: Box::new(p),
|
|
distinct: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Projector for RelProjector {
|
|
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
|
|
let mut out: Vec<Vec<TypedValue>> = vec![];
|
|
while let Some(r) = rows.next() {
|
|
let row = r?;
|
|
let bindings = self.collect_bindings(row)?;
|
|
out.push(bindings);
|
|
}
|
|
Ok(QueryResults::Rel(out))
|
|
}
|
|
}
|
|
|
|
/// A coll projector produces a vector of values.
|
|
/// Each value is sourced from the same column.
|
|
struct CollProjector {
|
|
template: TypedIndex,
|
|
}
|
|
|
|
impl CollProjector {
|
|
fn with_template(template: TypedIndex) -> CollProjector {
|
|
CollProjector {
|
|
template: template,
|
|
}
|
|
}
|
|
|
|
fn combine(sql: Projection, mut templates: Vec<TypedIndex>) -> CombinedProjection {
|
|
let template = templates.pop().expect("Expected a single template");
|
|
CombinedProjection {
|
|
sql_projection: sql,
|
|
datalog_projector: Box::new(CollProjector::with_template(template)),
|
|
distinct: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Projector for CollProjector {
|
|
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryResults> {
|
|
let mut out: Vec<TypedValue> = vec![];
|
|
while let Some(r) = rows.next() {
|
|
let row = r?;
|
|
let binding = self.template.lookup(&row)?;
|
|
out.push(binding);
|
|
}
|
|
Ok(QueryResults::Coll(out))
|
|
}
|
|
}
|
|
|
|
/// Combines the two things you need to turn a query into SQL and turn its results into
|
|
/// `QueryResults`.
|
|
pub struct CombinedProjection {
|
|
/// A SQL projection, mapping columns mentioned in the body of the query to columns in the
|
|
/// output.
|
|
pub sql_projection: Projection,
|
|
|
|
/// A Datalog projection. This consumes rows of the appropriate shape (as defined by
|
|
/// the SQL projection) to yield one of the four kinds of Datalog query result.
|
|
pub datalog_projector: Box<Projector>,
|
|
|
|
/// True if this query requires the SQL query to include DISTINCT.
|
|
pub distinct: bool,
|
|
}
|
|
|
|
impl CombinedProjection {
|
|
fn flip_distinct_for_limit(mut self, limit: &Limit) -> Self {
|
|
if *limit == Limit::Fixed(1) {
|
|
self.distinct = false;
|
|
}
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Compute a suitable SQL projection for an algebrized query.
|
|
/// This takes into account a number of things:
|
|
/// - The variable list in the find spec.
|
|
/// - The presence of any aggregate operations in the find spec. TODO: for now we only handle
|
|
/// simple variables
|
|
/// - The bindings established by the topmost CC.
|
|
/// - The types known at algebrizing time.
|
|
/// - The types extracted from the store for unknown attributes.
|
|
pub fn query_projection(query: &AlgebraicQuery) -> CombinedProjection {
|
|
use self::FindSpec::*;
|
|
|
|
if query.is_known_empty() {
|
|
// Do a few gyrations to produce empty results of the right kind for the query.
|
|
let empty = QueryResults::empty_factory(&query.find_spec);
|
|
let constant_projector = ConstantProjector::new(empty);
|
|
CombinedProjection {
|
|
sql_projection: Projection::One,
|
|
datalog_projector: Box::new(constant_projector),
|
|
distinct: false,
|
|
}
|
|
} else {
|
|
match query.find_spec {
|
|
FindColl(ref element) => {
|
|
let (cols, templates) = project_elements(1, iter::once(element), query);
|
|
CollProjector::combine(cols, templates).flip_distinct_for_limit(&query.limit)
|
|
},
|
|
|
|
FindScalar(ref element) => {
|
|
let (cols, templates) = project_elements(1, iter::once(element), query);
|
|
ScalarProjector::combine(cols, templates)
|
|
},
|
|
|
|
FindRel(ref elements) => {
|
|
let column_count = query.find_spec.expected_column_count();
|
|
let (cols, templates) = project_elements(column_count, elements, query);
|
|
RelProjector::combine(column_count, cols, templates).flip_distinct_for_limit(&query.limit)
|
|
},
|
|
|
|
FindTuple(ref elements) => {
|
|
let column_count = query.find_spec.expected_column_count();
|
|
let (cols, templates) = project_elements(column_count, elements, query);
|
|
TupleProjector::combine(column_count, cols, templates)
|
|
},
|
|
}
|
|
}
|
|
} |