mentat/db/src/types.rs
Grisha Kruglov 5a29efa336 Part 0: Allow retractions of installed attributes
This is necessary for the timelines work ahead. When schema is being
moved off of a main timeline, we need to be able to retract it cleanly.

Retractions are only processed if the whole defining attribute set
is being retracted at once (:db/ident, :db/valueType, :db/cardinality).
2018-07-26 17:14:05 -07:00

235 lines
7.3 KiB
Rust

// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#![allow(dead_code)]
use std::collections::{
BTreeMap,
BTreeSet,
HashMap,
};
use std::iter::{
FromIterator,
};
use std::ops::{
Deref,
DerefMut,
Range,
};
extern crate mentat_core;
pub use self::mentat_core::{
Attribute,
AttributeBitFlags,
DateTime,
Entid,
Schema,
TypedValue,
Utc,
ValueType,
};
use edn::entities::{
EntityPlace,
TempId,
};
use errors;
/// Represents one partition of the entid space.
#[derive(Clone, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
#[cfg_attr(feature = "syncable", derive(Serialize,Deserialize))]
pub struct Partition {
/// The first entid in the partition.
pub start: Entid,
/// Maximum allowed entid in the partition.
pub end: Entid,
/// `true` if entids in the partition can be excised with `:db/excise`.
pub allow_excision: bool,
/// The next entid to be allocated in the partition.
/// Unless you must use this directly, prefer using provided setter and getter helpers.
pub(crate) next_entid_to_allocate: Entid,
}
impl Partition {
pub fn new(start: Entid, end: Entid, next_entid_to_allocate: Entid, allow_excision: bool) -> Partition {
assert!(
start <= next_entid_to_allocate && next_entid_to_allocate <= end,
"A partition represents a monotonic increasing sequence of entids."
);
Partition { start, end, next_entid_to_allocate, allow_excision }
}
pub fn contains_entid(&self, e: Entid) -> bool {
(e >= self.start) && (e < self.next_entid_to_allocate)
}
pub fn allows_entid(&self, e: Entid) -> bool {
(e >= self.start) && (e <= self.end)
}
pub fn next_entid(&self) -> Entid {
self.next_entid_to_allocate
}
pub fn set_next_entid(&mut self, e: Entid) {
assert!(self.allows_entid(e), "Partition index must be within its allocated space.");
self.next_entid_to_allocate = e;
}
pub fn allocate_entids(&mut self, n: usize) -> Range<i64> {
let idx = self.next_entid();
self.set_next_entid(idx + n as i64);
idx..self.next_entid()
}
}
/// Map partition names to `Partition` instances.
#[derive(Clone, Debug, Default, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub struct PartitionMap(BTreeMap<String, Partition>);
impl Deref for PartitionMap {
type Target = BTreeMap<String, Partition>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for PartitionMap {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl FromIterator<(String, Partition)> for PartitionMap {
fn from_iter<T: IntoIterator<Item=(String, Partition)>>(iter: T) -> Self {
PartitionMap(iter.into_iter().collect())
}
}
/// Represents the metadata required to query from, or apply transactions to, a Mentat store.
///
/// See https://github.com/mozilla/mentat/wiki/Thoughts:-modeling-db-conn-in-Rust.
#[derive(Clone,Debug,Default,Eq,Hash,Ord,PartialOrd,PartialEq)]
pub struct DB {
/// Map partition name->`Partition`.
///
/// TODO: represent partitions as entids.
pub partition_map: PartitionMap,
/// The schema of the store.
pub schema: Schema,
}
impl DB {
pub fn new(partition_map: PartitionMap, schema: Schema) -> DB {
DB {
partition_map: partition_map,
schema: schema
}
}
}
/// A pair [a v] in the store.
///
/// Used to represent lookup-refs and [TEMPID a v] upserts as they are resolved.
pub type AVPair = (Entid, TypedValue);
/// Used to represent assertions and retractions.
pub(crate) type EAV = (Entid, Entid, TypedValue);
/// Map [a v] pairs to existing entids.
///
/// Used to resolve lookup-refs and upserts.
pub type AVMap<'a> = HashMap<&'a AVPair, Entid>;
// represents a set of entids that are correspond to attributes
pub type AttributeSet = BTreeSet<Entid>;
/// The transactor is tied to `edn::ValueAndSpan` right now, but in the future we'd like to support
/// `TypedValue` directly for programmatic use. `TransactableValue` encapsulates the interface
/// value types (i.e., values in the value place) need to support to be transacted.
pub trait TransactableValue: Clone {
/// Coerce this value place into the given type. This is where we perform schema-aware
/// coercion, for example coercing an integral value into a ref where appropriate.
fn into_typed_value(self, schema: &Schema, value_type: ValueType) -> errors::Result<TypedValue>;
/// Make an entity place out of this value place. This is where we limit values in nested maps
/// to valid entity places.
fn into_entity_place(self) -> errors::Result<EntityPlace<Self>>;
fn as_tempid(&self) -> Option<TempId>;
}
#[cfg(test)]
mod tests {
use super::Partition;
#[test]
#[should_panic(expected = "A partition represents a monotonic increasing sequence of entids.")]
fn test_partition_limits_sanity1() {
Partition::new(100, 1000, 1001, true);
}
#[test]
#[should_panic(expected = "A partition represents a monotonic increasing sequence of entids.")]
fn test_partition_limits_sanity2() {
Partition::new(100, 1000, 99, true);
}
#[test]
#[should_panic(expected = "Partition index must be within its allocated space.")]
fn test_partition_limits_boundary1() {
let mut part = Partition::new(100, 1000, 100, true);
part.set_next_entid(2000);
}
#[test]
#[should_panic(expected = "Partition index must be within its allocated space.")]
fn test_partition_limits_boundary2() {
let mut part = Partition::new(100, 1000, 100, true);
part.set_next_entid(1001);
}
#[test]
#[should_panic(expected = "Partition index must be within its allocated space.")]
fn test_partition_limits_boundary3() {
let mut part = Partition::new(100, 1000, 100, true);
part.set_next_entid(99);
}
#[test]
#[should_panic(expected = "Partition index must be within its allocated space.")]
fn test_partition_limits_boundary4() {
let mut part = Partition::new(100, 1000, 100, true);
part.set_next_entid(-100);
}
#[test]
#[should_panic(expected = "Partition index must be within its allocated space.")]
fn test_partition_limits_boundary5() {
let mut part = Partition::new(100, 1000, 100, true);
part.allocate_entids(901); // One more than allowed.
}
#[test]
fn test_partition_limits_boundary6() {
let mut part = Partition::new(100, 1000, 100, true);
part.set_next_entid(100); // First entid that's allowed.
part.set_next_entid(101); // Just after first.
assert_eq!(101..111, part.allocate_entids(10));
part.set_next_entid(1000); // Last entid that's allowed.
part.set_next_entid(999); // Just before last.
}
}