daca8def57
* Pre: unused import in translate.rs. * Part 2: take a dependency on rusqlite for query arguments. * Part 1: flatten V2 schema into V1. Add UUID and URI. Bump expected ident and bootstrap datom count in tests. * Part 5: parse edn::Value::Uuid. * Part 3: extend ValueType and TypedValue to include Uuid. * Part 4: add Uuid to query arguments. * Part 6: extend db to support Uuid. * Part 8: add a tx-parser test for #f NaN and #uuid. * Part 7: parse and algebrize UUIDs in queries. * Part 1: parse #inst in EDN and throughout query engine. * Part 3: handle instants in db. * Part 2: instants never matches integers in queries. * Part 4: use DateTime for tx_instants. * Add a test for adding and querying UUIDs and instants. * Review comments.
614 lines
30 KiB
Rust
614 lines
30 KiB
Rust
// Copyright 2016 Mozilla
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
|
|
// this file except in compliance with the License. You may obtain a copy of the
|
|
// License at http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#![allow(dead_code)]
|
|
|
|
//! This module implements the transaction application algorithm described at
|
|
//! https://github.com/mozilla/mentat/wiki/Transacting and its children pages.
|
|
//!
|
|
//! The implementation proceeds in four main stages, labeled "Pipeline stage 1" through "Pipeline
|
|
//! stage 4". _Pipeline_ may be a misnomer, since the stages as written **cannot** be interleaved
|
|
//! in parallel. That is, a single transacted entity cannot flow through all the stages without its
|
|
//! sibling entities.
|
|
//!
|
|
//! This unintuitive architectural decision was made because the second and third stages (resolving
|
|
//! lookup refs and tempids, respectively) operate _in bulk_ to minimize the number of expensive
|
|
//! SQLite queries by processing many in one SQLite invocation. Pipeline stage 2 doesn't need to
|
|
//! operate like this: it is easy to handle each transacted entity independently of all the others
|
|
//! (and earlier, less efficient, implementations did this). However, Pipeline stage 3 appears to
|
|
//! require processing multiple elements at the same time, since there can be arbitrarily complex
|
|
//! graph relationships between tempids. Pipeline stage 4 (inserting elements into the SQL store)
|
|
//! could also be expressed as an independent operation per transacted entity, but there are
|
|
//! non-trivial uniqueness relationships inside a single transaction that need to enforced.
|
|
//! Therefore, some multi-entity processing is required, and a per-entity pipeline becomes less
|
|
//! attractive.
|
|
//!
|
|
//! A note on the types in the implementation. The pipeline stages are strongly typed: each stage
|
|
//! accepts and produces a subset of the previous. We hope this will reduce errors as data moves
|
|
//! through the system. In contrast the Clojure implementation rewrote the fundamental entity type
|
|
//! in place and suffered bugs where particular code paths missed cases.
|
|
//!
|
|
//! The type hierarchy accepts `Entity` instances from the transaction parser and flows `Term`
|
|
//! instances through the term-rewriting transaction applier. `Term` is a general `[:db/add e a v]`
|
|
//! with restrictions on the `e` and `v` components. The hierarchy is expressed using `Result` to
|
|
//! model either/or, and layers of `Result` are stripped -- we might say the `Term` instances are
|
|
//! _lowered_ as they flow through the pipeline. This type hierarchy could have been expressed by
|
|
//! combinatorially increasing `enum` cases, but this makes it difficult to handle the `e` and `v`
|
|
//! components symmetrically. Hence, layers of `Result` type aliases. Hopefully the explanatory
|
|
//! names -- `TermWithTempIdsAndLookupRefs`, anyone? -- and strongly typed stage functions will help
|
|
//! keep everything straight.
|
|
|
|
use std::borrow::Cow;
|
|
use std::collections::{
|
|
BTreeMap,
|
|
BTreeSet,
|
|
VecDeque,
|
|
};
|
|
|
|
use db;
|
|
use db::{
|
|
MentatStoring,
|
|
PartitionMapping,
|
|
};
|
|
use entids;
|
|
use errors::{ErrorKind, Result};
|
|
use internal_types::{
|
|
Either,
|
|
LookupRef,
|
|
LookupRefOrTempId,
|
|
TempIdHandle,
|
|
TempIdMap,
|
|
Term,
|
|
TermWithTempIdsAndLookupRefs,
|
|
TermWithTempIds,
|
|
TermWithoutTempIds,
|
|
replace_lookup_ref};
|
|
|
|
use mentat_core::{
|
|
DateTime,
|
|
Schema,
|
|
UTC,
|
|
attribute,
|
|
intern_set,
|
|
};
|
|
use mentat_tx::entities as entmod;
|
|
use mentat_tx::entities::{
|
|
Entity,
|
|
OpType,
|
|
TempId,
|
|
};
|
|
use mentat_tx_parser;
|
|
use metadata;
|
|
use rusqlite;
|
|
use schema::{
|
|
SchemaBuilding,
|
|
SchemaTypeChecking,
|
|
};
|
|
use types::{
|
|
Attribute,
|
|
AVPair,
|
|
AVMap,
|
|
Entid,
|
|
PartitionMap,
|
|
TypedValue,
|
|
TxReport,
|
|
ValueType,
|
|
};
|
|
use upsert_resolution::Generation;
|
|
|
|
/// A transaction on its way to being applied.
|
|
#[derive(Debug)]
|
|
pub struct Tx<'conn, 'a> {
|
|
/// The storage to apply against. In the future, this will be a Mentat connection.
|
|
store: &'conn rusqlite::Connection, // TODO: db::MentatStoring,
|
|
|
|
/// The partition map to allocate entids from.
|
|
///
|
|
/// The partition map is volatile in the sense that every succesful transaction updates
|
|
/// allocates at least one tx ID, so we own and modify our own partition map.
|
|
partition_map: PartitionMap,
|
|
|
|
/// The schema to update from the transaction entities.
|
|
///
|
|
/// Transactions only update the schema infrequently, so we borrow this schema until we need to
|
|
/// modify it.
|
|
schema_for_mutation: Cow<'a, Schema>,
|
|
|
|
/// The schema to use when interpreting the transaction entities.
|
|
///
|
|
/// This schema is not updated, so we just borrow it.
|
|
schema: &'a Schema,
|
|
|
|
/// The transaction ID of the transaction.
|
|
tx_id: Entid,
|
|
|
|
/// The timestamp when the transaction began to be committed.
|
|
tx_instant: DateTime<UTC>,
|
|
}
|
|
|
|
impl<'conn, 'a> Tx<'conn, 'a> {
|
|
pub fn new(
|
|
store: &'conn rusqlite::Connection,
|
|
partition_map: PartitionMap,
|
|
schema_for_mutation: &'a Schema,
|
|
schema: &'a Schema,
|
|
tx_id: Entid,
|
|
tx_instant: DateTime<UTC>) -> Tx<'conn, 'a> {
|
|
Tx {
|
|
store: store,
|
|
partition_map: partition_map,
|
|
schema_for_mutation: Cow::Borrowed(schema_for_mutation),
|
|
schema: schema,
|
|
tx_id: tx_id,
|
|
tx_instant: tx_instant,
|
|
}
|
|
}
|
|
|
|
/// Given a collection of tempids and the [a v] pairs that they might upsert to, resolve exactly
|
|
/// which [a v] pairs do upsert to entids, and map each tempid that upserts to the upserted
|
|
/// entid. The keys of the resulting map are exactly those tempids that upserted.
|
|
pub fn resolve_temp_id_avs<'b>(&self, temp_id_avs: &'b [(TempIdHandle, AVPair)]) -> Result<TempIdMap> {
|
|
if temp_id_avs.is_empty() {
|
|
return Ok(TempIdMap::default());
|
|
}
|
|
|
|
// Map [a v]->entid.
|
|
let mut av_pairs: Vec<&AVPair> = vec![];
|
|
for i in 0..temp_id_avs.len() {
|
|
av_pairs.push(&temp_id_avs[i].1);
|
|
}
|
|
|
|
// Lookup in the store.
|
|
let av_map: AVMap = self.store.resolve_avs(&av_pairs[..])?;
|
|
|
|
// Map id->entid.
|
|
let mut temp_id_map: TempIdMap = TempIdMap::default();
|
|
for &(ref temp_id, ref av_pair) in temp_id_avs {
|
|
if let Some(n) = av_map.get(&av_pair) {
|
|
if let Some(previous_n) = temp_id_map.get(&*temp_id) {
|
|
if n != previous_n {
|
|
// Conflicting upsert! TODO: collect conflicts and give more details on what failed this transaction.
|
|
bail!(ErrorKind::NotYetImplemented(format!("Conflicting upsert: tempid '{}' resolves to more than one entid: {:?}, {:?}", temp_id, previous_n, n))) // XXX
|
|
}
|
|
}
|
|
temp_id_map.insert(temp_id.clone(), *n);
|
|
}
|
|
}
|
|
|
|
Ok((temp_id_map))
|
|
}
|
|
|
|
/// Pipeline stage 1: convert `Entity` instances into `Term` instances, ready for term
|
|
/// rewriting.
|
|
///
|
|
/// The `Term` instances produce share interned TempId and LookupRef handles, and we return the
|
|
/// interned handle sets so that consumers can ensure all handles are used appropriately.
|
|
fn entities_into_terms_with_temp_ids_and_lookup_refs<I>(&self, entities: I) -> Result<(Vec<TermWithTempIdsAndLookupRefs>, intern_set::InternSet<TempId>, intern_set::InternSet<AVPair>)> where I: IntoIterator<Item=Entity> {
|
|
let mut temp_ids: intern_set::InternSet<TempId> = intern_set::InternSet::new();
|
|
let mut lookup_refs: intern_set::InternSet<AVPair> = intern_set::InternSet::new();
|
|
|
|
let intern_lookup_ref = |lookup_refs: &mut intern_set::InternSet<AVPair>, lookup_ref: entmod::LookupRef| -> Result<LookupRef> {
|
|
let lr_a: i64 = match lookup_ref.a {
|
|
entmod::Entid::Entid(ref a) => *a,
|
|
entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?,
|
|
};
|
|
let lr_attribute: &Attribute = self.schema.require_attribute_for_entid(lr_a)?;
|
|
|
|
if lr_attribute.unique.is_none() {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot resolve (lookup-ref {} {}) with attribute that is not :db/unique", lr_a, lookup_ref.v)))
|
|
}
|
|
|
|
let lr_typed_value: TypedValue = self.schema.to_typed_value(&lookup_ref.v, &lr_attribute)?;
|
|
Ok(lookup_refs.intern((lr_a, lr_typed_value)))
|
|
};
|
|
|
|
// We want to handle entities in the order they're given to us, while also "exploding" some
|
|
// entities into many. We therefore push the initial entities onto the back of the deque,
|
|
// take from the front of the deque, and explode onto the front as well.
|
|
let mut deque: VecDeque<Entity> = VecDeque::default();
|
|
deque.extend(entities);
|
|
|
|
// Allocate private internal tempids reserved for Mentat. Internal tempids just need to be
|
|
// unique within one transaction; they should never escape a transaction.
|
|
let mut mentat_id_count = 0;
|
|
let mut allocate_mentat_id = move || {
|
|
mentat_id_count += 1;
|
|
entmod::EntidOrLookupRefOrTempId::TempId(TempId::Internal(mentat_id_count))
|
|
};
|
|
|
|
let mut terms: Vec<TermWithTempIdsAndLookupRefs> = Vec::with_capacity(deque.len());
|
|
|
|
while let Some(entity) = deque.pop_front() {
|
|
match entity {
|
|
Entity::MapNotation(mut map_notation) => {
|
|
// :db/id is optional; if it's not given, we generate a special internal tempid
|
|
// to use for upserting. This tempid will not be reported in the TxReport.
|
|
let db_id: entmod::EntidOrLookupRefOrTempId = mentat_tx_parser::remove_db_id(&mut map_notation)?.unwrap_or_else(&mut allocate_mentat_id);
|
|
|
|
// We're not nested, so :db/isComponent is not relevant. We just explode the
|
|
// map notation.
|
|
for (a, v) in map_notation {
|
|
deque.push_front(Entity::AddOrRetract {
|
|
op: OpType::Add,
|
|
e: db_id.clone(),
|
|
a: a,
|
|
v: v,
|
|
});
|
|
}
|
|
},
|
|
|
|
Entity::AddOrRetract { op, e, a, v } => {
|
|
let a: i64 = match a {
|
|
entmod::Entid::Entid(ref a) => *a,
|
|
entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?,
|
|
};
|
|
|
|
let attribute: &Attribute = self.schema.require_attribute_for_entid(a)?;
|
|
|
|
let v = match v {
|
|
entmod::AtomOrLookupRefOrVectorOrMapNotation::Atom(v) => {
|
|
if attribute.value_type == ValueType::Ref && v.inner.is_text() {
|
|
Either::Right(LookupRefOrTempId::TempId(temp_ids.intern(v.inner.as_text().cloned().map(TempId::External).unwrap())))
|
|
} else {
|
|
// Here is where we do schema-aware typechecking: we either assert that
|
|
// the given value is in the attribute's value set, or (in limited
|
|
// cases) coerce the value into the attribute's value set.
|
|
let typed_value: TypedValue = self.schema.to_typed_value(&v.without_spans(), &attribute)?;
|
|
Either::Left(typed_value)
|
|
}
|
|
},
|
|
|
|
entmod::AtomOrLookupRefOrVectorOrMapNotation::LookupRef(lookup_ref) => {
|
|
if attribute.value_type != ValueType::Ref {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot resolve value lookup ref for attribute {} that is not :db/valueType :db.type/ref", a)))
|
|
}
|
|
|
|
Either::Right(LookupRefOrTempId::LookupRef(intern_lookup_ref(&mut lookup_refs, lookup_ref)?))
|
|
},
|
|
|
|
entmod::AtomOrLookupRefOrVectorOrMapNotation::Vector(vs) => {
|
|
if !attribute.multival {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode vector value for attribute {} that is not :db.cardinality :db.cardinality/many", a)));
|
|
}
|
|
|
|
for vv in vs {
|
|
deque.push_front(Entity::AddOrRetract {
|
|
op: op.clone(),
|
|
e: e.clone(),
|
|
a: entmod::Entid::Entid(a),
|
|
v: vv,
|
|
});
|
|
}
|
|
continue
|
|
},
|
|
|
|
entmod::AtomOrLookupRefOrVectorOrMapNotation::MapNotation(mut map_notation) => {
|
|
// TODO: consider handling this at the tx-parser level. That would be
|
|
// more strict and expressive, but it would lead to splitting
|
|
// AddOrRetract, which proliferates types and code, or only handling
|
|
// nested maps rather than map values, like Datomic does.
|
|
if op != OpType::Add {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value in :db/retract for attribute {}", a)));
|
|
}
|
|
|
|
if attribute.value_type != ValueType::Ref {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value for attribute {} that is not :db/valueType :db.type/ref", a)))
|
|
}
|
|
|
|
// :db/id is optional; if it's not given, we generate a special internal tempid
|
|
// to use for upserting. This tempid will not be reported in the TxReport.
|
|
let db_id: Option<entmod::EntidOrLookupRefOrTempId> = mentat_tx_parser::remove_db_id(&mut map_notation)?;
|
|
let mut dangling = db_id.is_none();
|
|
let db_id: entmod::EntidOrLookupRefOrTempId = db_id.unwrap_or_else(&mut allocate_mentat_id);
|
|
|
|
// We're nested, so we want to ensure we're not creating "dangling"
|
|
// entities that can't be reached. If we're :db/isComponent, then this
|
|
// is not dangling. Otherwise, the resulting map needs to have a
|
|
// :db/unique :db.unique/identity [a v] pair, so that it's reachable.
|
|
// Per http://docs.datomic.com/transactions.html: "Either the reference
|
|
// to the nested map must be a component attribute, or the nested map
|
|
// must include a unique attribute. This constraint prevents the
|
|
// accidental creation of easily-orphaned entities that have no identity
|
|
// or relation to other entities."
|
|
if attribute.component {
|
|
dangling = false;
|
|
}
|
|
|
|
for (inner_a, inner_v) in map_notation {
|
|
let inner_entid: i64 = match inner_a {
|
|
entmod::Entid::Entid(ref a) => *a,
|
|
entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?,
|
|
};
|
|
|
|
let inner_attribute: &Attribute = self.schema.require_attribute_for_entid(inner_entid)?;
|
|
if inner_attribute.unique == Some(attribute::Unique::Identity) {
|
|
dangling = false;
|
|
}
|
|
|
|
deque.push_front(Entity::AddOrRetract {
|
|
op: OpType::Add,
|
|
e: db_id.clone(),
|
|
a: entmod::Entid::Entid(inner_entid),
|
|
v: inner_v,
|
|
});
|
|
}
|
|
|
|
if dangling {
|
|
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value that would lead to dangling entity for attribute {}", a)));
|
|
}
|
|
|
|
// Similar, but not identical, to the expansion of the entity position e
|
|
// below. This returns Either::Left(TypedValue) instances; that returns
|
|
// Either::Left(i64) instances.
|
|
match db_id {
|
|
entmod::EntidOrLookupRefOrTempId::Entid(e) => {
|
|
let e: i64 = match e {
|
|
entmod::Entid::Entid(ref e) => *e,
|
|
entmod::Entid::Ident(ref e) => self.schema.require_entid(&e)?,
|
|
};
|
|
Either::Left(TypedValue::Ref(e))
|
|
},
|
|
|
|
entmod::EntidOrLookupRefOrTempId::TempId(e) => {
|
|
Either::Right(LookupRefOrTempId::TempId(temp_ids.intern(e)))
|
|
},
|
|
|
|
entmod::EntidOrLookupRefOrTempId::LookupRef(lookup_ref) => {
|
|
Either::Right(LookupRefOrTempId::LookupRef(intern_lookup_ref(&mut lookup_refs, lookup_ref)?))
|
|
},
|
|
}
|
|
},
|
|
};
|
|
|
|
let e = match e {
|
|
entmod::EntidOrLookupRefOrTempId::Entid(e) => {
|
|
let e: i64 = match e {
|
|
entmod::Entid::Entid(ref e) => *e,
|
|
entmod::Entid::Ident(ref e) => self.schema.require_entid(&e)?,
|
|
};
|
|
Either::Left(e)
|
|
},
|
|
|
|
entmod::EntidOrLookupRefOrTempId::TempId(e) => {
|
|
Either::Right(LookupRefOrTempId::TempId(temp_ids.intern(e)))
|
|
},
|
|
|
|
entmod::EntidOrLookupRefOrTempId::LookupRef(lookup_ref) => {
|
|
Either::Right(LookupRefOrTempId::LookupRef(intern_lookup_ref(&mut lookup_refs, lookup_ref)?))
|
|
},
|
|
};
|
|
|
|
terms.push(Term::AddOrRetract(op, e, a, v));
|
|
},
|
|
}
|
|
};
|
|
Ok((terms, temp_ids, lookup_refs))
|
|
}
|
|
|
|
/// Pipeline stage 2: rewrite `Term` instances with lookup refs into `Term` instances without
|
|
/// lookup refs.
|
|
///
|
|
/// The `Term` instances produce share interned TempId handles and have no LookupRef references.
|
|
fn resolve_lookup_refs<I>(&self, lookup_ref_map: &AVMap, terms: I) -> Result<Vec<TermWithTempIds>> where I: IntoIterator<Item=TermWithTempIdsAndLookupRefs> {
|
|
terms.into_iter().map(|term: TermWithTempIdsAndLookupRefs| -> Result<TermWithTempIds> {
|
|
match term {
|
|
Term::AddOrRetract(op, e, a, v) => {
|
|
let e = replace_lookup_ref(&lookup_ref_map, e, |x| x)?;
|
|
let v = replace_lookup_ref(&lookup_ref_map, v, |x| TypedValue::Ref(x))?;
|
|
Ok(Term::AddOrRetract(op, e, a, v))
|
|
},
|
|
}
|
|
}).collect::<Result<Vec<_>>>()
|
|
}
|
|
|
|
/// Transact the given `entities` against the store.
|
|
///
|
|
/// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
|
|
// TODO: move this to the transactor layer.
|
|
pub fn transact_entities<I>(&mut self, entities: I) -> Result<TxReport> where I: IntoIterator<Item=Entity> {
|
|
// TODO: push these into an internal transaction report?
|
|
let mut tempids: BTreeMap<TempId, Entid> = BTreeMap::default();
|
|
|
|
// Pipeline stage 1: entities -> terms with tempids and lookup refs.
|
|
let (terms_with_temp_ids_and_lookup_refs, tempid_set, lookup_ref_set) = self.entities_into_terms_with_temp_ids_and_lookup_refs(entities)?;
|
|
|
|
// Pipeline stage 2: resolve lookup refs -> terms with tempids.
|
|
let lookup_ref_avs: Vec<&(i64, TypedValue)> = lookup_ref_set.inner.iter().map(|rc| &**rc).collect();
|
|
let lookup_ref_map: AVMap = self.store.resolve_avs(&lookup_ref_avs[..])?;
|
|
|
|
let terms_with_temp_ids = self.resolve_lookup_refs(&lookup_ref_map, terms_with_temp_ids_and_lookup_refs)?;
|
|
|
|
// Pipeline stage 3: upsert tempids -> terms without tempids or lookup refs.
|
|
// Now we can collect upsert populations.
|
|
let (mut generation, inert_terms) = Generation::from(terms_with_temp_ids, &self.schema)?;
|
|
|
|
// And evolve them forward.
|
|
while generation.can_evolve() {
|
|
// Evolve further.
|
|
let temp_id_map: TempIdMap = self.resolve_temp_id_avs(&generation.temp_id_avs()[..])?;
|
|
generation = generation.evolve_one_step(&temp_id_map);
|
|
|
|
// Report each tempid that resolves via upsert.
|
|
for (tempid, entid) in temp_id_map {
|
|
// Every tempid should be resolved at most once. Prima facie, we might expect a
|
|
// tempid to be resolved in two different generations. However, that is not so: the
|
|
// keys of temp_id_map are unique between generations.Suppose that id->e and id->e*
|
|
// are two such mappings, resolved on subsequent evolutionary steps, and that `id`
|
|
// is a key in the intersection of the two key sets. This can't happen: if `id` maps
|
|
// to `e` via id->e, all instances of `id` have been evolved forward (replaced with
|
|
// `e`) before we try to resolve the next set of `UpsertsE`. That is, we'll never
|
|
// successfully upsert the same tempid in more than one generation step. (We might
|
|
// upsert the same tempid to multiple entids via distinct `[a v]` pairs in a single
|
|
// generation step; in this case, the transaction will fail.)
|
|
let previous = tempids.insert((*tempid).clone(), entid);
|
|
assert!(previous.is_none());
|
|
}
|
|
}
|
|
|
|
// Allocate entids for tempids that didn't upsert. BTreeSet rather than HashSet so this is deterministic.
|
|
let unresolved_temp_ids: BTreeSet<TempIdHandle> = generation.temp_ids_in_allocations();
|
|
|
|
// TODO: track partitions for temporary IDs.
|
|
let entids = self.partition_map.allocate_entids(":db.part/user", unresolved_temp_ids.len());
|
|
|
|
let temp_id_allocations: TempIdMap = unresolved_temp_ids.into_iter().zip(entids).collect();
|
|
|
|
let final_populations = generation.into_final_populations(&temp_id_allocations)?;
|
|
|
|
// Report each tempid that is allocated.
|
|
for (tempid, &entid) in &temp_id_allocations {
|
|
// Every tempid should be allocated at most once.
|
|
assert!(!tempids.contains_key(&**tempid));
|
|
tempids.insert((**tempid).clone(), entid);
|
|
}
|
|
|
|
// Verify that every tempid we interned either resolved or has been allocated.
|
|
assert_eq!(tempids.len(), tempid_set.inner.len());
|
|
for tempid in &tempid_set.inner {
|
|
assert!(tempids.contains_key(&**tempid));
|
|
}
|
|
|
|
// Any internal tempid has been allocated by the system and is a private implementation
|
|
// detail; it shouldn't be exposed in the final transaction report.
|
|
let tempids = tempids.into_iter().filter_map(|(tempid, e)| tempid.into_external().map(|s| (s, e))).collect();
|
|
|
|
// A transaction might try to add or retract :db/ident assertions or other metadata mutating
|
|
// assertions , but those assertions might not make it to the store. If we see a possible
|
|
// metadata mutation, we will figure out if any assertions made it through later. This is
|
|
// strictly an optimization: it would be correct to _always_ check what made it to the
|
|
// store.
|
|
let mut tx_might_update_metadata = false;
|
|
|
|
let final_terms: Vec<TermWithoutTempIds> = [final_populations.resolved,
|
|
final_populations.allocated,
|
|
inert_terms.into_iter().map(|term| term.unwrap()).collect()].concat();
|
|
|
|
{ // TODO: Don't use this block to scope borrowing the schema; instead, extract a helper function.
|
|
|
|
/// Assertions that are :db.cardinality/one and not :db.fulltext.
|
|
let mut non_fts_one: Vec<db::ReducedEntity> = vec![];
|
|
|
|
/// Assertions that are :db.cardinality/many and not :db.fulltext.
|
|
let mut non_fts_many: Vec<db::ReducedEntity> = vec![];
|
|
|
|
/// Assertions that are :db.cardinality/one and :db.fulltext.
|
|
let mut fts_one: Vec<db::ReducedEntity> = vec![];
|
|
|
|
/// Assertions that are :db.cardinality/many and :db.fulltext.
|
|
let mut fts_many: Vec<db::ReducedEntity> = vec![];
|
|
|
|
// Pipeline stage 4: final terms (after rewriting) -> DB insertions.
|
|
// Collect into non_fts_*.
|
|
// TODO: use something like Clojure's group_by to do this.
|
|
for term in final_terms {
|
|
match term {
|
|
Term::AddOrRetract(op, e, a, v) => {
|
|
let attribute: &Attribute = self.schema.require_attribute_for_entid(a)?;
|
|
if entids::might_update_metadata(a) {
|
|
tx_might_update_metadata = true;
|
|
}
|
|
|
|
let added = op == OpType::Add;
|
|
let reduced = (e, a, attribute, v, added);
|
|
match (attribute.fulltext, attribute.multival) {
|
|
(false, true) => non_fts_many.push(reduced),
|
|
(false, false) => non_fts_one.push(reduced),
|
|
(true, false) => fts_one.push(reduced),
|
|
(true, true) => fts_many.push(reduced),
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
// Transact [:db/add :db/txInstant NOW :db/tx].
|
|
// TODO: allow this to be present in the transaction data.
|
|
non_fts_one.push((self.tx_id,
|
|
entids::DB_TX_INSTANT,
|
|
self.schema.require_attribute_for_entid(entids::DB_TX_INSTANT).unwrap(),
|
|
TypedValue::Instant(self.tx_instant),
|
|
true));
|
|
|
|
if !non_fts_one.is_empty() {
|
|
self.store.insert_non_fts_searches(&non_fts_one[..], db::SearchType::Inexact)?;
|
|
}
|
|
|
|
if !non_fts_many.is_empty() {
|
|
self.store.insert_non_fts_searches(&non_fts_many[..], db::SearchType::Exact)?;
|
|
}
|
|
|
|
if !fts_one.is_empty() {
|
|
self.store.insert_fts_searches(&fts_one[..], db::SearchType::Inexact)?;
|
|
}
|
|
|
|
if !fts_many.is_empty() {
|
|
self.store.insert_fts_searches(&fts_many[..], db::SearchType::Exact)?;
|
|
}
|
|
|
|
self.store.commit_transaction(self.tx_id)?;
|
|
}
|
|
|
|
db::update_partition_map(self.store, &self.partition_map)?;
|
|
|
|
if tx_might_update_metadata {
|
|
// Extract changes to metadata from the store.
|
|
let metadata_assertions = self.store.committed_metadata_assertions(self.tx_id)?;
|
|
|
|
let mut new_schema = (*self.schema_for_mutation).clone(); // Clone the underlying Schema for modification.
|
|
let metadata_report = metadata::update_schema_from_entid_quadruples(&mut new_schema, metadata_assertions)?;
|
|
|
|
// We might not have made any changes to the schema, even though it looked like we
|
|
// would. This should not happen, even during bootstrapping: we mutate an empty
|
|
// `Schema` in this case specifically to run the bootstrapped assertions through the
|
|
// regular transactor code paths, updating the schema and materialized views uniformly.
|
|
// But, belt-and-braces: handle it gracefully.
|
|
if new_schema != *self.schema_for_mutation {
|
|
let old_schema = (*self.schema_for_mutation).clone(); // Clone the original Schema for comparison.
|
|
*self.schema_for_mutation.to_mut() = new_schema; // Store the new Schema.
|
|
db::update_metadata(self.store, &old_schema, &*self.schema_for_mutation, &metadata_report)?;
|
|
}
|
|
}
|
|
|
|
Ok(TxReport {
|
|
tx_id: self.tx_id,
|
|
tx_instant: self.tx_instant,
|
|
tempids: tempids,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Transact the given `entities` against the given SQLite `conn`, using the given metadata.
|
|
///
|
|
/// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
|
|
// TODO: move this to the transactor layer.
|
|
pub fn transact<'conn, 'a, I>(
|
|
conn: &'conn rusqlite::Connection,
|
|
mut partition_map: PartitionMap,
|
|
schema_for_mutation: &'a Schema,
|
|
schema: &'a Schema,
|
|
entities: I) -> Result<(TxReport, PartitionMap, Option<Schema>)> where I: IntoIterator<Item=Entity> {
|
|
// Eventually, this function will be responsible for managing a SQLite transaction. For
|
|
// now, it's just about the tx details.
|
|
|
|
let tx_instant = ::now(); // Label the transaction with the timestamp when we first see it: leading edge.
|
|
let tx_id = partition_map.allocate_entid(":db.part/tx");
|
|
|
|
conn.begin_transaction()?;
|
|
|
|
let mut tx = Tx::new(conn, partition_map, schema_for_mutation, schema, tx_id, tx_instant);
|
|
|
|
let report = tx.transact_entities(entities)?;
|
|
|
|
// If the schema has moved on, return it.
|
|
let next_schema = match tx.schema_for_mutation {
|
|
Cow::Borrowed(_) => None,
|
|
Cow::Owned(next_schema) => Some(next_schema),
|
|
};
|
|
Ok((report, tx.partition_map, next_schema))
|
|
}
|