mentat/db/src/tx.rs
Nick Alexander 4c4af46315 Add TransactableValue abstracting value places that can be transacted.
This is a stepping stone to transacting entities that are not based on
`edn::ValueAndSpan`.  We need to turn some value places (general) into
entity places (restricted), and those restrictions are captured in
tx-parser right now.  But for `TypedValue` value places, those
restrictions are encoded in the type itself.  This lays the track to
accept other value types in value places, which is good for
programmatic builder interfaces.
2018-05-10 10:19:54 -07:00

887 lines
43 KiB
Rust

// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#![allow(dead_code)]
//! This module implements the transaction application algorithm described at
//! https://github.com/mozilla/mentat/wiki/Transacting and its children pages.
//!
//! The implementation proceeds in four main stages, labeled "Pipeline stage 1" through "Pipeline
//! stage 4". _Pipeline_ may be a misnomer, since the stages as written **cannot** be interleaved
//! in parallel. That is, a single transacted entity cannot flow through all the stages without its
//! sibling entities.
//!
//! This unintuitive architectural decision was made because the second and third stages (resolving
//! lookup refs and tempids, respectively) operate _in bulk_ to minimize the number of expensive
//! SQLite queries by processing many in one SQLite invocation. Pipeline stage 2 doesn't need to
//! operate like this: it is easy to handle each transacted entity independently of all the others
//! (and earlier, less efficient, implementations did this). However, Pipeline stage 3 appears to
//! require processing multiple elements at the same time, since there can be arbitrarily complex
//! graph relationships between tempids. Pipeline stage 4 (inserting elements into the SQL store)
//! could also be expressed as an independent operation per transacted entity, but there are
//! non-trivial uniqueness relationships inside a single transaction that need to enforced.
//! Therefore, some multi-entity processing is required, and a per-entity pipeline becomes less
//! attractive.
//!
//! A note on the types in the implementation. The pipeline stages are strongly typed: each stage
//! accepts and produces a subset of the previous. We hope this will reduce errors as data moves
//! through the system. In contrast the Clojure implementation rewrote the fundamental entity type
//! in place and suffered bugs where particular code paths missed cases.
//!
//! The type hierarchy accepts `Entity` instances from the transaction parser and flows `Term`
//! instances through the term-rewriting transaction applier. `Term` is a general `[:db/add e a v]`
//! with restrictions on the `e` and `v` components. The hierarchy is expressed using `Result` to
//! model either/or, and layers of `Result` are stripped -- we might say the `Term` instances are
//! _lowered_ as they flow through the pipeline. This type hierarchy could have been expressed by
//! combinatorially increasing `enum` cases, but this makes it difficult to handle the `e` and `v`
//! components symmetrically. Hence, layers of `Result` type aliases. Hopefully the explanatory
//! names -- `TermWithTempIdsAndLookupRefs`, anyone? -- and strongly typed stage functions will help
//! keep everything straight.
use std::borrow::Cow;
use std::collections::{
BTreeMap,
BTreeSet,
VecDeque,
};
use std::iter::{
once,
};
use std::rc::{
Rc,
};
use db;
use db::{
MentatStoring,
PartitionMapping,
};
use edn::{
NamespacedKeyword,
};
use entids;
use errors;
use errors::{
ErrorKind,
Result,
};
use internal_types::{
KnownEntidOr,
LookupRef,
LookupRefOrTempId,
TempIdHandle,
TempIdMap,
Term,
TermWithTempIds,
TermWithTempIdsAndLookupRefs,
TermWithoutTempIds,
TransactableValue,
TypedValueOr,
replace_lookup_ref,
};
use mentat_core::util::Either;
use mentat_core::{
DateTime,
KnownEntid,
Schema,
Utc,
attribute,
now,
};
use mentat_core::intern_set::InternSet;
use mentat_tx::entities as entmod;
use mentat_tx::entities::{
Entity,
OpType,
TempId,
};
use metadata;
use rusqlite;
use schema::{
SchemaBuilding,
SchemaTypeChecking,
};
use types::{
Attribute,
AVPair,
AVMap,
Entid,
PartitionMap,
TypedValue,
TxReport,
ValueType,
};
use watcher::{
TransactWatcher,
};
use upsert_resolution::Generation;
/// A transaction on its way to being applied.
#[derive(Debug)]
pub struct Tx<'conn, 'a, W> where W: TransactWatcher {
/// The storage to apply against. In the future, this will be a Mentat connection.
store: &'conn rusqlite::Connection, // TODO: db::MentatStoring,
/// The partition map to allocate entids from.
///
/// The partition map is volatile in the sense that every succesful transaction updates
/// allocates at least one tx ID, so we own and modify our own partition map.
partition_map: PartitionMap,
/// The schema to update from the transaction entities.
///
/// Transactions only update the schema infrequently, so we borrow this schema until we need to
/// modify it.
schema_for_mutation: Cow<'a, Schema>,
/// The schema to use when interpreting the transaction entities.
///
/// This schema is not updated, so we just borrow it.
schema: &'a Schema,
watcher: W,
/// The transaction ID of the transaction.
tx_id: Entid,
/// The timestamp when the transaction began to be committed.
tx_instant: Option<DateTime<Utc>>,
}
/// Remove any :db/id value from the given map notation, converting the returned value into
/// something suitable for the entity position rather than something suitable for a value position.
pub fn remove_db_id(map: &mut entmod::MapNotation) -> Result<Option<entmod::EntidOrLookupRefOrTempId>> {
// TODO: extract lazy defined constant.
let db_id_key = entmod::Entid::Ident(NamespacedKeyword::new("db", "id"));
let db_id: Option<entmod::EntidOrLookupRefOrTempId> = if let Some(id) = map.remove(&db_id_key) {
match id {
entmod::AtomOrLookupRefOrVectorOrMapNotation::Atom(v) => Some(v.into_entity_place()?),
entmod::AtomOrLookupRefOrVectorOrMapNotation::LookupRef(_) |
entmod::AtomOrLookupRefOrVectorOrMapNotation::TxFunction(_) |
entmod::AtomOrLookupRefOrVectorOrMapNotation::Vector(_) |
entmod::AtomOrLookupRefOrVectorOrMapNotation::MapNotation(_) => {
bail!(ErrorKind::NotYetImplemented("db id error".into()))
},
}
} else {
None
};
Ok(db_id)
}
impl<'conn, 'a, W> Tx<'conn, 'a, W> where W: TransactWatcher {
pub fn new(
store: &'conn rusqlite::Connection,
partition_map: PartitionMap,
schema_for_mutation: &'a Schema,
schema: &'a Schema,
watcher: W,
tx_id: Entid) -> Tx<'conn, 'a, W> {
Tx {
store: store,
partition_map: partition_map,
schema_for_mutation: Cow::Borrowed(schema_for_mutation),
schema: schema,
watcher: watcher,
tx_id: tx_id,
tx_instant: None,
}
}
/// Given a collection of tempids and the [a v] pairs that they might upsert to, resolve exactly
/// which [a v] pairs do upsert to entids, and map each tempid that upserts to the upserted
/// entid. The keys of the resulting map are exactly those tempids that upserted.
pub(crate) fn resolve_temp_id_avs<'b>(&self, temp_id_avs: &'b [(TempIdHandle, AVPair)]) -> Result<TempIdMap> {
if temp_id_avs.is_empty() {
return Ok(TempIdMap::default());
}
// Map [a v]->entid.
let mut av_pairs: Vec<&AVPair> = vec![];
for i in 0..temp_id_avs.len() {
av_pairs.push(&temp_id_avs[i].1);
}
// Lookup in the store.
let av_map: AVMap = self.store.resolve_avs(&av_pairs[..])?;
debug!("looked up avs {:?}", av_map);
// Map id->entid.
let mut tempids: TempIdMap = TempIdMap::default();
// Errors. BTree* since we want deterministic results.
let mut conflicting_upserts: BTreeMap<TempId, BTreeSet<KnownEntid>> = BTreeMap::default();
for &(ref tempid, ref av_pair) in temp_id_avs {
trace!("tempid {:?} av_pair {:?} -> {:?}", tempid, av_pair, av_map.get(&av_pair));
if let Some(entid) = av_map.get(&av_pair).cloned().map(KnownEntid) {
tempids.insert(tempid.clone(), entid).map(|previous| {
if entid != previous {
conflicting_upserts.entry((**tempid).clone()).or_insert_with(|| once(previous).collect::<BTreeSet<_>>()).insert(entid);
}
});
}
}
if !conflicting_upserts.is_empty() {
bail!(ErrorKind::SchemaConstraintViolation(errors::SchemaConstraintViolation::ConflictingUpserts { conflicting_upserts }));
}
Ok(tempids)
}
/// Pipeline stage 1: convert `Entity` instances into `Term` instances, ready for term
/// rewriting.
///
/// The `Term` instances produce share interned TempId and LookupRef handles, and we return the
/// interned handle sets so that consumers can ensure all handles are used appropriately.
fn entities_into_terms_with_temp_ids_and_lookup_refs<I>(&self, entities: I) -> Result<(Vec<TermWithTempIdsAndLookupRefs>, InternSet<TempId>, InternSet<AVPair>)> where I: IntoIterator<Item=Entity> {
struct InProcess<'a> {
partition_map: &'a PartitionMap,
schema: &'a Schema,
mentat_id_count: i64,
tx_id: KnownEntid,
temp_ids: InternSet<TempId>,
lookup_refs: InternSet<AVPair>,
}
impl<'a> InProcess<'a> {
fn with_schema_and_partition_map(schema: &'a Schema, partition_map: &'a PartitionMap, tx_id: KnownEntid) -> InProcess<'a> {
InProcess {
partition_map,
schema,
mentat_id_count: 0,
tx_id,
temp_ids: InternSet::new(),
lookup_refs: InternSet::new(),
}
}
fn ensure_entid_exists(&self, e: Entid) -> Result<KnownEntid> {
if self.partition_map.contains_entid(e) {
Ok(KnownEntid(e))
} else {
bail!(ErrorKind::UnrecognizedEntid(e))
}
}
fn ensure_ident_exists(&self, e: &NamespacedKeyword) -> Result<KnownEntid> {
self.schema.require_entid(e)
}
fn intern_lookup_ref(&mut self, lookup_ref: &entmod::LookupRef) -> Result<LookupRef> {
let lr_a: i64 = match lookup_ref.a {
entmod::Entid::Entid(ref a) => *a,
entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?.into(),
};
let lr_attribute: &Attribute = self.schema.require_attribute_for_entid(lr_a)?;
if lr_attribute.unique.is_none() {
bail!(ErrorKind::NotYetImplemented(format!("Cannot resolve (lookup-ref {} {}) with attribute that is not :db/unique", lr_a, lookup_ref.v)))
}
let lr_typed_value: TypedValue = self.schema.to_typed_value(&lookup_ref.v, lr_attribute.value_type)?;
Ok(self.lookup_refs.intern((lr_a, lr_typed_value)))
}
fn intern_temp_id(&mut self, temp_id: TempId) -> Rc<TempId> {
self.temp_ids.intern(temp_id)
}
/// Allocate private internal tempids reserved for Mentat. Internal tempids just need to be
/// unique within one transaction; they should never escape a transaction.
fn allocate_mentat_id(&mut self) -> entmod::EntidOrLookupRefOrTempId {
self.mentat_id_count += 1;
entmod::EntidOrLookupRefOrTempId::TempId(TempId::Internal(self.mentat_id_count))
}
fn entity_e_into_term_e(&mut self, x: entmod::EntidOrLookupRefOrTempId) -> Result<KnownEntidOr<LookupRefOrTempId>> {
match x {
entmod::EntidOrLookupRefOrTempId::Entid(e) => {
let e = match e {
entmod::Entid::Entid(ref e) => self.ensure_entid_exists(*e)?,
entmod::Entid::Ident(ref e) => self.ensure_ident_exists(&e)?,
};
Ok(Either::Left(e))
},
entmod::EntidOrLookupRefOrTempId::TempId(e) => {
Ok(Either::Right(LookupRefOrTempId::TempId(self.intern_temp_id(e))))
},
entmod::EntidOrLookupRefOrTempId::LookupRef(ref lookup_ref) => {
Ok(Either::Right(LookupRefOrTempId::LookupRef(self.intern_lookup_ref(lookup_ref)?)))
},
entmod::EntidOrLookupRefOrTempId::TxFunction(ref tx_function) => {
match tx_function.op.0.as_str() {
"transaction-tx" => Ok(Either::Left(self.tx_id)),
unknown @ _ => bail!(ErrorKind::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
}
},
}
}
fn entity_a_into_term_a(&mut self, x: entmod::Entid) -> Result<Entid> {
let a = match x {
entmod::Entid::Entid(ref a) => *a,
entmod::Entid::Ident(ref a) => self.schema.require_entid(&a)?.into(),
};
Ok(a)
}
fn entity_e_into_term_v(&mut self, x: entmod::EntidOrLookupRefOrTempId) -> Result<TypedValueOr<LookupRefOrTempId>> {
self.entity_e_into_term_e(x).map(|r| r.map_left(|ke| TypedValue::Ref(ke.0)))
}
fn entity_v_into_term_e(&mut self, x: entmod::AtomOrLookupRefOrVectorOrMapNotation, backward_a: &entmod::Entid) -> Result<KnownEntidOr<LookupRefOrTempId>> {
match backward_a.unreversed() {
None => {
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode map notation value in :attr/_reversed notation for forward attribute")));
},
Some(forward_a) => {
let forward_a = self.entity_a_into_term_a(forward_a)?;
let forward_attribute = self.schema.require_attribute_for_entid(forward_a)?;
if forward_attribute.value_type != ValueType::Ref {
bail!(ErrorKind::NotYetImplemented(format!("Cannot use :attr/_reversed notation for attribute {} that is not :db/valueType :db.type/ref", forward_a)))
}
match x {
entmod::AtomOrLookupRefOrVectorOrMapNotation::Atom(v) => {
// Here is where we do schema-aware typechecking: we either assert
// that the given value is in the attribute's value set, or (in
// limited cases) coerce the value into the attribute's value set.
match v.as_tempid() {
Some(tempid) => Ok(Either::Right(LookupRefOrTempId::TempId(self.intern_temp_id(tempid)))),
None => {
if let TypedValue::Ref(entid) = v.into_typed_value(&self.schema, ValueType::Ref)? {
Ok(Either::Left(KnownEntid(entid)))
} else {
// The given value is expected to be :db.type/ref, so this shouldn't happen.
bail!(ErrorKind::NotYetImplemented(format!("Cannot use :attr/_reversed notation for attribute {} with value that is not :db.valueType :db.type/ref", forward_a)))
}
}
}
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::LookupRef(ref lookup_ref) =>
Ok(Either::Right(LookupRefOrTempId::LookupRef(self.intern_lookup_ref(lookup_ref)?))),
entmod::AtomOrLookupRefOrVectorOrMapNotation::TxFunction(ref tx_function) => {
match tx_function.op.0.as_str() {
"transaction-tx" => Ok(Either::Left(KnownEntid(self.tx_id.0))),
unknown @ _ => bail!(ErrorKind::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
}
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::Vector(_) =>
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode vector value in :attr/_reversed notation for attribute {}", forward_a))),
entmod::AtomOrLookupRefOrVectorOrMapNotation::MapNotation(_) =>
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode map notation value in :attr/_reversed notation for attribute {}", forward_a))),
}
},
}
}
}
let mut in_process = InProcess::with_schema_and_partition_map(&self.schema, &self.partition_map, KnownEntid(self.tx_id));
// We want to handle entities in the order they're given to us, while also "exploding" some
// entities into many. We therefore push the initial entities onto the back of the deque,
// take from the front of the deque, and explode onto the front as well.
let mut deque: VecDeque<Entity> = VecDeque::default();
deque.extend(entities);
let mut terms: Vec<TermWithTempIdsAndLookupRefs> = Vec::with_capacity(deque.len());
while let Some(entity) = deque.pop_front() {
match entity {
Entity::MapNotation(mut map_notation) => {
// :db/id is optional; if it's not given, we generate a special internal tempid
// to use for upserting. This tempid will not be reported in the TxReport.
let db_id: entmod::EntidOrLookupRefOrTempId = remove_db_id(&mut map_notation)?.unwrap_or_else(|| in_process.allocate_mentat_id());
// We're not nested, so :db/isComponent is not relevant. We just explode the
// map notation.
for (a, v) in map_notation {
deque.push_front(Entity::AddOrRetract {
op: OpType::Add,
e: db_id.clone(),
a: a,
v: v,
});
}
},
Entity::AddOrRetract { op, e, a, v } => {
if let Some(reversed_a) = a.unreversed() {
let reversed_e = in_process.entity_v_into_term_e(v, &a)?;
let reversed_a = in_process.entity_a_into_term_a(reversed_a)?;
let reversed_v = in_process.entity_e_into_term_v(e)?;
terms.push(Term::AddOrRetract(OpType::Add, reversed_e, reversed_a, reversed_v));
} else {
let a = in_process.entity_a_into_term_a(a)?;
let attribute = self.schema.require_attribute_for_entid(a)?;
let v = match v {
entmod::AtomOrLookupRefOrVectorOrMapNotation::Atom(v) => {
// Here is where we do schema-aware typechecking: we either assert
// that the given value is in the attribute's value set, or (in
// limited cases) coerce the value into the attribute's value set.
if attribute.value_type == ValueType::Ref {
match v.as_tempid() {
Some(tempid) => Either::Right(LookupRefOrTempId::TempId(in_process.intern_temp_id(tempid))),
None => v.into_typed_value(&self.schema, attribute.value_type).map(Either::Left)?,
}
} else {
v.into_typed_value(&self.schema, attribute.value_type).map(Either::Left)?
}
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::LookupRef(ref lookup_ref) => {
if attribute.value_type != ValueType::Ref {
bail!(ErrorKind::NotYetImplemented(format!("Cannot resolve value lookup ref for attribute {} that is not :db/valueType :db.type/ref", a)))
}
Either::Right(LookupRefOrTempId::LookupRef(in_process.intern_lookup_ref(lookup_ref)?))
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::TxFunction(ref tx_function) => {
let typed_value = match tx_function.op.0.as_str() {
"transaction-tx" => TypedValue::Ref(self.tx_id),
unknown @ _ => bail!(ErrorKind::NotYetImplemented(format!("Unknown transaction function {}", unknown))),
};
// Here we do schema-aware typechecking: we assert that the computed
// value is in the attribute's value set. If and when we have
// transaction functions that produce numeric values, we'll have to
// be more careful here, because a function that produces an integer
// value can be used where a double is expected. See also
// `SchemaTypeChecking.to_typed_value(...)`.
if attribute.value_type != typed_value.value_type() {
bail!(ErrorKind::NotYetImplemented(format!("Transaction function {} produced value of type {} but expected type {}",
tx_function.op.0.as_str(), typed_value.value_type(), attribute.value_type)));
}
Either::Left(typed_value)
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::Vector(vs) => {
if !attribute.multival {
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode vector value for attribute {} that is not :db.cardinality :db.cardinality/many", a)));
}
for vv in vs {
deque.push_front(Entity::AddOrRetract {
op: op.clone(),
e: e.clone(),
a: entmod::Entid::Entid(a),
v: vv,
});
}
continue
},
entmod::AtomOrLookupRefOrVectorOrMapNotation::MapNotation(mut map_notation) => {
// TODO: consider handling this at the tx-parser level. That would be
// more strict and expressive, but it would lead to splitting
// AddOrRetract, which proliferates types and code, or only handling
// nested maps rather than map values, like Datomic does.
if op != OpType::Add {
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value in :db/retract for attribute {}", a)));
}
if attribute.value_type != ValueType::Ref {
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value for attribute {} that is not :db/valueType :db.type/ref", a)))
}
// :db/id is optional; if it's not given, we generate a special internal tempid
// to use for upserting. This tempid will not be reported in the TxReport.
let db_id: Option<entmod::EntidOrLookupRefOrTempId> = remove_db_id(&mut map_notation)?;
let mut dangling = db_id.is_none();
let db_id: entmod::EntidOrLookupRefOrTempId = db_id.unwrap_or_else(|| in_process.allocate_mentat_id());
// We're nested, so we want to ensure we're not creating "dangling"
// entities that can't be reached. If we're :db/isComponent, then this
// is not dangling. Otherwise, the resulting map needs to have a
// :db/unique :db.unique/identity [a v] pair, so that it's reachable.
// Per http://docs.datomic.com/transactions.html: "Either the reference
// to the nested map must be a component attribute, or the nested map
// must include a unique attribute. This constraint prevents the
// accidental creation of easily-orphaned entities that have no identity
// or relation to other entities."
if attribute.component {
dangling = false;
}
for (inner_a, inner_v) in map_notation {
if let Some(reversed_a) = inner_a.unreversed() {
// We definitely have a reference. The reference might be
// dangling (a bare entid, for example), but we don't yet
// support nested maps and reverse notation simultaneously
// (i.e., we don't accept {:reverse/_attribute {:nested map}})
// so we don't need to check that the nested map reference isn't
// dangling.
dangling = false;
let reversed_e = in_process.entity_v_into_term_e(inner_v, &inner_a)?;
let reversed_a = in_process.entity_a_into_term_a(reversed_a)?;
let reversed_v = in_process.entity_e_into_term_v(db_id.clone())?;
terms.push(Term::AddOrRetract(OpType::Add, reversed_e, reversed_a, reversed_v));
} else {
let inner_a = in_process.entity_a_into_term_a(inner_a)?;
let inner_attribute = self.schema.require_attribute_for_entid(inner_a)?;
if inner_attribute.unique == Some(attribute::Unique::Identity) {
dangling = false;
}
deque.push_front(Entity::AddOrRetract {
op: OpType::Add,
e: db_id.clone(),
a: entmod::Entid::Entid(inner_a),
v: inner_v,
});
}
}
if dangling {
bail!(ErrorKind::NotYetImplemented(format!("Cannot explode nested map value that would lead to dangling entity for attribute {}", a)));
}
in_process.entity_e_into_term_v(db_id)?
},
};
let e = in_process.entity_e_into_term_e(e)?;
terms.push(Term::AddOrRetract(op, e, a, v));
}
},
}
};
Ok((terms, in_process.temp_ids, in_process.lookup_refs))
}
/// Pipeline stage 2: rewrite `Term` instances with lookup refs into `Term` instances without
/// lookup refs.
///
/// The `Term` instances produced share interned TempId handles and have no LookupRef references.
fn resolve_lookup_refs<I>(&self, lookup_ref_map: &AVMap, terms: I) -> Result<Vec<TermWithTempIds>> where I: IntoIterator<Item=TermWithTempIdsAndLookupRefs> {
terms.into_iter().map(|term: TermWithTempIdsAndLookupRefs| -> Result<TermWithTempIds> {
match term {
Term::AddOrRetract(op, e, a, v) => {
let e = replace_lookup_ref(&lookup_ref_map, e, |x| KnownEntid(x))?;
let v = replace_lookup_ref(&lookup_ref_map, v, |x| TypedValue::Ref(x))?;
Ok(Term::AddOrRetract(op, e, a, v))
},
}
}).collect::<Result<Vec<_>>>()
}
/// Transact the given `entities` against the store.
///
/// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
// TODO: move this to the transactor layer.
pub fn transact_entities<I>(&mut self, entities: I) -> Result<TxReport>
where I: IntoIterator<Item=Entity> {
// Pipeline stage 1: entities -> terms with tempids and lookup refs.
let (terms_with_temp_ids_and_lookup_refs, tempid_set, lookup_ref_set) = self.entities_into_terms_with_temp_ids_and_lookup_refs(entities)?;
// Pipeline stage 2: resolve lookup refs -> terms with tempids.
let lookup_ref_avs: Vec<&(i64, TypedValue)> = lookup_ref_set.inner.iter().map(|rc| &**rc).collect();
let lookup_ref_map: AVMap = self.store.resolve_avs(&lookup_ref_avs[..])?;
let terms_with_temp_ids = self.resolve_lookup_refs(&lookup_ref_map, terms_with_temp_ids_and_lookup_refs)?;
self.transact_simple_terms(terms_with_temp_ids, tempid_set)
}
pub fn transact_simple_terms<I>(&mut self, terms: I, tempid_set: InternSet<TempId>) -> Result<TxReport>
where I: IntoIterator<Item=TermWithTempIds> {
// TODO: push these into an internal transaction report?
let mut tempids: BTreeMap<TempId, KnownEntid> = BTreeMap::default();
// Pipeline stage 3: upsert tempids -> terms without tempids or lookup refs.
// Now we can collect upsert populations.
let (mut generation, inert_terms) = Generation::from(terms, &self.schema)?;
// And evolve them forward.
while generation.can_evolve() {
debug!("generation {:?}", generation);
let tempid_avs = generation.temp_id_avs();
debug!("trying to resolve avs {:?}", tempid_avs);
// Evolve further.
let temp_id_map: TempIdMap = self.resolve_temp_id_avs(&tempid_avs[..])?;
debug!("resolved avs for tempids {:?}", temp_id_map);
generation = generation.evolve_one_step(&temp_id_map);
// Errors. BTree* since we want deterministic results.
let mut conflicting_upserts: BTreeMap<TempId, BTreeSet<KnownEntid>> = BTreeMap::default();
// Report each tempid that resolves via upsert.
for (tempid, entid) in temp_id_map {
// Since `UpsertEV` instances always transition to `UpsertE` instances, it might be
// that a tempid resolves in two generations, and those resolutions might conflict.
tempids.insert((*tempid).clone(), entid).map(|previous| {
if entid != previous {
conflicting_upserts.entry((*tempid).clone()).or_insert_with(|| once(previous).collect::<BTreeSet<_>>()).insert(entid);
}
});
}
if !conflicting_upserts.is_empty() {
bail!(ErrorKind::SchemaConstraintViolation(errors::SchemaConstraintViolation::ConflictingUpserts { conflicting_upserts }));
}
debug!("tempids {:?}", tempids);
}
debug!("final generation {:?}", generation);
// Allocate entids for tempids that didn't upsert. BTreeSet rather than HashSet so this is deterministic.
let unresolved_temp_ids: BTreeSet<TempIdHandle> = generation.temp_ids_in_allocations();
debug!("unresolved tempids {:?}", unresolved_temp_ids);
// TODO: track partitions for temporary IDs.
let entids = self.partition_map.allocate_entids(":db.part/user", unresolved_temp_ids.len());
let temp_id_allocations: TempIdMap = unresolved_temp_ids.into_iter()
.zip(entids.map(|e| KnownEntid(e)))
.collect();
debug!("tempid allocations {:?}", temp_id_allocations);
let final_populations = generation.into_final_populations(&temp_id_allocations)?;
// Report each tempid that is allocated.
for (tempid, &entid) in &temp_id_allocations {
// Every tempid should be allocated at most once.
assert!(!tempids.contains_key(&**tempid));
tempids.insert((**tempid).clone(), entid);
}
// Verify that every tempid we interned either resolved or has been allocated.
assert_eq!(tempids.len(), tempid_set.inner.len());
for tempid in &tempid_set.inner {
assert!(tempids.contains_key(&**tempid));
}
// Any internal tempid has been allocated by the system and is a private implementation
// detail; it shouldn't be exposed in the final transaction report.
let tempids = tempids.into_iter().filter_map(|(tempid, e)| tempid.into_external().map(|s| (s, e.0))).collect();
// A transaction might try to add or retract :db/ident assertions or other metadata mutating
// assertions , but those assertions might not make it to the store. If we see a possible
// metadata mutation, we will figure out if any assertions made it through later. This is
// strictly an optimization: it would be correct to _always_ check what made it to the
// store.
let mut tx_might_update_metadata = false;
let final_terms: Vec<TermWithoutTempIds> = [final_populations.resolved,
final_populations.allocated,
inert_terms.into_iter().map(|term| term.unwrap()).collect()].concat();
let tx_instant;
{ // TODO: Don't use this block to scope borrowing the schema; instead, extract a helper function.
// Assertions that are :db.cardinality/one and not :db.fulltext.
let mut non_fts_one: Vec<db::ReducedEntity> = vec![];
// Assertions that are :db.cardinality/many and not :db.fulltext.
let mut non_fts_many: Vec<db::ReducedEntity> = vec![];
// Assertions that are :db.cardinality/one and :db.fulltext.
let mut fts_one: Vec<db::ReducedEntity> = vec![];
// Assertions that are :db.cardinality/many and :db.fulltext.
let mut fts_many: Vec<db::ReducedEntity> = vec![];
// We need to ensure that callers can't blindly transact entities that haven't been
// allocated by this store.
// Pipeline stage 4: final terms (after rewriting) -> DB insertions.
// Collect into non_fts_*.
// TODO: use something like Clojure's group_by to do this.
for term in final_terms {
match term {
Term::AddOrRetract(op, KnownEntid(e), a, v) => {
let attribute: &Attribute = self.schema.require_attribute_for_entid(a)?;
if entids::might_update_metadata(a) {
tx_might_update_metadata = true;
}
let added = op == OpType::Add;
// We take the last encountered :db/txInstant value.
// If more than one is provided, the transactor will fail.
if added &&
e == self.tx_id &&
a == entids::DB_TX_INSTANT {
if let TypedValue::Instant(instant) = v {
if let Some(ts) = self.tx_instant {
if ts == instant {
// Dupes are fine.
} else {
bail!(ErrorKind::ConflictingDatoms);
}
} else {
self.tx_instant = Some(instant);
}
continue;
} else {
// The type error has been caught earlier.
unreachable!()
}
}
self.watcher.datom(op, e, a, &v);
let reduced = (e, a, attribute, v, added);
match (attribute.fulltext, attribute.multival) {
(false, true) => non_fts_many.push(reduced),
(false, false) => non_fts_one.push(reduced),
(true, false) => fts_one.push(reduced),
(true, true) => fts_many.push(reduced),
}
},
}
}
tx_instant = self.tx_instant.unwrap_or_else(now);
// Transact [:db/add :db/txInstant tx_instant (transaction-tx)].
non_fts_one.push((self.tx_id,
entids::DB_TX_INSTANT,
self.schema.require_attribute_for_entid(entids::DB_TX_INSTANT).unwrap(),
tx_instant.into(),
true));
if !non_fts_one.is_empty() {
self.store.insert_non_fts_searches(&non_fts_one[..], db::SearchType::Inexact)?;
}
if !non_fts_many.is_empty() {
self.store.insert_non_fts_searches(&non_fts_many[..], db::SearchType::Exact)?;
}
if !fts_one.is_empty() {
self.store.insert_fts_searches(&fts_one[..], db::SearchType::Inexact)?;
}
if !fts_many.is_empty() {
self.store.insert_fts_searches(&fts_many[..], db::SearchType::Exact)?;
}
self.store.commit_transaction(self.tx_id)?;
}
db::update_partition_map(self.store, &self.partition_map)?;
self.watcher.done(&self.tx_id, self.schema)?;
if tx_might_update_metadata {
// Extract changes to metadata from the store.
let metadata_assertions = self.store.committed_metadata_assertions(self.tx_id)?;
let mut new_schema = (*self.schema_for_mutation).clone(); // Clone the underlying Schema for modification.
let metadata_report = metadata::update_schema_from_entid_quadruples(&mut new_schema, metadata_assertions)?;
// We might not have made any changes to the schema, even though it looked like we
// would. This should not happen, even during bootstrapping: we mutate an empty
// `Schema` in this case specifically to run the bootstrapped assertions through the
// regular transactor code paths, updating the schema and materialized views uniformly.
// But, belt-and-braces: handle it gracefully.
if new_schema != *self.schema_for_mutation {
let old_schema = (*self.schema_for_mutation).clone(); // Clone the original Schema for comparison.
*self.schema_for_mutation.to_mut() = new_schema; // Store the new Schema.
db::update_metadata(self.store, &old_schema, &*self.schema_for_mutation, &metadata_report)?;
}
}
Ok(TxReport {
tx_id: self.tx_id,
tx_instant,
tempids: tempids,
})
}
}
/// Initialize a new Tx object with a new tx id and a tx instant. Kick off the SQLite conn, too.
fn start_tx<'conn, 'a, W>(conn: &'conn rusqlite::Connection,
mut partition_map: PartitionMap,
schema_for_mutation: &'a Schema,
schema: &'a Schema,
watcher: W) -> Result<Tx<'conn, 'a, W>>
where W: TransactWatcher {
let tx_id = partition_map.allocate_entid(":db.part/tx");
conn.begin_tx_application()?;
Ok(Tx::new(conn, partition_map, schema_for_mutation, schema, watcher, tx_id))
}
fn conclude_tx<W>(tx: Tx<W>, report: TxReport) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
where W: TransactWatcher {
// If the schema has moved on, return it.
let next_schema = match tx.schema_for_mutation {
Cow::Borrowed(_) => None,
Cow::Owned(next_schema) => Some(next_schema),
};
Ok((report, tx.partition_map, next_schema, tx.watcher))
}
/// Transact the given `entities` against the given SQLite `conn`, using the given metadata.
/// If you want this work to occur inside a SQLite transaction, establish one on the connection
/// prior to calling this function.
///
/// This approach is explained in https://github.com/mozilla/mentat/wiki/Transacting.
// TODO: move this to the transactor layer.
pub fn transact<'conn, 'a, I, W>(conn: &'conn rusqlite::Connection,
partition_map: PartitionMap,
schema_for_mutation: &'a Schema,
schema: &'a Schema,
watcher: W,
entities: I) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
where I: IntoIterator<Item=Entity>,
W: TransactWatcher {
let mut tx = start_tx(conn, partition_map, schema_for_mutation, schema, watcher)?;
let report = tx.transact_entities(entities)?;
conclude_tx(tx, report)
}
/// Just like `transact`, but accepts lower-level inputs to allow bypassing the parser interface.
pub fn transact_terms<'conn, 'a, I, W>(conn: &'conn rusqlite::Connection,
partition_map: PartitionMap,
schema_for_mutation: &'a Schema,
schema: &'a Schema,
watcher: W,
terms: I,
tempid_set: InternSet<TempId>) -> Result<(TxReport, PartitionMap, Option<Schema>, W)>
where I: IntoIterator<Item=TermWithTempIds>,
W: TransactWatcher {
let mut tx = start_tx(conn, partition_map, schema_for_mutation, schema, watcher)?;
let report = tx.transact_simple_terms(terms, tempid_set)?;
conclude_tx(tx, report)
}