525 lines
20 KiB
Rust
525 lines
20 KiB
Rust
// Copyright 2016 Mozilla
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
|
||
// this file except in compliance with the License. You may obtain a copy of the
|
||
// License at http://www.apache.org/licenses/LICENSE-2.0
|
||
// Unless required by applicable law or agreed to in writing, software distributed
|
||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
// specific language governing permissions and limitations under the License.
|
||
|
||
use mentat_core::{
|
||
Schema,
|
||
SQLTypeAffinity,
|
||
SQLValueType,
|
||
SQLValueTypeSet,
|
||
TypedValue,
|
||
ValueType,
|
||
ValueTypeTag,
|
||
ValueTypeSet,
|
||
};
|
||
|
||
use mentat_core::util::{
|
||
Either,
|
||
};
|
||
|
||
use mentat_query::{
|
||
Limit,
|
||
};
|
||
|
||
use mentat_query_algebrizer::{
|
||
AlgebraicQuery,
|
||
ColumnAlternation,
|
||
ColumnConstraint,
|
||
ColumnConstraintOrAlternation,
|
||
ColumnIntersection,
|
||
ColumnName,
|
||
ComputedTable,
|
||
ConjoiningClauses,
|
||
DatomsColumn,
|
||
DatomsTable,
|
||
OrderBy,
|
||
QualifiedAlias,
|
||
QueryValue,
|
||
SourceAlias,
|
||
TableAlias,
|
||
VariableColumn,
|
||
};
|
||
|
||
use mentat_query_projector::{
|
||
CombinedProjection,
|
||
ConstantProjector,
|
||
Projector,
|
||
projected_column_for_var,
|
||
query_projection,
|
||
};
|
||
|
||
use mentat_query_sql::{
|
||
ColumnOrExpression,
|
||
Constraint,
|
||
FromClause,
|
||
GroupBy,
|
||
Op,
|
||
ProjectedColumn,
|
||
Projection,
|
||
SelectQuery,
|
||
TableList,
|
||
TableOrSubquery,
|
||
Values,
|
||
};
|
||
|
||
use std::collections::HashMap;
|
||
|
||
use super::Result;
|
||
|
||
trait ToConstraint {
|
||
fn to_constraint(self) -> Constraint;
|
||
}
|
||
|
||
trait ToColumn {
|
||
fn to_column(self) -> ColumnOrExpression;
|
||
}
|
||
|
||
impl ToColumn for QualifiedAlias {
|
||
fn to_column(self) -> ColumnOrExpression {
|
||
ColumnOrExpression::Column(self)
|
||
}
|
||
}
|
||
|
||
impl ToConstraint for ColumnIntersection {
|
||
fn to_constraint(self) -> Constraint {
|
||
Constraint::And {
|
||
constraints: self.into_iter().map(|x| x.to_constraint()).collect()
|
||
}
|
||
}
|
||
}
|
||
|
||
impl ToConstraint for ColumnAlternation {
|
||
fn to_constraint(self) -> Constraint {
|
||
Constraint::Or {
|
||
constraints: self.into_iter().map(|x| x.to_constraint()).collect()
|
||
}
|
||
}
|
||
}
|
||
|
||
impl ToConstraint for ColumnConstraintOrAlternation {
|
||
fn to_constraint(self) -> Constraint {
|
||
use self::ColumnConstraintOrAlternation::*;
|
||
match self {
|
||
Alternation(alt) => alt.to_constraint(),
|
||
Constraint(c) => c.to_constraint(),
|
||
}
|
||
}
|
||
}
|
||
|
||
fn affinity_count(tag: i32) -> usize {
|
||
ValueTypeSet::any().into_iter()
|
||
.filter(|t| t.value_type_tag() == tag)
|
||
.count()
|
||
}
|
||
|
||
fn type_constraint(table: &TableAlias, tag: i32, to_check: Option<Vec<SQLTypeAffinity>>) -> Constraint {
|
||
let type_column = QualifiedAlias::new(table.clone(),
|
||
DatomsColumn::ValueTypeTag).to_column();
|
||
let check_type_tag = Constraint::equal(type_column, ColumnOrExpression::Integer(tag));
|
||
if let Some(affinities) = to_check {
|
||
let check_affinities = Constraint::Or {
|
||
constraints: affinities.into_iter().map(|affinity| {
|
||
Constraint::TypeCheck {
|
||
value: QualifiedAlias::new(table.clone(),
|
||
DatomsColumn::Value).to_column(),
|
||
affinity,
|
||
}
|
||
}).collect()
|
||
};
|
||
Constraint::And {
|
||
constraints: vec![
|
||
check_type_tag,
|
||
check_affinities
|
||
]
|
||
}
|
||
} else {
|
||
check_type_tag
|
||
}
|
||
}
|
||
|
||
// Returns a map of tags to a vector of all the possible affinities that those tags can represent
|
||
// given the types in `value_types`.
|
||
fn possible_affinities(value_types: ValueTypeSet) -> HashMap<ValueTypeTag, Vec<SQLTypeAffinity>> {
|
||
let mut result = HashMap::with_capacity(value_types.len());
|
||
for ty in value_types {
|
||
let (tag, affinity_to_check) = ty.sql_representation();
|
||
let affinities = result.entry(tag).or_insert_with(Vec::new);
|
||
if let Some(affinity) = affinity_to_check {
|
||
affinities.push(affinity);
|
||
}
|
||
}
|
||
result
|
||
}
|
||
|
||
impl ToConstraint for ColumnConstraint {
|
||
fn to_constraint(self) -> Constraint {
|
||
use self::ColumnConstraint::*;
|
||
match self {
|
||
Equals(qa, QueryValue::Entid(entid)) =>
|
||
Constraint::equal(qa.to_column(), ColumnOrExpression::Entid(entid)),
|
||
|
||
Equals(qa, QueryValue::TypedValue(tv)) =>
|
||
Constraint::equal(qa.to_column(), ColumnOrExpression::Value(tv)),
|
||
|
||
Equals(left, QueryValue::Column(right)) =>
|
||
Constraint::equal(left.to_column(), right.to_column()),
|
||
|
||
Equals(qa, QueryValue::PrimitiveLong(value)) => {
|
||
let tag_column = qa.for_associated_type_tag().expect("an associated type tag alias").to_column();
|
||
let value_column = qa.to_column();
|
||
|
||
// A bare long in a query might match a ref, an instant, a long (obviously), or a
|
||
// double. If it's negative, it can't match a ref, but that's OK -- it won't!
|
||
//
|
||
// However, '1' and '0' are used to represent booleans, and some integers are also
|
||
// used to represent FTS values. We don't want to accidentally match those.
|
||
//
|
||
// We ask `SQLValueType` whether this value is in range for how booleans are
|
||
// represented in the database.
|
||
//
|
||
// We only hit this code path when the attribute is unknown, so we're querying
|
||
// `all_datoms`. That means we don't see FTS IDs at all -- they're transparently
|
||
// replaced by their strings. If that changes, then you should also exclude the
|
||
// string type code (10) here.
|
||
let must_exclude_boolean = ValueType::Boolean.accommodates_integer(value);
|
||
if must_exclude_boolean {
|
||
Constraint::And {
|
||
constraints: vec![
|
||
Constraint::equal(value_column,
|
||
ColumnOrExpression::Value(TypedValue::Long(value))),
|
||
Constraint::not_equal(tag_column,
|
||
ColumnOrExpression::Integer(ValueType::Boolean.value_type_tag())),
|
||
],
|
||
}
|
||
} else {
|
||
Constraint::equal(value_column, ColumnOrExpression::Value(TypedValue::Long(value)))
|
||
}
|
||
},
|
||
|
||
Inequality { operator, left, right } => {
|
||
Constraint::Infix {
|
||
op: Op(operator.to_sql_operator()),
|
||
left: left.into(),
|
||
right: right.into(),
|
||
}
|
||
},
|
||
|
||
Matches(left, right) => {
|
||
Constraint::Infix {
|
||
op: Op("MATCH"),
|
||
left: ColumnOrExpression::Column(left),
|
||
right: right.into(),
|
||
}
|
||
},
|
||
HasTypes { value: table, value_types, check_value } => {
|
||
let constraints = if check_value {
|
||
possible_affinities(value_types)
|
||
.into_iter()
|
||
.map(|(tag, affinities)| {
|
||
let to_check = if affinities.is_empty() || affinities.len() == affinity_count(tag) {
|
||
None
|
||
} else {
|
||
Some(affinities)
|
||
};
|
||
type_constraint(&table, tag, to_check)
|
||
}).collect()
|
||
} else {
|
||
value_types.into_iter()
|
||
.map(|vt| type_constraint(&table, vt.value_type_tag(), None))
|
||
.collect()
|
||
};
|
||
Constraint::Or { constraints }
|
||
},
|
||
|
||
NotExists(computed_table) => {
|
||
let subquery = table_for_computed(computed_table, TableAlias::new());
|
||
Constraint::NotExists {
|
||
subquery: subquery,
|
||
}
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
pub enum ProjectedSelect {
|
||
Constant(ConstantProjector),
|
||
Query {
|
||
query: SelectQuery,
|
||
projector: Box<Projector>,
|
||
},
|
||
}
|
||
|
||
// Nasty little hack to let us move out of indexed context.
|
||
struct ConsumableVec<T> {
|
||
inner: Vec<Option<T>>,
|
||
}
|
||
|
||
impl<T> From<Vec<T>> for ConsumableVec<T> {
|
||
fn from(vec: Vec<T>) -> ConsumableVec<T> {
|
||
ConsumableVec { inner: vec.into_iter().map(|x| Some(x)).collect() }
|
||
}
|
||
}
|
||
|
||
impl<T> ConsumableVec<T> {
|
||
fn take_dangerously(&mut self, i: usize) -> T {
|
||
::std::mem::replace(&mut self.inner[i], None).expect("each value to only be fetched once")
|
||
}
|
||
}
|
||
|
||
fn table_for_computed(computed: ComputedTable, alias: TableAlias) -> TableOrSubquery {
|
||
match computed {
|
||
ComputedTable::Union {
|
||
projection, type_extraction, arms,
|
||
} => {
|
||
// The projection list for each CC must have the same shape and the same names.
|
||
// The values we project might be fixed or they might be columns.
|
||
TableOrSubquery::Union(
|
||
arms.into_iter()
|
||
.map(|cc| {
|
||
// We're going to end up with the variables being projected and also some
|
||
// type tag columns.
|
||
let mut columns: Vec<ProjectedColumn> = Vec::with_capacity(projection.len() + type_extraction.len());
|
||
|
||
// For each variable, find out which column it maps to within this arm, and
|
||
// project it as the variable name.
|
||
// E.g., SELECT datoms03.v AS `?x`.
|
||
for var in projection.iter() {
|
||
// TODO: chain results out.
|
||
let (projected_column, type_set) = projected_column_for_var(var, &cc).expect("every var to be bound");
|
||
columns.push(projected_column);
|
||
|
||
// Similarly, project type tags if they're not known conclusively in the
|
||
// outer query.
|
||
// Assumption: we'll never need to project a tag without projecting the value of a variable.
|
||
if type_extraction.contains(var) {
|
||
let expression =
|
||
if let Some(tag) = type_set.unique_type_tag() {
|
||
// If we know the type for sure, just project the constant.
|
||
// SELECT datoms03.v AS `?x`, 10 AS `?x_value_type_tag`
|
||
ColumnOrExpression::Integer(tag)
|
||
} else {
|
||
// Otherwise, we'll have an established type binding! This'll be
|
||
// either a datoms table or, recursively, a subquery. Project
|
||
// this:
|
||
// SELECT datoms03.v AS `?x`,
|
||
// datoms03.value_type_tag AS `?x_value_type_tag`
|
||
let extract = cc.extracted_types
|
||
.get(var)
|
||
.expect("Expected variable to have a known type or an extracted type");
|
||
ColumnOrExpression::Column(extract.clone())
|
||
};
|
||
let type_column = VariableColumn::VariableTypeTag(var.clone());
|
||
let proj = ProjectedColumn(expression, type_column.column_name());
|
||
columns.push(proj);
|
||
}
|
||
}
|
||
|
||
// Each arm simply turns into a subquery.
|
||
// The SQL translation will stuff "UNION" between each arm.
|
||
let projection = Projection::Columns(columns);
|
||
cc_to_select_query(projection, cc, false, vec![], None, Limit::None)
|
||
}).collect(),
|
||
alias)
|
||
},
|
||
ComputedTable::Subquery(subquery) => {
|
||
TableOrSubquery::Subquery(Box::new(cc_to_exists(subquery)))
|
||
},
|
||
ComputedTable::NamedValues {
|
||
names, values,
|
||
} => {
|
||
// We assume column homogeneity, so we won't have any type tag columns.
|
||
TableOrSubquery::Values(Values::Named(names, values), alias)
|
||
},
|
||
}
|
||
}
|
||
|
||
fn empty_query() -> SelectQuery {
|
||
SelectQuery {
|
||
distinct: false,
|
||
projection: Projection::One,
|
||
from: FromClause::Nothing,
|
||
group_by: vec![],
|
||
constraints: vec![],
|
||
order: vec![],
|
||
limit: Limit::None,
|
||
}
|
||
}
|
||
|
||
/// Returns a `SelectQuery` that queries for the provided `cc`. Note that this _always_ returns a
|
||
/// query that runs SQL. The next level up the call stack can check for known-empty queries if
|
||
/// needed.
|
||
fn cc_to_select_query(projection: Projection,
|
||
cc: ConjoiningClauses,
|
||
distinct: bool,
|
||
group_by: Vec<GroupBy>,
|
||
order: Option<Vec<OrderBy>>,
|
||
limit: Limit) -> SelectQuery {
|
||
let from = if cc.from.is_empty() {
|
||
FromClause::Nothing
|
||
} else {
|
||
// Move these out of the CC.
|
||
let from = cc.from;
|
||
let mut computed: ConsumableVec<_> = cc.computed_tables.into();
|
||
|
||
// Why do we put computed tables directly into the `FROM` clause? The alternative is to use
|
||
// a CTE (`WITH`). They're typically equivalent, but some SQL systems (notably Postgres)
|
||
// treat CTEs as optimization barriers, so a `WITH` can be significantly slower. Given that
|
||
// this is easy enough to change later, we'll opt for using direct inclusion in `FROM`.
|
||
let tables =
|
||
from.into_iter().map(|source_alias| {
|
||
match source_alias {
|
||
SourceAlias(DatomsTable::Computed(i), alias) => {
|
||
let comp = computed.take_dangerously(i);
|
||
table_for_computed(comp, alias)
|
||
},
|
||
_ => {
|
||
TableOrSubquery::Table(source_alias)
|
||
}
|
||
}
|
||
});
|
||
|
||
FromClause::TableList(TableList(tables.collect()))
|
||
};
|
||
|
||
let order = order.map_or(vec![], |vec| { vec.into_iter().map(|o| o.into()).collect() });
|
||
let limit = if cc.empty_because.is_some() { Limit::Fixed(0) } else { limit };
|
||
SelectQuery {
|
||
distinct: distinct,
|
||
projection: projection,
|
||
from: from,
|
||
group_by: group_by,
|
||
constraints: cc.wheres
|
||
.into_iter()
|
||
.map(|c| c.to_constraint())
|
||
.collect(),
|
||
order: order,
|
||
limit: limit,
|
||
}
|
||
}
|
||
|
||
/// Return a query that projects `1` if the `cc` matches the store, and returns no results
|
||
/// if it doesn't.
|
||
pub fn cc_to_exists(cc: ConjoiningClauses) -> SelectQuery {
|
||
if cc.is_known_empty() {
|
||
// In this case we can produce a very simple query that returns no results.
|
||
empty_query()
|
||
} else {
|
||
cc_to_select_query(Projection::One, cc, false, vec![], None, Limit::None)
|
||
}
|
||
}
|
||
|
||
/// Take a query and wrap it as a subquery of a new query with the provided projection list.
|
||
/// All limits, ordering, and grouping move to the outer query. The inner query is marked as
|
||
/// distinct.
|
||
fn re_project(mut inner: SelectQuery, projection: Projection) -> SelectQuery {
|
||
let outer_distinct = inner.distinct;
|
||
inner.distinct = true;
|
||
let group_by = inner.group_by;
|
||
inner.group_by = vec![];
|
||
let order_by = inner.order;
|
||
inner.order = vec![];
|
||
let limit = inner.limit;
|
||
inner.limit = Limit::None;
|
||
|
||
use self::Projection::*;
|
||
|
||
let nullable = match &projection {
|
||
&Columns(ref columns) => {
|
||
columns.iter().filter_map(|pc| {
|
||
match pc {
|
||
&ProjectedColumn(ColumnOrExpression::NullableAggregate(_, _), ref name) => {
|
||
Some(Constraint::IsNotNull {
|
||
value: ColumnOrExpression::ExistingColumn(name.clone()),
|
||
})
|
||
},
|
||
_ => None,
|
||
}
|
||
}).collect()
|
||
},
|
||
&Star => vec![],
|
||
&One => vec![],
|
||
};
|
||
|
||
if nullable.is_empty() {
|
||
return SelectQuery {
|
||
distinct: outer_distinct,
|
||
projection: projection,
|
||
from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(inner))])),
|
||
constraints: vec![],
|
||
group_by: group_by,
|
||
order: order_by,
|
||
limit: limit,
|
||
};
|
||
}
|
||
|
||
// Our pattern is `SELECT * FROM (SELECT ...) WHERE (nullable aggregate) IS NOT NULL`. If
|
||
// there's an `ORDER BY` in the subselect, SQL does not guarantee that the outer select will
|
||
// respect that order. But `ORDER BY` is relevant to the subselect when we have a `LIMIT`.
|
||
// Thus we lift the `ORDER BY` if there’s no `LIMIT` in the subselect, and repeat the `ORDER BY`
|
||
// if there is.
|
||
let subselect = SelectQuery {
|
||
distinct: outer_distinct,
|
||
projection: projection,
|
||
from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(inner))])),
|
||
constraints: vec![],
|
||
group_by: group_by,
|
||
order: match &limit {
|
||
&Limit::None => vec![],
|
||
&Limit::Fixed(_) | &Limit::Variable(_) => order_by.clone(),
|
||
},
|
||
limit,
|
||
};
|
||
|
||
SelectQuery {
|
||
distinct: false,
|
||
projection: Projection::Star,
|
||
from: FromClause::TableList(TableList(vec![TableOrSubquery::Subquery(Box::new(subselect))])),
|
||
constraints: nullable,
|
||
group_by: vec![],
|
||
order: order_by,
|
||
limit: Limit::None, // Any limiting comes from the internal query.
|
||
}
|
||
}
|
||
|
||
/// Consume a provided `AlgebraicQuery` to yield a new
|
||
/// `ProjectedSelect`.
|
||
pub fn query_to_select(schema: &Schema, query: AlgebraicQuery) -> Result<ProjectedSelect> {
|
||
// TODO: we can't pass `query.limit` here if we aggregate during projection.
|
||
// SQL-based aggregation -- `SELECT SUM(datoms00.e)` -- is fine.
|
||
query_projection(schema, &query).map(|e| match e {
|
||
Either::Left(constant) => ProjectedSelect::Constant(constant),
|
||
Either::Right(CombinedProjection {
|
||
sql_projection,
|
||
pre_aggregate_projection,
|
||
datalog_projector,
|
||
distinct,
|
||
group_by_cols,
|
||
}) => {
|
||
ProjectedSelect::Query {
|
||
query: match pre_aggregate_projection {
|
||
// If we know we need a nested query for aggregation, build that first.
|
||
Some(pre_aggregate) => {
|
||
let inner = cc_to_select_query(pre_aggregate,
|
||
query.cc,
|
||
distinct,
|
||
group_by_cols,
|
||
query.order,
|
||
query.limit);
|
||
let outer = re_project(inner, sql_projection);
|
||
outer
|
||
},
|
||
None => {
|
||
cc_to_select_query(sql_projection, query.cc, distinct, group_by_cols, query.order, query.limit)
|
||
},
|
||
},
|
||
projector: datalog_projector,
|
||
}
|
||
},
|
||
})
|
||
}
|