bc63744aba
* Pre: put query parts in alphabetical order. * Pre: rename 'input' to 'query' in translate tests. * Part 1: parse :limit. * Part 2: validate and escape variable parameters in SQL. * Part 3: algebrize and translate limits.
752 lines
No EOL
24 KiB
Rust
752 lines
No EOL
24 KiB
Rust
// Copyright 2016 Mozilla
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
|
|
// this file except in compliance with the License. You may obtain a copy of the
|
|
// License at http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
///! This module defines some core types that support find expressions: sources,
|
|
///! variables, expressions, etc.
|
|
///! These are produced as 'fuel' by the query parser, consumed by the query
|
|
///! translator and executor.
|
|
///!
|
|
///! Many of these types are defined as simple structs that are little more than
|
|
///! a richer type alias: a variable, for example, is really just a fancy kind
|
|
///! of string.
|
|
///!
|
|
///! At some point in the future, we might consider reducing copying and memory
|
|
///! usage by recasting all of these string-holding structs and enums in terms
|
|
///! of string references, with those references being slices of some parsed
|
|
///! input query string, and valid for the lifetime of that string.
|
|
///!
|
|
///! For now, for the sake of simplicity, all of these strings are heap-allocated.
|
|
///!
|
|
///! Furthermore, we might cut out some of the chaff here: each time a 'tagged'
|
|
///! type is used within an enum, we have an opportunity to simplify and use the
|
|
///! inner type directly in conjunction with matching on the enum. Before diving
|
|
///! deeply into this it's worth recognizing that this loss of 'sovereignty' is
|
|
///! a tradeoff against well-typed function signatures and other such boundaries.
|
|
|
|
extern crate edn;
|
|
extern crate mentat_core;
|
|
|
|
use std::collections::{
|
|
BTreeSet,
|
|
};
|
|
|
|
use std::fmt;
|
|
use std::rc::Rc;
|
|
|
|
use edn::{BigInt, OrderedFloat};
|
|
pub use edn::{NamespacedKeyword, PlainSymbol};
|
|
|
|
use mentat_core::{
|
|
TypedValue,
|
|
};
|
|
|
|
pub type SrcVarName = String; // Do not include the required syntactic '$'.
|
|
|
|
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
|
|
pub struct Variable(pub Rc<PlainSymbol>);
|
|
|
|
impl Variable {
|
|
pub fn as_str(&self) -> &str {
|
|
self.0.as_ref().0.as_str()
|
|
}
|
|
|
|
pub fn to_string(&self) -> String {
|
|
self.0.as_ref().0.clone()
|
|
}
|
|
|
|
pub fn name(&self) -> PlainSymbol {
|
|
self.0.as_ref().clone()
|
|
}
|
|
|
|
/// Return a new `Variable`, assuming that the provided string is a valid name.
|
|
pub fn from_valid_name(name: &str) -> Variable {
|
|
let s = PlainSymbol::new(name);
|
|
assert!(s.is_var_symbol());
|
|
Variable(Rc::new(s))
|
|
}
|
|
}
|
|
|
|
pub trait FromValue<T> {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<T>;
|
|
}
|
|
|
|
/// If the provided EDN value is a PlainSymbol beginning with '?', return
|
|
/// it wrapped in a Variable. If not, return None.
|
|
/// TODO: intern strings. #398.
|
|
impl FromValue<Variable> for Variable {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<Variable> {
|
|
if let edn::SpannedValue::PlainSymbol(ref s) = v.inner {
|
|
Variable::from_symbol(s)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Variable {
|
|
pub fn from_rc(sym: Rc<PlainSymbol>) -> Option<Variable> {
|
|
if sym.is_var_symbol() {
|
|
Some(Variable(sym.clone()))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// TODO: intern strings. #398.
|
|
pub fn from_symbol(sym: &PlainSymbol) -> Option<Variable> {
|
|
if sym.is_var_symbol() {
|
|
Some(Variable(Rc::new(sym.clone())))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Variable {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "var({})", self.0)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
|
|
pub struct PredicateFn(pub PlainSymbol);
|
|
|
|
impl FromValue<PredicateFn> for PredicateFn {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<PredicateFn> {
|
|
if let edn::SpannedValue::PlainSymbol(ref s) = v.inner {
|
|
PredicateFn::from_symbol(s)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PredicateFn {
|
|
pub fn from_symbol(sym: &PlainSymbol) -> Option<PredicateFn> {
|
|
// TODO: validate the acceptable set of function names.
|
|
Some(PredicateFn(sym.clone()))
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum Direction {
|
|
Ascending,
|
|
Descending,
|
|
}
|
|
|
|
/// An abstract declaration of ordering: direction and variable.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct Order(pub Direction, pub Variable); // Future: Element instead of Variable?
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
|
pub enum SrcVar {
|
|
DefaultSrc,
|
|
NamedSrc(SrcVarName),
|
|
}
|
|
|
|
impl FromValue<SrcVar> for SrcVar {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<SrcVar> {
|
|
if let edn::SpannedValue::PlainSymbol(ref s) = v.inner {
|
|
SrcVar::from_symbol(s)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SrcVar {
|
|
pub fn from_symbol(sym: &PlainSymbol) -> Option<SrcVar> {
|
|
if sym.is_src_symbol() {
|
|
Some(SrcVar::NamedSrc(sym.plain_name().to_string()))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// These are the scalar values representable in EDN.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum NonIntegerConstant {
|
|
Boolean(bool),
|
|
BigInteger(BigInt),
|
|
Float(OrderedFloat<f64>),
|
|
Text(Rc<String>),
|
|
}
|
|
|
|
impl NonIntegerConstant {
|
|
pub fn into_typed_value(self) -> TypedValue {
|
|
match self {
|
|
NonIntegerConstant::BigInteger(_) => unimplemented!(), // TODO: #280.
|
|
NonIntegerConstant::Boolean(v) => TypedValue::Boolean(v),
|
|
NonIntegerConstant::Float(v) => TypedValue::Double(v),
|
|
NonIntegerConstant::Text(v) => TypedValue::String(v),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum FnArg {
|
|
Variable(Variable),
|
|
SrcVar(SrcVar),
|
|
EntidOrInteger(i64),
|
|
Ident(NamespacedKeyword),
|
|
Constant(NonIntegerConstant),
|
|
}
|
|
|
|
impl FromValue<FnArg> for FnArg {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<FnArg> {
|
|
// TODO: support SrcVars.
|
|
Variable::from_value(v.clone()) // TODO: don't clone!
|
|
.and_then(|v| Some(FnArg::Variable(v)))
|
|
.or_else(|| {
|
|
println!("from_value {}", v.inner);
|
|
match v.inner {
|
|
edn::SpannedValue::Integer(i) => Some(FnArg::EntidOrInteger(i)),
|
|
edn::SpannedValue::Float(f) => Some(FnArg::Constant(NonIntegerConstant::Float(f))),
|
|
_ => unimplemented!(),
|
|
}})
|
|
}
|
|
}
|
|
|
|
/// e, a, tx can't be values -- no strings, no floats -- and so
|
|
/// they can only be variables, entity IDs, ident keywords, or
|
|
/// placeholders.
|
|
/// This encoding allows us to represent integers that aren't
|
|
/// entity IDs. That'll get filtered out in the context of the
|
|
/// database.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum PatternNonValuePlace {
|
|
Placeholder,
|
|
Variable(Variable),
|
|
Entid(i64), // Will always be +ve. See #190.
|
|
Ident(Rc<NamespacedKeyword>),
|
|
}
|
|
|
|
impl PatternNonValuePlace {
|
|
// I think we'll want move variants, so let's leave these here for now.
|
|
#[allow(dead_code)]
|
|
fn into_pattern_value_place(self) -> PatternValuePlace {
|
|
match self {
|
|
PatternNonValuePlace::Placeholder => PatternValuePlace::Placeholder,
|
|
PatternNonValuePlace::Variable(x) => PatternValuePlace::Variable(x),
|
|
PatternNonValuePlace::Entid(x) => PatternValuePlace::EntidOrInteger(x),
|
|
PatternNonValuePlace::Ident(x) => PatternValuePlace::IdentOrKeyword(x),
|
|
}
|
|
}
|
|
|
|
fn to_pattern_value_place(&self) -> PatternValuePlace {
|
|
match *self {
|
|
PatternNonValuePlace::Placeholder => PatternValuePlace::Placeholder,
|
|
PatternNonValuePlace::Variable(ref x) => PatternValuePlace::Variable(x.clone()),
|
|
PatternNonValuePlace::Entid(x) => PatternValuePlace::EntidOrInteger(x),
|
|
PatternNonValuePlace::Ident(ref x) => PatternValuePlace::IdentOrKeyword(x.clone()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl FromValue<PatternNonValuePlace> for PatternNonValuePlace {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<PatternNonValuePlace> {
|
|
match v.inner {
|
|
edn::SpannedValue::Integer(x) => if x >= 0 {
|
|
Some(PatternNonValuePlace::Entid(x))
|
|
} else {
|
|
None
|
|
},
|
|
edn::SpannedValue::PlainSymbol(ref x) => if x.0.as_str() == "_" {
|
|
Some(PatternNonValuePlace::Placeholder)
|
|
} else {
|
|
if let Some(v) = Variable::from_symbol(x) {
|
|
Some(PatternNonValuePlace::Variable(v))
|
|
} else {
|
|
None
|
|
}
|
|
},
|
|
edn::SpannedValue::NamespacedKeyword(ref x) =>
|
|
Some(PatternNonValuePlace::Ident(Rc::new(x.clone()))),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum IdentOrEntid {
|
|
Ident(Rc<NamespacedKeyword>),
|
|
Entid(i64),
|
|
}
|
|
|
|
/// The `v` part of a pattern can be much broader: it can represent
|
|
/// integers that aren't entity IDs (particularly negative integers),
|
|
/// strings, and all the rest. We group those under `Constant`.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum PatternValuePlace {
|
|
Placeholder,
|
|
Variable(Variable),
|
|
EntidOrInteger(i64),
|
|
IdentOrKeyword(Rc<NamespacedKeyword>),
|
|
Constant(NonIntegerConstant),
|
|
}
|
|
|
|
impl FromValue<PatternValuePlace> for PatternValuePlace {
|
|
fn from_value(v: edn::ValueAndSpan) -> Option<PatternValuePlace> {
|
|
match v.inner {
|
|
edn::SpannedValue::Integer(x) =>
|
|
Some(PatternValuePlace::EntidOrInteger(x)),
|
|
edn::SpannedValue::PlainSymbol(ref x) if x.0.as_str() == "_" =>
|
|
Some(PatternValuePlace::Placeholder),
|
|
edn::SpannedValue::PlainSymbol(ref x) =>
|
|
Variable::from_symbol(x).map(PatternValuePlace::Variable),
|
|
edn::SpannedValue::NamespacedKeyword(ref x) =>
|
|
Some(PatternValuePlace::IdentOrKeyword(Rc::new(x.clone()))),
|
|
edn::SpannedValue::Boolean(x) =>
|
|
Some(PatternValuePlace::Constant(NonIntegerConstant::Boolean(x))),
|
|
edn::SpannedValue::Float(x) =>
|
|
Some(PatternValuePlace::Constant(NonIntegerConstant::Float(x))),
|
|
edn::SpannedValue::BigInteger(ref x) =>
|
|
Some(PatternValuePlace::Constant(NonIntegerConstant::BigInteger(x.clone()))),
|
|
edn::SpannedValue::Text(ref x) =>
|
|
// TODO: intern strings. #398.
|
|
Some(PatternValuePlace::Constant(NonIntegerConstant::Text(Rc::new(x.clone())))),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PatternValuePlace {
|
|
// I think we'll want move variants, so let's leave these here for now.
|
|
#[allow(dead_code)]
|
|
fn into_pattern_non_value_place(self) -> Option<PatternNonValuePlace> {
|
|
match self {
|
|
PatternValuePlace::Placeholder => Some(PatternNonValuePlace::Placeholder),
|
|
PatternValuePlace::Variable(x) => Some(PatternNonValuePlace::Variable(x)),
|
|
PatternValuePlace::EntidOrInteger(x) => if x >= 0 {
|
|
Some(PatternNonValuePlace::Entid(x))
|
|
} else {
|
|
None
|
|
},
|
|
PatternValuePlace::IdentOrKeyword(x) => Some(PatternNonValuePlace::Ident(x)),
|
|
PatternValuePlace::Constant(_) => None,
|
|
}
|
|
}
|
|
|
|
fn to_pattern_non_value_place(&self) -> Option<PatternNonValuePlace> {
|
|
match *self {
|
|
PatternValuePlace::Placeholder => Some(PatternNonValuePlace::Placeholder),
|
|
PatternValuePlace::Variable(ref x) => Some(PatternNonValuePlace::Variable(x.clone())),
|
|
PatternValuePlace::EntidOrInteger(x) => if x >= 0 {
|
|
Some(PatternNonValuePlace::Entid(x))
|
|
} else {
|
|
None
|
|
},
|
|
PatternValuePlace::IdentOrKeyword(ref x) => Some(PatternNonValuePlace::Ident(x.clone())),
|
|
PatternValuePlace::Constant(_) => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
pub enum PullPattern {
|
|
Constant(Constant),
|
|
Variable(Variable),
|
|
}
|
|
|
|
pub struct Pull {
|
|
pub src: SrcVar,
|
|
pub var: Variable,
|
|
pub pattern: PullPattern, // Constant, variable, or plain variable.
|
|
}
|
|
*/
|
|
|
|
/*
|
|
pub struct Aggregate {
|
|
pub fn_name: String,
|
|
pub args: Vec<FnArg>,
|
|
}
|
|
*/
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum Element {
|
|
Variable(Variable),
|
|
// Aggregate(Aggregate), // TODO
|
|
// Pull(Pull), // TODO
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum Limit {
|
|
None,
|
|
Fixed(u64),
|
|
Variable(Variable),
|
|
}
|
|
|
|
/// A definition of the first part of a find query: the
|
|
/// `[:find ?foo ?bar…]` bit.
|
|
///
|
|
/// There are four different kinds of find specs, allowing you to query for
|
|
/// a single value, a collection of values from different entities, a single
|
|
/// tuple (relation), or a collection of tuples.
|
|
///
|
|
/// Examples:
|
|
///
|
|
/// ```rust
|
|
/// # extern crate edn;
|
|
/// # extern crate mentat_query;
|
|
/// # use std::rc::Rc;
|
|
/// # use edn::PlainSymbol;
|
|
/// # use mentat_query::{Element, FindSpec, Variable};
|
|
///
|
|
/// # fn main() {
|
|
///
|
|
/// let elements = vec![
|
|
/// Element::Variable(Variable::from_valid_name("?foo")),
|
|
/// Element::Variable(Variable::from_valid_name("?bar")),
|
|
/// ];
|
|
/// let rel = FindSpec::FindRel(elements);
|
|
///
|
|
/// if let FindSpec::FindRel(elements) = rel {
|
|
/// assert_eq!(2, elements.len());
|
|
/// }
|
|
///
|
|
/// # }
|
|
/// ```
|
|
///
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum FindSpec {
|
|
/// Returns an array of arrays.
|
|
FindRel(Vec<Element>),
|
|
|
|
/// Returns an array of scalars, usually homogeneous.
|
|
/// This is equivalent to mapping over the results of a `FindRel`,
|
|
/// returning the first value of each.
|
|
FindColl(Element),
|
|
|
|
/// Returns a single tuple: a heterogeneous array of scalars. Equivalent to
|
|
/// taking the first result from a `FindRel`.
|
|
FindTuple(Vec<Element>),
|
|
|
|
/// Returns a single scalar value. Equivalent to taking the first result
|
|
/// from a `FindColl`.
|
|
FindScalar(Element),
|
|
}
|
|
|
|
/// Returns true if the provided `FindSpec` returns at most one result.
|
|
impl FindSpec {
|
|
pub fn is_unit_limited(&self) -> bool {
|
|
use FindSpec::*;
|
|
match self {
|
|
&FindScalar(..) => true,
|
|
&FindTuple(..) => true,
|
|
&FindRel(..) => false,
|
|
&FindColl(..) => false,
|
|
}
|
|
}
|
|
|
|
pub fn expected_column_count(&self) -> usize {
|
|
use FindSpec::*;
|
|
match self {
|
|
&FindScalar(..) => 1,
|
|
&FindColl(..) => 1,
|
|
&FindTuple(ref elems) | &FindRel(ref elems) => elems.len(),
|
|
}
|
|
}
|
|
|
|
|
|
/// Returns true if the provided `FindSpec` cares about distinct results.
|
|
///
|
|
/// I use the words "cares about" because find is generally defined in terms of producing distinct
|
|
/// results at the Datalog level.
|
|
///
|
|
/// Two of the find specs (scalar and tuple) produce only a single result. Those don't need to be
|
|
/// run with `SELECT DISTINCT`, because we're only consuming a single result. Those queries will be
|
|
/// run with `LIMIT 1`.
|
|
///
|
|
/// Additionally, some projections cannot produce duplicate results: `[:find (max ?x) …]`, for
|
|
/// example.
|
|
///
|
|
/// This function gives us the hook to add that logic when we're ready.
|
|
///
|
|
/// Beyond this, `DISTINCT` is not always needed. For example, in some kinds of accumulation or
|
|
/// sampling projections we might not need to do it at the SQL level because we're consuming into
|
|
/// a dupe-eliminating data structure like a Set, or we know that a particular query cannot produce
|
|
/// duplicate results.
|
|
pub fn requires_distinct(&self) -> bool {
|
|
!self.is_unit_limited()
|
|
}
|
|
}
|
|
|
|
// Note that the "implicit blank" rule applies.
|
|
// A pattern with a reversed attribute — :foo/_bar — is reversed
|
|
// at the point of parsing. These `Pattern` instances only represent
|
|
// one direction.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct Pattern {
|
|
pub source: Option<SrcVar>,
|
|
pub entity: PatternNonValuePlace,
|
|
pub attribute: PatternNonValuePlace,
|
|
pub value: PatternValuePlace,
|
|
pub tx: PatternNonValuePlace,
|
|
}
|
|
|
|
impl Pattern {
|
|
pub fn new(src: Option<SrcVar>,
|
|
e: PatternNonValuePlace,
|
|
a: PatternNonValuePlace,
|
|
v: PatternValuePlace,
|
|
tx: PatternNonValuePlace) -> Option<Pattern> {
|
|
let aa = a.clone(); // Too tired of fighting borrow scope for now.
|
|
if let PatternNonValuePlace::Ident(ref k) = aa {
|
|
if k.is_backward() {
|
|
// e and v have different types; we must convert them.
|
|
// Not every parseable value is suitable for the entity field!
|
|
// As such, this is a failable constructor.
|
|
let e_v = e.to_pattern_value_place();
|
|
if let Some(v_e) = v.to_pattern_non_value_place() {
|
|
return Some(Pattern {
|
|
source: src,
|
|
entity: v_e,
|
|
attribute: PatternNonValuePlace::Ident(Rc::new(k.to_reversed())),
|
|
value: e_v,
|
|
tx: tx,
|
|
});
|
|
} else {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
Some(Pattern {
|
|
source: src,
|
|
entity: e,
|
|
attribute: a,
|
|
value: v,
|
|
tx: tx,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct Predicate {
|
|
pub operator: PlainSymbol,
|
|
pub args: Vec<FnArg>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum UnifyVars {
|
|
/// `Implicit` means the variables in an `or` or `not` are derived from the enclosed pattern.
|
|
/// DataScript regards these vars as 'free': these variables don't need to be bound by the
|
|
/// enclosing environment.
|
|
///
|
|
/// Datomic's documentation implies that all implicit variables are required:
|
|
///
|
|
/// > Datomic will attempt to push the or clause down until all necessary variables are bound,
|
|
/// > and will throw an exception if that is not possible.
|
|
///
|
|
/// but that would render top-level `or` expressions (as used in Datomic's own examples!)
|
|
/// impossible, so we assume that this is an error in the documentation.
|
|
///
|
|
/// All contained 'arms' in an `or` with implicit variables must bind the same vars.
|
|
Implicit,
|
|
|
|
/// `Explicit` means the variables in an `or-join` or `not-join` are explicitly listed,
|
|
/// specified with `required-vars` syntax.
|
|
///
|
|
/// DataScript parses these as free, but allows (incorrectly) the use of more complicated
|
|
/// `rule-vars` syntax.
|
|
///
|
|
/// Only the named variables will be unified with the enclosing query.
|
|
///
|
|
/// Every 'arm' in an `or-join` must mention the entire set of explicit vars.
|
|
Explicit(Vec<Variable>),
|
|
}
|
|
|
|
impl WhereClause {
|
|
pub fn is_pattern(&self) -> bool {
|
|
match self {
|
|
&WhereClause::Pattern(_) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum OrWhereClause {
|
|
Clause(WhereClause),
|
|
And(Vec<WhereClause>),
|
|
}
|
|
|
|
impl OrWhereClause {
|
|
pub fn is_pattern_or_patterns(&self) -> bool {
|
|
match self {
|
|
&OrWhereClause::Clause(WhereClause::Pattern(_)) => true,
|
|
&OrWhereClause::And(ref clauses) => clauses.iter().all(|clause| clause.is_pattern()),
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct OrJoin {
|
|
pub unify_vars: UnifyVars,
|
|
pub clauses: Vec<OrWhereClause>,
|
|
|
|
/// Caches the result of `collect_mentioned_variables`.
|
|
mentioned_vars: Option<BTreeSet<Variable>>,
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub enum WhereClause {
|
|
Not,
|
|
NotJoin,
|
|
OrJoin(OrJoin),
|
|
Pred(Predicate),
|
|
WhereFn,
|
|
RuleExpr,
|
|
Pattern(Pattern),
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct FindQuery {
|
|
pub find_spec: FindSpec,
|
|
pub default_source: SrcVar,
|
|
pub with: BTreeSet<Variable>,
|
|
pub in_vars: BTreeSet<Variable>,
|
|
pub in_sources: BTreeSet<SrcVar>,
|
|
pub limit: Limit,
|
|
pub where_clauses: Vec<WhereClause>,
|
|
pub order: Option<Vec<Order>>,
|
|
// TODO: in_rules;
|
|
}
|
|
|
|
impl OrJoin {
|
|
pub fn new(unify_vars: UnifyVars, clauses: Vec<OrWhereClause>) -> OrJoin {
|
|
OrJoin {
|
|
unify_vars: unify_vars,
|
|
clauses: clauses,
|
|
mentioned_vars: None,
|
|
}
|
|
}
|
|
|
|
/// Return true if either the `OrJoin` is `UnifyVars::Implicit`, or if
|
|
/// every variable mentioned inside the join is also mentioned in the `UnifyVars` list.
|
|
pub fn is_fully_unified(&self) -> bool {
|
|
match &self.unify_vars {
|
|
&UnifyVars::Implicit => true,
|
|
&UnifyVars::Explicit(ref vars) => {
|
|
// We know that the join list must be a subset of the vars in the pattern, or
|
|
// it would have failed validation. That allows us to simply compare counts here.
|
|
// TODO: in debug mode, do a full intersection, and verify that our count check
|
|
// returns the same results.
|
|
// Use the cached list if we have one.
|
|
if let Some(ref mentioned) = self.mentioned_vars {
|
|
vars.len() == mentioned.len()
|
|
} else {
|
|
vars.len() == self.collect_mentioned_variables().len()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait ContainsVariables {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>);
|
|
fn collect_mentioned_variables(&self) -> BTreeSet<Variable> {
|
|
let mut out = BTreeSet::new();
|
|
self.accumulate_mentioned_variables(&mut out);
|
|
out
|
|
}
|
|
}
|
|
|
|
impl ContainsVariables for WhereClause {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
|
|
use WhereClause::*;
|
|
match self {
|
|
&OrJoin(ref o) => o.accumulate_mentioned_variables(acc),
|
|
&Pred(ref p) => p.accumulate_mentioned_variables(acc),
|
|
&Pattern(ref p) => p.accumulate_mentioned_variables(acc),
|
|
&Not => (),
|
|
&NotJoin => (),
|
|
&WhereFn => (),
|
|
&RuleExpr => (),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ContainsVariables for OrWhereClause {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
|
|
use OrWhereClause::*;
|
|
match self {
|
|
&And(ref clauses) => for clause in clauses { clause.accumulate_mentioned_variables(acc) },
|
|
&Clause(ref clause) => clause.accumulate_mentioned_variables(acc),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ContainsVariables for OrJoin {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
|
|
for clause in &self.clauses {
|
|
clause.accumulate_mentioned_variables(acc);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl OrJoin {
|
|
pub fn dismember(self) -> (Vec<OrWhereClause>, UnifyVars, BTreeSet<Variable>) {
|
|
let vars = match self.mentioned_vars {
|
|
Some(m) => m,
|
|
None => self.collect_mentioned_variables(),
|
|
};
|
|
(self.clauses, self.unify_vars, vars)
|
|
}
|
|
|
|
pub fn mentioned_variables<'a>(&'a mut self) -> &'a BTreeSet<Variable> {
|
|
if self.mentioned_vars.is_none() {
|
|
let m = self.collect_mentioned_variables();
|
|
self.mentioned_vars = Some(m);
|
|
}
|
|
if let Some(ref mentioned) = self.mentioned_vars {
|
|
mentioned
|
|
} else {
|
|
panic!()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ContainsVariables for Predicate {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
|
|
for arg in &self.args {
|
|
if let &FnArg::Variable(ref v) = arg {
|
|
acc_ref(acc, v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn acc_ref<T: Clone + Ord>(acc: &mut BTreeSet<T>, v: &T) {
|
|
// Roll on, reference entries!
|
|
if !acc.contains(v) {
|
|
acc.insert(v.clone());
|
|
}
|
|
}
|
|
|
|
impl ContainsVariables for Pattern {
|
|
fn accumulate_mentioned_variables(&self, acc: &mut BTreeSet<Variable>) {
|
|
if let PatternNonValuePlace::Variable(ref v) = self.entity {
|
|
acc_ref(acc, v)
|
|
}
|
|
if let PatternNonValuePlace::Variable(ref v) = self.attribute {
|
|
acc_ref(acc, v)
|
|
}
|
|
if let PatternValuePlace::Variable(ref v) = self.value {
|
|
acc_ref(acc, v)
|
|
}
|
|
if let PatternNonValuePlace::Variable(ref v) = self.tx {
|
|
acc_ref(acc, v)
|
|
}
|
|
}
|
|
} |