New version that handles shape corners elegantly and optimises lines

This commit is contained in:
Chris Greening 2022-10-07 15:33:20 +01:00
parent 0a7efbc7fa
commit d65e4e7e0a
3 changed files with 862 additions and 189 deletions

10
.pre-commit-config.yaml Normal file
View file

@ -0,0 +1,10 @@
repos:
- repo: https://github.com/nbQA-dev/nbQA
rev: 0.8.0
hooks:
- id: nbqa-black
args: [--nbqa-mutate]
- repo: https://github.com/kynan/nbstripout
rev: 0.4.0
hooks:
- id: nbstripout

File diff suppressed because one or more lines are too long

592
coil_version2.ipynb Normal file
View file

@ -0,0 +1,592 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib as plt\n",
"import scipy\n",
"from skspatial.objects import LineSegment, Line\n",
"from enum import Enum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"VIA_DIAM = 0.8\n",
"VIA_DRILL = 0.4\n",
"STATOR_HOLE_RADIUS = 4\n",
"TRACK_WIDTH = 0.2\n",
"TRACK_SPACING = 0.2\n",
"TURNS = 11\n",
"STATOR_RADIUS = 20\n",
"Layer = Enum(\"Layer\", \"FRONT BACK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = [(-1.5, -0.1), (1.5, -2), (2.0, -1), (2.0, 1), (1.5, 2), (-1.5, 0.1)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the template shape wrapping around to the first point\n",
"plt.pyplot.plot(\n",
" [x for x, y in template] + [template[0][0]],\n",
" [y for x, y in template] + [template[0][1]],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this speeds things up dramatically as we only have to compute the line intersections once\n",
"# there are probably much faster ways of doing this - we're just doing a brute force search\n",
"# for the intersections - consult algorithms from games for inspiration...\n",
"def get_template_point_cache(template):\n",
" # sweep a line from the origin through 360 degress times the number of turns in 1 degree increments\n",
" # and find the intersection points with the template shape\n",
" cache = {}\n",
" for angle in np.arange(0, 360 + 1, 1):\n",
" line = LineSegment(\n",
" np.array([0, 0]),\n",
" np.array(\n",
" [1000 * np.cos(np.deg2rad(angle)), 1000 * np.sin(np.deg2rad(angle))]\n",
" ),\n",
" )\n",
" for i in range(len(template)):\n",
" segment = LineSegment(\n",
" np.array(template[i]), np.array(template[(i + 1) % len(template)])\n",
" )\n",
" try:\n",
" intersection = line.intersect_line_segment(segment)\n",
" if intersection is not None:\n",
" cache[angle] = (intersection, segment)\n",
" except ValueError:\n",
" pass\n",
" return cache\n",
"\n",
"\n",
"def get_point(angle, template, layer, spacing, cache):\n",
" if layer == Layer.BACK:\n",
" angle = angle + 180\n",
" intersection, segment = cache[angle % 360]\n",
" return intersection, segment\n",
"\n",
"\n",
"# get the points in a coil shape\n",
"# Use reverse for bottom layer (basically flips the y coordinate so that the coil goes in the opposite direction)\n",
"# Also rotates the endpoints by 90 degress so that the exit point on the bottom layer is to the left hand side\n",
"def get_points(template, turns, spacing, layer=Layer.FRONT, cache=None):\n",
" if cache is None:\n",
" cache = get_template_point_cache(template)\n",
" coil_points = []\n",
" last_segment = None\n",
" for angle in np.arange(0, 360 * turns + 1, 1):\n",
" offset = spacing * angle / 360\n",
" intersection, segment = get_point(angle, template, layer, spacing, cache)\n",
" vector = np.array(segment.point_a) - np.array(segment.point_b)\n",
" normal = vector / np.linalg.norm(vector)\n",
" # rotate the vector 90 degrees\n",
" normal = np.array([-normal[1], normal[0]])\n",
" # move the intersection point along the normal vector by the spacing\n",
" coil_point = intersection + normal * offset\n",
" if layer == Layer.BACK:\n",
" coil_points.append((coil_point[0], -coil_point[1], segment))\n",
" else:\n",
" coil_points.append((coil_point[0], coil_point[1], segment))\n",
" # run through the generated coil points and where the line segments change add a point that is the intersection of the previous and next lines\n",
" # this prevents any corner cutting\n",
" points = []\n",
" last_segment = coil_points[0][2]\n",
" for i in range(len(coil_points)):\n",
" x, y, segment = coil_points[i]\n",
" same_segment = (\n",
" (last_segment.point_a == segment.point_a).all()\n",
" and (last_segment.point_b == segment.point_b).all()\n",
" ).all()\n",
" if (not same_segment) and i > 2 and i < len(coil_points) - 2:\n",
" # create a line from the previous two points\n",
" line = Line(\n",
" np.array(coil_points[i - 2][0:2]),\n",
" np.array(coil_points[i - 2][0:2]) - np.array(coil_points[i - 1][0:2]),\n",
" )\n",
" # create a line from the next two points\n",
" line2 = Line(\n",
" np.array(coil_points[i][0:2]),\n",
" np.array(coil_points[i][0:2]) - np.array(coil_points[i + 1][0:2]),\n",
" )\n",
" # find the intersection of the two lines\n",
" intersection = line.intersect_line(line2)\n",
" # add the intersection point to the list of points\n",
" points.append(intersection)\n",
" last_segment = segment\n",
" points.append((x, y))\n",
" return points\n",
"\n",
"\n",
"def optimize_points(points):\n",
" # follow the line and remove points that are in the same direction as the previous poin\n",
" # keep doing this until the direction changes significantly\n",
" # this is a very simple optimization that removes a lot of points\n",
" # it's not perfect but it's a good start\n",
" optimized_points = []\n",
" for i in range(len(points)):\n",
" if i == 0:\n",
" optimized_points.append(points[i])\n",
" else:\n",
" vector1 = np.array(points[i]) - np.array(points[i - 1])\n",
" vector2 = np.array(points[(i + 1) % len(points)]) - np.array(points[i])\n",
" length1 = np.linalg.norm(vector1)\n",
" length2 = np.linalg.norm(vector2)\n",
" if length1 > 0 and length2 > 0:\n",
" dot = np.dot(vector1, vector2) / (length1 * length2)\n",
" # clamp dot between -1 and 1\n",
" dot = max(-1, min(1, dot))\n",
" angle = np.arccos(dot)\n",
" if angle > np.deg2rad(0.1):\n",
" optimized_points.append(points[i])\n",
" print(\"Optimised from {} to {} points\".format(len(points), len(optimized_points)))\n",
" return optimized_points\n",
"\n",
"\n",
"def chaikin(points, iterations):\n",
" if iterations == 0:\n",
" return points\n",
" l = len(points)\n",
" smoothed = []\n",
" for i in range(l - 1):\n",
" x1, y1 = points[i]\n",
" x2, y2 = points[i + 1]\n",
" smoothed.append([0.9 * x1 + 0.1 * x2, 0.9 * y1 + 0.1 * y2])\n",
" smoothed.append([0.1 * x1 + 0.9 * x2, 0.1 * y1 + 0.9 * y2])\n",
" smoothed.append(points[l - 1])\n",
" return chaikin(smoothed, iterations - 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"points = get_points(template, 10, TRACK_SPACING + TRACK_WIDTH, Layer.BACK, None)\n",
"optimized_points = chaikin(optimize_points(points), 3)\n",
"# df = pd.DataFrame(points, columns=['x', 'y'])\n",
"# ax = df.plot.line(x='x', y='y', label='Coil A', color='blue')\n",
"# ax.axis('equal')\n",
"\n",
"df_optim = pd.DataFrame(optimized_points, columns=[\"x\", \"y\"])\n",
"\n",
"ax = df_optim.plot.line(x=\"x\", y=\"y\", label=\"Coil A\", color=\"green\")\n",
"ax.axis(\"equal\")\n",
"print(len(df_optim), len(df))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cache = get_template_point_cache(template)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"points_f = get_points(template, TURNS, TRACK_SPACING + TRACK_WIDTH, Layer.FRONT, cache)\n",
"points_b = get_points(template, TURNS, TRACK_SPACING + TRACK_WIDTH, Layer.BACK, cache)\n",
"\n",
"points_f = [(0, 0)] + chaikin(optimize_points(points_f), 3)\n",
"points_b = [(0, 0)] + chaikin(optimize_points(points_b), 3)\n",
"\n",
"COIL_CENTER_RADIUS = STATOR_RADIUS / 2 + 1.5\n",
"\n",
"angle_A = 0\n",
"angle_B = 120\n",
"angle_C = 240\n",
"\n",
"# roate the points by the required angle\n",
"def rotate(points, angle):\n",
" return [\n",
" [\n",
" x * np.cos(np.deg2rad(angle)) - y * np.sin(np.deg2rad(angle)),\n",
" x * np.sin(np.deg2rad(angle)) + y * np.cos(np.deg2rad(angle)),\n",
" ]\n",
" for x, y in points\n",
" ]\n",
"\n",
"\n",
"# move the points out to the distance at the requited angle\n",
"def translate(points, distance, angle):\n",
" return [\n",
" [\n",
" x + distance * np.cos(np.deg2rad(angle)),\n",
" y + distance * np.sin(np.deg2rad(angle)),\n",
" ]\n",
" for x, y in points\n",
" ]\n",
"\n",
"\n",
"# flip the y coordinate\n",
"def flip(points):\n",
" return [[x, -y] for x, y in points]\n",
"\n",
"\n",
"# the main coils\n",
"coil_A_f = translate(rotate(points_f, angle_A), COIL_CENTER_RADIUS, angle_A)\n",
"coil_A_b = translate(rotate(points_b, angle_A), COIL_CENTER_RADIUS, angle_A)\n",
"\n",
"coil_B_f = translate(rotate(points_f, angle_B), COIL_CENTER_RADIUS, angle_B)\n",
"coil_B_b = translate(rotate(points_b, angle_B), COIL_CENTER_RADIUS, angle_B)\n",
"\n",
"coil_C_f = translate(rotate(points_f, angle_C), COIL_CENTER_RADIUS, angle_C)\n",
"coil_C_b = translate(rotate(points_b, angle_C), COIL_CENTER_RADIUS, angle_C)\n",
"\n",
"# the opposite coils - for more power!\n",
"angle_A_opp = angle_A + 180\n",
"angle_B_opp = angle_B + 180\n",
"angle_C_opp = angle_C + 180\n",
"\n",
"print(angle_A_opp, angle_B_opp, angle_C_opp)\n",
"\n",
"coil_A_opp_f = translate(\n",
" rotate(flip(points_f), angle_A_opp), COIL_CENTER_RADIUS, angle_A_opp\n",
")\n",
"coil_A_opp_b = translate(\n",
" rotate(flip(points_b), angle_A_opp), COIL_CENTER_RADIUS, angle_A_opp\n",
")\n",
"\n",
"coil_B_opp_f = translate(\n",
" rotate(flip(points_f), angle_B_opp), COIL_CENTER_RADIUS, angle_B_opp\n",
")\n",
"coil_B_opp_b = translate(\n",
" rotate(flip(points_b), angle_B_opp), COIL_CENTER_RADIUS, angle_B_opp\n",
")\n",
"\n",
"coil_C_opp_f = translate(\n",
" rotate(flip(points_f), angle_C_opp), COIL_CENTER_RADIUS, angle_C_opp\n",
")\n",
"coil_C_opp_b = translate(\n",
" rotate(flip(points_b), angle_C_opp), COIL_CENTER_RADIUS, angle_C_opp\n",
")\n",
"\n",
"# connect the front copper opposite coils together\n",
"common_connection_radius = STATOR_RADIUS - (TRACK_WIDTH + TRACK_SPACING)\n",
"common_coil_connections_b = [\n",
" (\n",
" common_connection_radius * np.cos(np.deg2rad(angle)),\n",
" common_connection_radius * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_A_opp, angle_C_opp + 5, 5)\n",
"]\n",
"coil_A_opp_f.append(\n",
" (\n",
" common_connection_radius * np.cos(np.deg2rad(angle_A_opp)),\n",
" common_connection_radius * np.sin(np.deg2rad(angle_A_opp)),\n",
" )\n",
")\n",
"coil_B_opp_f.append(\n",
" (\n",
" common_connection_radius * np.cos(np.deg2rad(angle_B_opp)),\n",
" common_connection_radius * np.sin(np.deg2rad(angle_B_opp)),\n",
" )\n",
")\n",
"coil_C_opp_f.append(\n",
" (\n",
" common_connection_radius * np.cos(np.deg2rad(angle_C_opp)),\n",
" common_connection_radius * np.sin(np.deg2rad(angle_C_opp)),\n",
" )\n",
")\n",
"\n",
"# connect coil A to it's opposite\n",
"connection_radius1 = STATOR_HOLE_RADIUS + (TRACK_SPACING)\n",
"connection_radius2 = connection_radius1 + (TRACK_SPACING + VIA_DIAM / 2)\n",
"# draw a 45 degree line from coil A at connection radius 1\n",
"# then connect up to connection radius 2\n",
"# draw a 45 degree line to the opposite coil\n",
"coil_A_b.append(\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle_A)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle_A)),\n",
" )\n",
")\n",
"coil_A_opp_b.append(\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle_A_opp)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle_A_opp)),\n",
" )\n",
")\n",
"a_connection_b = [\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_A, angle_A + 90 + 5, 5)\n",
"]\n",
"a_connection_f = [\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_A + 90, angle_A + 180 + 5, 5)\n",
"]\n",
"a_connection_b.append(a_connection_f[0])\n",
"\n",
"coil_B_b.append(\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle_B)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle_B)),\n",
" )\n",
")\n",
"coil_B_opp_b.append(\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle_B_opp)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle_B_opp)),\n",
" )\n",
")\n",
"b_connection_b = [\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_B, angle_B + 90 + 5, 5)\n",
"]\n",
"b_connection_f = [\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_B + 90, angle_B + 180 + 5, 5)\n",
"]\n",
"b_connection_b.append(b_connection_f[0])\n",
"\n",
"coil_C_b.append(\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle_C)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle_C)),\n",
" )\n",
")\n",
"coil_C_opp_b.append(\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle_C_opp)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle_C_opp)),\n",
" )\n",
")\n",
"c_connection_b = [\n",
" (\n",
" connection_radius1 * np.cos(np.deg2rad(angle)),\n",
" connection_radius1 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_C, angle_C + 90 + 5, 5)\n",
"]\n",
"c_connection_f = [\n",
" (\n",
" connection_radius2 * np.cos(np.deg2rad(angle)),\n",
" connection_radius2 * np.sin(np.deg2rad(angle)),\n",
" )\n",
" for angle in np.arange(angle_C + 90, angle_C + 180 + 5, 5)\n",
"]\n",
"c_connection_b.append(c_connection_f[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def create_track(points):\n",
" return [{\"x\": x, \"y\": y} for x, y in points]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# dump out the results to json\n",
"json_result = {\n",
" \"parameters\": {\n",
" \"trackWidth\": TRACK_WIDTH,\n",
" \"statorHoleRadius\": STATOR_HOLE_RADIUS,\n",
" \"viaDiameter\": VIA_DIAM,\n",
" \"viaDrillDiameter\": VIA_DRILL,\n",
" },\n",
" \"vias\": [\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_A)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_A)),\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_B)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_B)),\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_C)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_C)),\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_A_opp)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_A_opp)),\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_B_opp)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_B_opp)),\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_C_opp)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_C_opp)),\n",
" },\n",
" {\n",
" \"x\": common_connection_radius * np.cos(np.deg2rad(angle_A_opp)),\n",
" \"y\": common_connection_radius * np.sin(np.deg2rad(angle_A_opp)),\n",
" },\n",
" {\n",
" \"x\": common_connection_radius * np.cos(np.deg2rad(angle_B_opp)),\n",
" \"y\": common_connection_radius * np.sin(np.deg2rad(angle_B_opp)),\n",
" },\n",
" {\n",
" \"x\": common_connection_radius * np.cos(np.deg2rad(angle_C_opp)),\n",
" \"y\": common_connection_radius * np.sin(np.deg2rad(angle_C_opp)),\n",
" },\n",
" # coil A connections\n",
" {\"x\": a_connection_f[0][0], \"y\": a_connection_f[0][1]},\n",
" {\"x\": a_connection_f[-1][0], \"y\": a_connection_f[-1][1]},\n",
" # coil B connections\n",
" {\"x\": b_connection_f[0][0], \"y\": b_connection_f[0][1]},\n",
" {\"x\": b_connection_f[-1][0], \"y\": b_connection_f[-1][1]},\n",
" # coil C connections\n",
" {\"x\": c_connection_f[0][0], \"y\": c_connection_f[0][1]},\n",
" {\"x\": c_connection_f[-1][0], \"y\": c_connection_f[-1][1]},\n",
" ],\n",
" \"silk\": [\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_A)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_A)),\n",
" \"text\": \"A\",\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_B)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_B)),\n",
" \"text\": \"B\",\n",
" },\n",
" {\n",
" \"x\": COIL_CENTER_RADIUS * np.cos(np.deg2rad(angle_C)),\n",
" \"y\": COIL_CENTER_RADIUS * np.sin(np.deg2rad(angle_C)),\n",
" \"text\": \"C\",\n",
" },\n",
" ],\n",
" \"tracks\": {\n",
" \"f\": [\n",
" create_track(points)\n",
" for points in [\n",
" coil_A_f,\n",
" coil_A_opp_f,\n",
" coil_B_f,\n",
" coil_B_opp_f,\n",
" coil_C_f,\n",
" coil_C_opp_f,\n",
" a_connection_f,\n",
" b_connection_f,\n",
" c_connection_f,\n",
" ]\n",
" ],\n",
" \"b\": [\n",
" create_track(points)\n",
" for points in [\n",
" coil_A_b,\n",
" coil_A_opp_b,\n",
" coil_B_b,\n",
" coil_B_opp_b,\n",
" coil_C_b,\n",
" coil_C_opp_b,\n",
" common_coil_connections_b,\n",
" a_connection_b,\n",
" b_connection_b,\n",
" c_connection_b,\n",
" ]\n",
" ],\n",
" },\n",
"}\n",
"\n",
"import json\n",
"\n",
"json.dump(json_result, open(\"coil.json\", \"w\"))\n",
"\n",
"\n",
"df = pd.DataFrame(coil_A_f, columns=[\"x\", \"y\"])\n",
"ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil A\", color=\"blue\")\n",
"ax.axis(\"equal\")\n",
"df = pd.DataFrame(coil_A_b, columns=[\"x\", \"y\"])\n",
"ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil B\", color=\"green\")\n",
"ax.axis(\"equal\")\n",
"\n",
"# plot all three coils on the same graph\n",
"# df = pd.DataFrame(coil_A, columns=['x', 'y'])\n",
"# ax = df.plot.line(x='x', y='y', label='Coil A', color='blue')\n",
"# ax.axis('equal')\n",
"# df = pd.DataFrame(coil_B, columns=['x', 'y'])\n",
"# df.plot.line(x='x', y='y', ax=ax, label='Coil B', color='green')\n",
"# df = pd.DataFrame(coil_C, columns=['x', 'y'])\n",
"# df.plot.line(x='x', y='y', ax=ax, label='Coil C', color='red')\n",
"\n",
"# df = pd.DataFrame(coil_A_opposite, columns=['x', 'y'])\n",
"# df.plot.line(x='x', y='y', ax=ax, label='Coil A Opposite', color='blue')\n",
"# df = pd.DataFrame(coil_B_opposite, columns=['x', 'y'])\n",
"# df.plot.line(x='x', y='y', ax=ax, label='Coil B Opposite', color='green')\n",
"# df = pd.DataFrame(coil_C_opposite, columns=['x', 'y'])\n",
"# df.plot.line(x='x', y='y', ax=ax, label='Coil C Opposite', color='red')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.7 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"vscode": {
"interpreter": {
"hash": "1ce20143987840b9786ebb5907032c9c3a8efacbb887dbb0ebc4934f2ad26cb3"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}