{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "import matplotlib.pyplot as plt\n", "from skspatial.objects import LineSegment, Line, Vector\n", "\n", "# some helper functions\n", "from helpers import (\n", " get_arc_point,\n", " draw_arc,\n", " rotate,\n", " translate,\n", " flip_y,\n", " flip_x,\n", " optimize_points,\n", " chaikin,\n", " rotate_point,\n", " scale,\n", ")\n", "from pcb_json import (\n", " dump_json,\n", " plot_json,\n", " create_via,\n", " create_pad,\n", " create_pin,\n", " create_track,\n", " create_silk,\n", " create_silk,\n", " create_mounting_hole,\n", ")\n", "\n", "from enum import Enum\n", "\n", "Layer = Enum(\"Layer\", \"FRONT BACK\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Track width and spacing\n", "TRACK_WIDTH = 0.127\n", "TRACK_SPACING = 0.127\n", "\n", "# via defaults\n", "VIA_DIAM = 0.8\n", "VIA_DRILL = 0.4\n", "\n", "# this is for a 1.27mm pitch pin\n", "PIN_DIAM = 1.0\n", "PIN_DRILL = 0.65\n", "\n", "# this is for the PCB connector - see https://www.farnell.com/datasheets/2003059.pdf\n", "PAD_WIDTH = 3\n", "PAD_HEIGHT = 2\n", "PAD_PITCH = 2.5\n", "\n", "STATOR_HOLE_RADIUS = 5.5\n", "HOLE_SPACING = 0.25" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Standard 25 mm version\n", "\n", "# PCB Edge size\n", "STATOR_RADIUS = 25\n", "STATOR_HOLE_RADIUS = 5.5\n", "\n", "# where to puth the mounting pins\n", "SCREW_HOLE_DRILL_DIAM = 2.3 # 2.3mm drill for a 2mm screw\n", "SCREW_HOLE_RADIUS = STATOR_RADIUS\n", "\n", "# Coil params\n", "TURNS = 12\n", "COIL_CENTER_RADIUS = 16\n", "COIL_VIA_RADIUS = 17" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Large 30 mm version\n", "\n", "# PCB Edge size\n", "STATOR_RADIUS = 30\n", "\n", "# where to puth the mounting pins\n", "SCREW_HOLE_DRILL_DIAM = 2.3 # 2.3mm drill for a 2mm screw\n", "SCREW_HOLE_RADIUS = STATOR_RADIUS\n", "\n", "# Coil params\n", "TURNS = 16\n", "COIL_CENTER_RADIUS = 19.95\n", "COIL_VIA_RADIUS = 20.95" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# where to put the input pads\n", "INPUT_PAD_RADIUS = STATOR_RADIUS - (PAD_WIDTH / 2 + VIA_DIAM + TRACK_SPACING)\n", "\n", "USE_SPIRAL = False\n", "\n", "LAYERS = 4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Radial coil generator" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_points(spacing, inner_radius, outer_radius, start_angle, end_angle):\n", " # first calculate the angle step size from the spacing and the inner_radius\n", " spacing_angle = np.rad2deg(np.arctan2(spacing, inner_radius))\n", " print(spacing_angle)\n", " # now calculate the points be iterating from start_angle to end_angle with the spacing_angle\n", " points = []\n", " for angle in np.arange(start_angle, end_angle, spacing_angle * 2):\n", " points.append(get_arc_point(angle, inner_radius))\n", " points.append(get_arc_point(angle, outer_radius))\n", " points.append(\n", " (\n", " get_arc_point(angle, outer_radius)[0],\n", " get_arc_point(angle, outer_radius)[1] + spacing,\n", " )\n", " )\n", " points.append(get_arc_point(angle + spacing_angle, inner_radius))\n", " return points" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "points_f = get_points(\n", " TRACK_SPACING + TRACK_WIDTH,\n", " (COIL_CENTER_RADIUS - 10),\n", " COIL_CENTER_RADIUS + 10,\n", " -15,\n", " 15,\n", ")\n", "\n", "df = pd.DataFrame(points_f, columns=[\"x\", \"y\"])\n", "ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n", "ax.axis(\"equal\")\n", "\n", "# calculat the total length of the track to compute the resistance\n", "total_length_front = 0\n", "for i in range(len(points_f) - 1):\n", " total_length_front += np.linalg.norm(\n", " np.array(points_f[i + 1]) - np.array(points_f[i])\n", " )\n", "print(\"Total length front\", total_length_front)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "spacing = TRACK_SPACING + TRACK_WIDTH\n", "inner_radius = COIL_CENTER_RADIUS - 10\n", "outer_radius = COIL_CENTER_RADIUS + 10\n", "start_angle = -15\n", "end_angle = 15\n", "# first calculate the angle step size from the spacing and the inner_radius\n", "spacing_angle = np.rad2deg(np.arctan2(spacing, inner_radius))\n", "# now calculate the points be iterating from start_angle to end_angle with the spacing_angle\n", "i = 0\n", "count = (end_angle - start_angle) // spacing_angle\n", "print(spacing_angle, count)\n", "# for angle in np.arange(start_angle, end_angle, spacing_angle):\n", "for angle in [start_angle, end_angle]:\n", " i = i + 1\n", " current = 1\n", " if i == 2:\n", " current = -1\n", " with open(f\"simulations/radial_{i}.csv\", \"w\") as f:\n", " points = [\n", " get_arc_point(angle, inner_radius),\n", " get_arc_point(angle, outer_radius),\n", " ]\n", " points = translate(rotate(points, 90), -22.5, 90)\n", " for point in points:\n", " f.write(f\"{point[0]}/10,{point[1]}/10,0,{current}\\n\")\n", "\n", "\n", "# # write the coil out in a format that can be simulated\n", "p_f = translate(rotate(points_f, 90), -22.5, 90)\n", "p_b = translate(rotate(points_f, 90), -22.5, 90)\n", "\n", "# df = pd.DataFrame(p_f, columns=[\"x\", \"y\"])\n", "# ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n", "# ax.axis(\"equal\")\n", "\n", "with open(\"simulations/coils/coil_rad.csv\", \"w\") as f:\n", " for point in p_f:\n", " f.write(f\"{point[0]},{point[1]},0,0.5\\n\")\n", "\n", "# two layer board\n", "with open(\"simulations/coils/coil-rad-2-layer.csv\", \"wt\") as f:\n", " for point in p_f:\n", " f.write(f\"{point[0]},{point[1]},0,0.5\\n\")\n", " for point in p_b:\n", " f.write(f\"{point[0]},{point[1]},{0-0.062},0.5\\n\")\n", "\n", "# all four layer board\n", "with open(\"simulations/coils/coil-rad-4-layer.csv\", \"wt\") as f:\n", " for point in p_f:\n", " f.write(f\"{point[0]},{point[1]},0,0.5\\n\")\n", " for point in p_b:\n", " f.write(f\"{point[0]},{point[1]},{0-0.011},0.5\\n\")\n", " for point in p_f:\n", " f.write(f\"{point[0]},{point[1]},{0-(0.011+0.04)},0.5\\n\")\n", " for point in p_b:\n", " f.write(f\"{point[0]},{point[1]},{0-(0.011+0.011+0.04)},0.5\\n\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generate PCB Layout" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# calculat the total length of the track to compute the resistance\n", "total_length_front = 0\n", "for i in range(len(points_f) - 1):\n", " total_length_front += np.linalg.norm(\n", " np.array(points_f[i + 1]) - np.array(points_f[i])\n", " )\n", "print(\"Total length front\", total_length_front)\n", "\n", "total_length_back = 0\n", "for i in range(len(points_b) - 1):\n", " total_length_back += np.linalg.norm(\n", " np.array(points_b[i + 1]) - np.array(points_b[i])\n", " )\n", "print(\"Total length back\", total_length_back)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vias = []\n", "tracks_f = []\n", "tracks_b = []\n", "pads = []\n", "pins = []\n", "mounting_holes = []\n", "silk = []\n", "\n", "\n", "# shift the coils aronnd to make connections a bit easier\n", "COIL_ROTATION = -360 / 12\n", "\n", "coil_angles = []\n", "for i in range(12):\n", " angle = i * 360 / 12 + COIL_ROTATION\n", " coil_angles.append(angle)\n", "\n", "# the main coils\n", "coil_labels = [\"A\", \"B\", \"C\"]\n", "coils_f = []\n", "coils_b = []\n", "for i in range(12):\n", " angle = coil_angles[i]\n", " if (i // 3) % 2 == 0:\n", " coil_A_f = translate(rotate(points_f, angle), COIL_CENTER_RADIUS, angle)\n", " coil_A_b = translate(rotate(points_b, angle), COIL_CENTER_RADIUS, angle)\n", " else:\n", " # slightly nudge the coils so that they don't overlap when flipped\n", " coil_A_f = translate(rotate(flip_y(points_f), angle), COIL_CENTER_RADIUS, angle)\n", " coil_A_b = translate(rotate(flip_y(points_b), angle), COIL_CENTER_RADIUS, angle)\n", " # keep track of the coils\n", " coils_f.append(coil_A_f)\n", " coils_b.append(coil_A_b)\n", "\n", " tracks_f.append(coil_A_f)\n", " tracks_b.append(coil_A_b)\n", " vias.append(create_via(get_arc_point(angle, COIL_VIA_RADIUS)))\n", " silk.append(\n", " create_silk(get_arc_point(angle, COIL_CENTER_RADIUS), coil_labels[i % 3])\n", " )\n", "\n", "# raidus for connecting the bottoms of the coils together\n", "connection_radius1 = STATOR_HOLE_RADIUS + 3 * TRACK_SPACING\n", "\n", "# create tracks to link the A coils around the center\n", "connection_via_radius_A = connection_radius1 + 3 * TRACK_SPACING + VIA_DIAM / 2\n", "coil_A1_A2_inner = (\n", " [get_arc_point(coil_angles[0], connection_via_radius_A)]\n", " + draw_arc(COIL_ROTATION, coil_angles[3], connection_radius1)\n", " + [get_arc_point(coil_angles[3], connection_via_radius_A)]\n", ")\n", "tracks_f.append(coil_A1_A2_inner)\n", "coil_A3_A4_inner = (\n", " [get_arc_point(coil_angles[6], connection_via_radius_A)]\n", " + draw_arc(coil_angles[6], coil_angles[9], connection_radius1)\n", " + [get_arc_point(coil_angles[9], connection_via_radius_A)]\n", ")\n", "tracks_f.append(coil_A3_A4_inner)\n", "# connect up the bottoms of the A coils\n", "coils_b[0].append(coil_A1_A2_inner[0])\n", "coils_b[3].append(coil_A1_A2_inner[-1])\n", "coils_b[6].append(coil_A3_A4_inner[0])\n", "coils_b[9].append(coil_A3_A4_inner[-1])\n", "# add the vias to stitch them together\n", "vias.append(create_via(coil_A1_A2_inner[0]))\n", "vias.append(create_via(coil_A1_A2_inner[-1]))\n", "vias.append(create_via(coil_A3_A4_inner[0]))\n", "vias.append(create_via(coil_A3_A4_inner[-1]))\n", "\n", "# create tracks to link the B coils around the center - this can all be done on the bottom layer\n", "coil_B1_B2_inner = draw_arc(coil_angles[1], coil_angles[4], connection_radius1)\n", "tracks_b.append(coil_B1_B2_inner)\n", "coil_B3_B4_inner = draw_arc(coil_angles[7], coil_angles[10], connection_radius1)\n", "tracks_b.append(coil_B3_B4_inner)\n", "# connect up the bottoms of the A coils\n", "coils_b[1].append(coil_B1_B2_inner[0])\n", "coils_b[4].append(coil_B1_B2_inner[-1])\n", "coils_b[7].append(coil_B3_B4_inner[0])\n", "coils_b[10].append(coil_B3_B4_inner[-1])\n", "\n", "# create tracks to link the C coils around the center\n", "connection_via_radius_C = connection_via_radius_A + 3 * TRACK_SPACING + VIA_DIAM / 2\n", "coil_C1_C2_inner = draw_arc(coil_angles[2], coil_angles[5], connection_via_radius_C)\n", "tracks_f.append(coil_C1_C2_inner)\n", "coil_C3_C4_inner = draw_arc(coil_angles[8], coil_angles[11], connection_via_radius_C)\n", "tracks_f.append(coil_C3_C4_inner)\n", "# connect up the bottoms of the B coils\n", "coils_b[2].append(coil_C1_C2_inner[0])\n", "coils_b[5].append(coil_C1_C2_inner[-1])\n", "coils_b[8].append(coil_C3_C4_inner[0])\n", "coils_b[11].append(coil_C3_C4_inner[-1])\n", "# add the vias to stitch them together\n", "vias.append(create_via(coil_C1_C2_inner[0]))\n", "vias.append(create_via(coil_C1_C2_inner[-1]))\n", "vias.append(create_via(coil_C3_C4_inner[0]))\n", "vias.append(create_via(coil_C3_C4_inner[-1]))\n", "\n", "# connect the last three coils together\n", "common_connection_radius = SCREW_HOLE_RADIUS - (SCREW_HOLE_DRILL_DIAM / 2 + 0.5)\n", "tracks_f.append(draw_arc(coil_angles[9], coil_angles[11], common_connection_radius))\n", "coils_f[9].append(get_arc_point(coil_angles[9], common_connection_radius))\n", "coils_f[10].append(get_arc_point(coil_angles[10], common_connection_radius))\n", "coils_f[11].append(get_arc_point(coil_angles[11], common_connection_radius))\n", "\n", "# connect the outer A coils together\n", "outer_connection_radius_A = SCREW_HOLE_RADIUS - (SCREW_HOLE_DRILL_DIAM / 2 + 0.5)\n", "tracks_f.append(draw_arc(coil_angles[3], coil_angles[6], outer_connection_radius_A))\n", "coils_f[3].append(get_arc_point(coil_angles[3], outer_connection_radius_A))\n", "coils_f[6].append(get_arc_point(coil_angles[6], outer_connection_radius_A))\n", "\n", "# connect the outer B coils together\n", "outer_connection_radius_B = outer_connection_radius_A - TRACK_SPACING - VIA_DIAM / 2\n", "tracks_b.append(\n", " [get_arc_point(coil_angles[4], outer_connection_radius_B)]\n", " + draw_arc(coil_angles[4], coil_angles[7], outer_connection_radius_A)\n", " + [get_arc_point(coil_angles[7], outer_connection_radius_B)]\n", ")\n", "coils_f[4].append(get_arc_point(coil_angles[4], outer_connection_radius_B))\n", "coils_f[7].append(get_arc_point(coil_angles[7], outer_connection_radius_B))\n", "vias.append(\n", " create_via(get_arc_point(4 * 360 / 12 + COIL_ROTATION, outer_connection_radius_B))\n", ")\n", "vias.append(\n", " create_via(get_arc_point(7 * 360 / 12 + COIL_ROTATION, outer_connection_radius_B))\n", ")\n", "\n", "# connect the outer C coilds together\n", "outer_connection_radius_C = outer_connection_radius_B - TRACK_SPACING - VIA_DIAM / 2\n", "tracks_b.append(\n", " draw_arc(\n", " 5 * 360 / 12 + COIL_ROTATION,\n", " 8 * 360 / 12 + COIL_ROTATION,\n", " outer_connection_radius_C,\n", " )\n", ")\n", "coils_f[5].append(\n", " get_arc_point(5 * 360 / 12 + COIL_ROTATION, outer_connection_radius_C)\n", ")\n", "coils_f[8].append(\n", " get_arc_point(8 * 360 / 12 + COIL_ROTATION, outer_connection_radius_C)\n", ")\n", "vias.append(\n", " create_via(get_arc_point(5 * 360 / 12 + COIL_ROTATION, outer_connection_radius_C))\n", ")\n", "vias.append(\n", " create_via(get_arc_point(8 * 360 / 12 + COIL_ROTATION, outer_connection_radius_C))\n", ")\n", "\n", "# create the pads for connecting the inputs to the coils\n", "silk.append(\n", " create_silk((INPUT_PAD_RADIUS - PAD_HEIGHT - 2.5, PAD_PITCH), \"C\", \"b\", 2.5, -900)\n", ")\n", "silk.append(create_silk((INPUT_PAD_RADIUS - PAD_HEIGHT - 2.5, 0), \"B\", \"b\", 2.5, -900))\n", "silk.append(\n", " create_silk((INPUT_PAD_RADIUS - PAD_HEIGHT - 2.5, -PAD_PITCH), \"A\", \"b\", 2.5, -900)\n", ")\n", "\n", "pads.append(create_pad((INPUT_PAD_RADIUS, -PAD_PITCH), PAD_WIDTH, PAD_HEIGHT, \"b\"))\n", "pads.append(create_pad((INPUT_PAD_RADIUS, 0), PAD_WIDTH, PAD_HEIGHT, \"b\"))\n", "pads.append(create_pad((INPUT_PAD_RADIUS, PAD_PITCH), PAD_WIDTH, PAD_HEIGHT, \"b\"))\n", "\n", "# connect coil A to the top pad\n", "pad_connection_point_x = INPUT_PAD_RADIUS\n", "pad_angle = np.rad2deg(np.arcsin(PAD_PITCH / pad_connection_point_x))\n", "coils_f[0].append(get_arc_point(coil_angles[0], pad_connection_point_x))\n", "vias.append(create_via(get_arc_point(coil_angles[0], pad_connection_point_x)))\n", "# connect coil B to the middle pad\n", "coils_f[1].append((pad_connection_point_x + PAD_WIDTH / 2 + VIA_DIAM / 2, 0))\n", "vias.append(create_via(((pad_connection_point_x + PAD_WIDTH / 2 + VIA_DIAM / 2, 0))))\n", "# connect coil C to the bottom pad\n", "coils_f[2].append(get_arc_point(coil_angles[2], pad_connection_point_x))\n", "vias.append(create_via(get_arc_point(coil_angles[2], pad_connection_point_x)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# if we are doing four layers then duplicate the front and back layers on (front and inner1), (inner2 and back)\n", "tracks_in1 = []\n", "tracks_in2 = []\n", "if LAYERS == 4:\n", " tracks_in1 = tracks_b.copy()\n", " tracks_in2 = tracks_f.copy()\n", "\n", "# these final bits of wiring up to the input pads don't need to be duplicated\n", "tracks_b.append(\n", " [(pad_connection_point_x + PAD_WIDTH / 2, 0), (pad_connection_point_x, 0)]\n", ")\n", "tracks_b.append(draw_arc(coil_angles[0], -pad_angle, pad_connection_point_x, 1))\n", "tracks_b.append(draw_arc(coil_angles[2], pad_angle, pad_connection_point_x, 1))\n", "\n", "nibble_angle_size = 360 * SCREW_HOLE_DRILL_DIAM / (2 * np.pi * STATOR_RADIUS)\n", "\n", "outer_cuts = (\n", " draw_arc(-45 + nibble_angle_size / 2, 45 - nibble_angle_size / 2, STATOR_RADIUS, 5)\n", " + translate(\n", " rotate(draw_arc(5, 175, SCREW_HOLE_DRILL_DIAM / 2, 5)[::-1], 135),\n", " STATOR_RADIUS,\n", " 45,\n", " )\n", " + draw_arc(\n", " 45 + nibble_angle_size / 2, 135 - nibble_angle_size / 2, STATOR_RADIUS, 5\n", " )\n", " + translate(\n", " rotate(draw_arc(5, 175, SCREW_HOLE_DRILL_DIAM / 2, 5), 225)[::-1],\n", " STATOR_RADIUS,\n", " 135,\n", " )\n", " + draw_arc(\n", " 135 + nibble_angle_size / 2, 225 - nibble_angle_size / 2, STATOR_RADIUS, 5\n", " )\n", " + translate(\n", " rotate(draw_arc(5, 175, SCREW_HOLE_DRILL_DIAM / 2, 5), 315)[::-1],\n", " STATOR_RADIUS,\n", " 225,\n", " )\n", " + draw_arc(\n", " 225 + nibble_angle_size / 2, 315 - nibble_angle_size / 2, STATOR_RADIUS, 5\n", " )\n", " + translate(\n", " rotate(draw_arc(5, 175, SCREW_HOLE_DRILL_DIAM / 2, 5), 45)[::-1],\n", " STATOR_RADIUS,\n", " 315,\n", " )\n", ")\n", "\n", "edge_cuts = [\n", " outer_cuts,\n", " draw_arc(0, 360, STATOR_HOLE_RADIUS, 1),\n", "]\n", "\n", "# dump out the json version\n", "json_result = dump_json(\n", " filename=f\"coils_12_{STATOR_RADIUS}mm.json\",\n", " track_width=TRACK_WIDTH,\n", " pin_diam=PIN_DIAM,\n", " pin_drill=PIN_DRILL,\n", " via_diam=VIA_DIAM,\n", " via_drill=VIA_DRILL,\n", " vias=vias,\n", " pins=pins,\n", " pads=pads,\n", " silk=silk,\n", " tracks_f=tracks_f,\n", " tracks_in1=tracks_in1,\n", " tracks_in2=tracks_in2,\n", " tracks_b=tracks_b,\n", " mounting_holes=mounting_holes,\n", " edge_cuts=edge_cuts,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plot the json\n", "plot_json(json_result)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.7 ('venv': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.7 (main, Sep 27 2022, 14:37:32) [Clang 14.0.0 (clang-1400.0.29.102)]" }, "vscode": { "interpreter": { "hash": "1ce20143987840b9786ebb5907032c9c3a8efacbb887dbb0ebc4934f2ad26cb3" } } }, "nbformat": 4, "nbformat_minor": 2 }