{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "# import matplotlib as plt\n", "import matplotlib.pyplot as plt\n", "import scipy\n", "from skspatial.objects import LineSegment, Line, Vector\n", "from enum import Enum\n", "\n", "Layer = Enum(\"Layer\", \"FRONT BACK\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "VIA_DIAM = 0.8\n", "VIA_DRILL = 0.4\n", "STATOR_HOLE_RADIUS = 5\n", "TRACK_WIDTH = 0.127\n", "TRACK_SPACING = 0.127\n", "TURNS = 9\n", "STATOR_RADIUS = 18\n", "PIN_DIAM = 1.7\n", "COIL_CENTER_RADIUS = 11.5\n", "COIL_VIA_RADIUS = 12.5\n", "# where to place the pins\n", "CONNECTION_PINS_RADIUS = 16\n", "USE_SPIRAL = False" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# get the point on an arc at the given angle\n", "def get_arc_point(angle, radius):\n", " return (\n", " radius * np.cos(np.deg2rad(angle)),\n", " radius * np.sin(np.deg2rad(angle)),\n", " )\n", "\n", "\n", "# draw an arc\n", "def draw_arc(start_angle, end_angle, radius, step=10):\n", " points = []\n", " for angle in np.arange(start_angle, end_angle + step, step):\n", " x = radius * np.cos(np.deg2rad(angle))\n", " y = radius * np.sin(np.deg2rad(angle))\n", " points.append((x, y))\n", " return points\n", "\n", "\n", "# roate the points by the required angle\n", "def rotate(points, angle):\n", " return [\n", " [\n", " x * np.cos(np.deg2rad(angle)) - y * np.sin(np.deg2rad(angle)),\n", " x * np.sin(np.deg2rad(angle)) + y * np.cos(np.deg2rad(angle)),\n", " ]\n", " for x, y in points\n", " ]\n", "\n", "\n", "# move the points out to the distance at the requited angle\n", "def translate(points, distance, angle):\n", " return [\n", " [\n", " x + distance * np.cos(np.deg2rad(angle)),\n", " y + distance * np.sin(np.deg2rad(angle)),\n", " ]\n", " for x, y in points\n", " ]\n", "\n", "\n", "# flip the y coordinate\n", "def flip_y(points):\n", " return [[x, -y] for x, y in points]\n", "\n", "\n", "def flip_x(points):\n", " return [[-x, y] for x, y in points]\n", "\n", "\n", "def create_pad(radius, angle, name):\n", " return {\n", " \"x\": radius * np.cos(np.deg2rad(angle)),\n", " \"y\": radius * np.sin(np.deg2rad(angle)),\n", " \"name\": name,\n", " }\n", "\n", "\n", "def create_silk(point, text):\n", " return {\n", " \"x\": point[0],\n", " \"y\": point[1],\n", " \"text\": text,\n", " }\n", "\n", "\n", "def create_via(point):\n", " return {\"x\": point[0], \"y\": point[1]}\n", "\n", "\n", "def create_track(points):\n", " return [{\"x\": x, \"y\": y} for x, y in points]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Arbitrary Coil Generation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# templates must be simetric around the X axis and must include the center points on both size (e.g. (X1, 0).... (X2, 0) )\n", "# template must also be convex\n", "template = [\n", " (-1.5, 0),\n", " (-1.5, -0.1),\n", " (1.9, -0.8),\n", " (1.9, 0.0),\n", " (1.9, 0.8),\n", " (-1.5, 0.1),\n", "]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plot the template shape wrapping around to the first point\n", "df = pd.DataFrame(template + [template[0]], columns=[\"x\", \"y\"])\n", "ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n", "ax.axis(\"equal\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def calculate_point(point, point1, point2, spacing, turn):\n", " reference_vector = Vector([-100, 0])\n", " angle = np.rad2deg(Vector(point).angle_between(reference_vector))\n", " if point[1] > 0:\n", " angle = 360 - angle\n", " vector = Vector(point1) - Vector(point2)\n", " normal = vector / np.linalg.norm(vector)\n", " # rotate the vector 90 degrees\n", " normal = np.array([-normal[1], normal[0]])\n", " # move the point along the normal vector by the spacing\n", " offset = spacing * (turn * 360 + angle) / 360\n", " coil_point = point + normal * offset\n", " return (coil_point[0], coil_point[1])\n", "\n", "\n", "def get_points(template, turns, spacing):\n", " coil_points = []\n", " reference_vector = Vector([-100, 0])\n", " template_index = 0\n", " template_length = len(template)\n", " for turn in range(turns * template_length):\n", " point1 = template[template_index % template_length]\n", " point2 = template[(template_index + 1) % template_length]\n", "\n", " # calculate the new positions of the points\n", " coil_point1 = calculate_point(\n", " point1, point1, point2, spacing, template_index // template_length\n", " )\n", " coil_point2 = calculate_point(\n", " point2, point1, point2, spacing, (template_index + 1) // template_length\n", " )\n", " # adjust the previous point so that the previous line intersects with this new line\n", " # this prevents any cutting of corners\n", " if len(coil_points) >= 2:\n", " # create a line from the previous two points\n", " line1 = Line(\n", " coil_points[len(coil_points) - 2],\n", " np.array(coil_points[len(coil_points) - 1])\n", " - np.array(coil_points[len(coil_points) - 2]),\n", " )\n", " # create a line from the two new points\n", " line2 = Line(\n", " np.array(coil_point1),\n", " np.array(np.array(coil_point1) - np.array(coil_point2)),\n", " )\n", " # find the intersection of the two lines\n", " try:\n", " intersection = line1.intersect_line(line2)\n", " # replace the previous point with the intersection\n", " coil_points[len(coil_points) - 1] = intersection\n", " # add the new point\n", " coil_points.append(coil_point2)\n", " except:\n", " # the lines did not intersect so just add the points\n", " coil_points.append(coil_point1)\n", " coil_points.append(coil_point2)\n", " else:\n", " coil_points.append(coil_point1)\n", " coil_points.append(coil_point2)\n", "\n", " template_index = template_index + 1\n", " return coil_points\n", "\n", "\n", "def optimize_points(points):\n", " # follow the line and remove points that are in the same direction as the previous poin\n", " # keep doing this until the direction changes significantly\n", " # this is a very simple optimization that removes a lot of points\n", " # it's not perfect but it's a good start\n", " optimized_points = []\n", " for i in range(len(points)):\n", " if i == 0:\n", " optimized_points.append(points[i])\n", " else:\n", " vector1 = np.array(points[i]) - np.array(points[i - 1])\n", " vector2 = np.array(points[(i + 1) % len(points)]) - np.array(points[i])\n", " length1 = np.linalg.norm(vector1)\n", " length2 = np.linalg.norm(vector2)\n", " if length1 > 0 and length2 > 0:\n", " dot = np.dot(vector1, vector2) / (length1 * length2)\n", " # clamp dot between -1 and 1\n", " dot = max(-1, min(1, dot))\n", " angle = np.arccos(dot)\n", " if angle > np.deg2rad(5):\n", " optimized_points.append(points[i])\n", " print(\"Optimised from {} to {} points\".format(len(points), len(optimized_points)))\n", " return optimized_points\n", "\n", "\n", "def chaikin(points, iterations):\n", " if iterations == 0:\n", " return points\n", " l = len(points)\n", " smoothed = []\n", " for i in range(l - 1):\n", " x1, y1 = points[i]\n", " x2, y2 = points[i + 1]\n", " smoothed.append([0.95 * x1 + 0.05 * x2, 0.95 * y1 + 0.05 * y2])\n", " smoothed.append([0.05 * x1 + 0.95 * x2, 0.05 * y1 + 0.95 * y2])\n", " smoothed.append(points[l - 1])\n", " return chaikin(smoothed, iterations - 1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if not USE_SPIRAL:\n", " template_f = []\n", " for i in range(len(template)):\n", " template_f.append(template[len(template) - i - len(template) // 2])\n", " template_f = flip_x(template_f)\n", " points_f = chaikin(\n", " optimize_points(\n", " flip_x(get_points(template_f, TURNS, TRACK_SPACING + TRACK_WIDTH))\n", " ),\n", " 2,\n", " )\n", " points_b = chaikin(\n", " optimize_points(get_points(template, TURNS, TRACK_SPACING + TRACK_WIDTH)), 2\n", " )\n", "\n", " points_f = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_f\n", " points_b = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_b\n", "\n", " df = pd.DataFrame(points_f, columns=[\"x\", \"y\"])\n", " ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n", " ax.axis(\"equal\")\n", " df = pd.DataFrame(points_b, columns=[\"x\", \"y\"])\n", " ax = df.plot.line(x=\"x\", y=\"y\", color=\"red\", ax=ax)\n", "\n", " print(\"Track points\", len(points_f), len(points_b))\n", "else:\n", " print(\"Using spiral\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Spiral Coil Generation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_spiral(turns, start_radius, thickness, layer=Layer.FRONT):\n", " points = []\n", " # create a starting point in the center\n", " for angle in np.arange(0, turns * 360, 1):\n", " radius = start_radius + thickness * angle / 360\n", " if layer == Layer.BACK:\n", " x = radius * np.cos(np.deg2rad(angle + 180))\n", " y = radius * np.sin(np.deg2rad(angle + 180))\n", " points.append((x, -y))\n", " else:\n", " x = radius * np.cos(np.deg2rad(angle))\n", " y = radius * np.sin(np.deg2rad(angle))\n", " points.append((x, y))\n", " return points" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if USE_SPIRAL:\n", " points_f = get_spiral(\n", " TURNS, VIA_DIAM / 2 + TRACK_SPACING, TRACK_SPACING + TRACK_WIDTH, Layer.FRONT\n", " )\n", " points_b = get_spiral(\n", " TURNS, VIA_DIAM / 2 + TRACK_SPACING, TRACK_SPACING + TRACK_WIDTH, Layer.BACK\n", " )\n", "\n", " points_f = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_f\n", " points_b = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_b\n", " print(\"Track points\", len(points_f), len(points_b))\n", "else:\n", " print(\"Using template\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generate PCB Layout" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# calculat the total length of the track to compute the resistance\n", "total_length_front = 0\n", "for i in range(len(points_f) - 1):\n", " total_length_front += np.linalg.norm(\n", " np.array(points_f[i + 1]) - np.array(points_f[i])\n", " )\n", "print(\"Total length front\", total_length_front)\n", "\n", "total_length_back = 0\n", "for i in range(len(points_b) - 1):\n", " total_length_back += np.linalg.norm(\n", " np.array(points_b[i + 1]) - np.array(points_b[i])\n", " )\n", "print(\"Total length back\", total_length_back)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vias = []\n", "tracks_f = []\n", "tracks_b = []\n", "pads = []\n", "silk = []\n", "\n", "# create the pads at CONNECTION_PINS radius - 2 for each of the coils, A, B and C\n", "# angle_A = 0\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_A - 30, \"A\"))\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_A + 30, \"A\"))\n", "\n", "# angle_B = 120\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_B - 30, \"B\"))\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_B + 30, \"B\"))\n", "\n", "# angle_C = 240\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_C - 30, \"C\"))\n", "# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_C + 30, \"C\"))\n", "\n", "\n", "# the main coils\n", "coil_labels = [\"A\", \"B\", \"C\"]\n", "coils_f = []\n", "coils_b = []\n", "for i in range(12):\n", " angle = i * 360 / 12\n", " if (i // 3) % 2 == 0:\n", " coil_A_f = translate(rotate(points_f, angle), COIL_CENTER_RADIUS, angle)\n", " coil_A_b = translate(rotate(points_b, angle), COIL_CENTER_RADIUS, angle)\n", " else:\n", " coil_A_f = translate(rotate(flip_y(points_f), angle), COIL_CENTER_RADIUS, angle)\n", " coil_A_b = translate(rotate(flip_y(points_b), angle), COIL_CENTER_RADIUS, angle)\n", " # keep track of the coils\n", " coils_f.append(coil_A_f)\n", " coils_b.append(coil_A_b)\n", "\n", " tracks_f.append(coil_A_f)\n", " tracks_b.append(coil_A_b)\n", " vias.append(create_via(get_arc_point(angle, COIL_VIA_RADIUS)))\n", " silk.append(\n", " create_silk(get_arc_point(angle, COIL_CENTER_RADIUS), coil_labels[i % 3])\n", " )\n", "\n", "# raidus for connecting the bottoms of the coils together\n", "connection_radius1 = STATOR_HOLE_RADIUS + TRACK_SPACING + TRACK_WIDTH\n", "\n", "# create tracks to link the A coils around the center\n", "connection_via_radius_A = connection_radius1 + TRACK_SPACING + VIA_DIAM / 2\n", "coil_A1_A2_inner = (\n", " [get_arc_point(0, connection_via_radius_A)]\n", " + draw_arc(0, 3 * 360 / 12, connection_radius1)\n", " + [get_arc_point(3 * 360 / 12, connection_via_radius_A)]\n", ")\n", "tracks_f.append(coil_A1_A2_inner)\n", "coil_A3_A4_inner = (\n", " [get_arc_point(6 * 360 / 12, connection_via_radius_A)]\n", " + draw_arc(6 * 360 / 12, 9 * 360 / 12, connection_radius1)\n", " + [get_arc_point(9 * 360 / 12, connection_via_radius_A)]\n", ")\n", "tracks_f.append(coil_A3_A4_inner)\n", "# connect up the bottoms of the A coils\n", "coils_b[0].append(coil_A1_A2_inner[0])\n", "coils_b[3].append(coil_A1_A2_inner[-1])\n", "coils_b[6].append(coil_A3_A4_inner[0])\n", "coils_b[9].append(coil_A3_A4_inner[-1])\n", "# add the vias to stitch them together\n", "vias.append(create_via(coil_A1_A2_inner[0]))\n", "vias.append(create_via(coil_A1_A2_inner[-1]))\n", "vias.append(create_via(coil_A3_A4_inner[0]))\n", "vias.append(create_via(coil_A3_A4_inner[-1]))\n", "\n", "# create tracks to link the B coils around the center - this can all be done on the bottom layer\n", "coil_B1_B2_inner = draw_arc(1 * 360 / 12, 4 * 360 / 12, connection_radius1)\n", "tracks_b.append(coil_B1_B2_inner)\n", "coil_B3_B4_inner = draw_arc(7 * 360 / 12, 10 * 360 / 12, connection_radius1)\n", "tracks_b.append(coil_B3_B4_inner)\n", "# connect up the bottoms of the A coils\n", "coils_b[1].append(coil_B1_B2_inner[0])\n", "coils_b[4].append(coil_B1_B2_inner[-1])\n", "coils_b[7].append(coil_B3_B4_inner[0])\n", "coils_b[10].append(coil_B3_B4_inner[-1])\n", "\n", "# create tracks to link the C coils around the center\n", "connection_via_radius_C = connection_via_radius_A + TRACK_SPACING + VIA_DIAM / 2\n", "coil_C1_C2_inner = draw_arc(2 * 360 / 12, 5 * 360 / 12, connection_via_radius_C)\n", "tracks_f.append(coil_C1_C2_inner)\n", "coil_C3_C4_inner = draw_arc(8 * 360 / 12, 11 * 360 / 12, connection_via_radius_C)\n", "tracks_f.append(coil_C3_C4_inner)\n", "# connect up the bottoms of the B coils\n", "coils_b[2].append(coil_C1_C2_inner[0])\n", "coils_b[5].append(coil_C1_C2_inner[-1])\n", "coils_b[8].append(coil_C3_C4_inner[0])\n", "coils_b[11].append(coil_C3_C4_inner[-1])\n", "# add the vias to stitch them together\n", "vias.append(create_via(coil_C1_C2_inner[0]))\n", "vias.append(create_via(coil_C1_C2_inner[-1]))\n", "vias.append(create_via(coil_C3_C4_inner[0]))\n", "vias.append(create_via(coil_C3_C4_inner[-1]))\n", "\n", "# connect the last three coils together\n", "common_connection_radius = STATOR_RADIUS - TRACK_SPACING - TRACK_WIDTH\n", "tracks_f.append(draw_arc(9 * 360 / 12, 11 * 360 / 12, common_connection_radius))\n", "coils_f[9].append(get_arc_point(9 * 360 / 12, common_connection_radius))\n", "coils_f[10].append(get_arc_point(10 * 360 / 12, common_connection_radius))\n", "coils_f[11].append(get_arc_point(11 * 360 / 12, common_connection_radius))\n", "\n", "# connect the outer A coils together\n", "outer_connection_radius_A = STATOR_RADIUS - TRACK_SPACING - TRACK_WIDTH\n", "tracks_f.append(draw_arc(3 * 360 / 12, 6 * 360 / 12, outer_connection_radius_A))\n", "coils_f[3].append(get_arc_point(3 * 360 / 12, outer_connection_radius_A))\n", "coils_f[6].append(get_arc_point(6 * 360 / 12, outer_connection_radius_A))\n", "\n", "# connect the outer B coils together\n", "outer_connection_radius_B = outer_connection_radius_A - TRACK_SPACING - VIA_DIAM / 2\n", "tracks_b.append(\n", " [get_arc_point(4 * 360 / 12, outer_connection_radius_B)]\n", " + draw_arc(4 * 360 / 12, 7 * 360 / 12, outer_connection_radius_A)\n", " + [get_arc_point(7 * 360 / 12, outer_connection_radius_B)]\n", ")\n", "coils_f[4].append(get_arc_point(4 * 360 / 12, outer_connection_radius_B))\n", "coils_f[7].append(get_arc_point(7 * 360 / 12, outer_connection_radius_B))\n", "vias.append(create_via(get_arc_point(4 * 360 / 12, outer_connection_radius_B)))\n", "vias.append(create_via(get_arc_point(7 * 360 / 12, outer_connection_radius_B)))\n", "\n", "# connect the outer C coilds together\n", "outer_connection_radius_C = outer_connection_radius_B - TRACK_SPACING - VIA_DIAM / 2\n", "tracks_b.append(draw_arc(5 * 360 / 12, 8 * 360 / 12, outer_connection_radius_C))\n", "coils_f[5].append(get_arc_point(5 * 360 / 12, outer_connection_radius_C))\n", "coils_f[8].append(get_arc_point(8 * 360 / 12, outer_connection_radius_C))\n", "vias.append(create_via(get_arc_point(5 * 360 / 12, outer_connection_radius_C)))\n", "vias.append(create_via(get_arc_point(8 * 360 / 12, outer_connection_radius_C)))\n", "\n", "# create pads for the input\n", "pin_radius = STATOR_RADIUS - TRACK_SPACING - PIN_DIAM / 2\n", "pads.append(create_pad(pin_radius, 0, \"A\"))\n", "pads.append(create_pad(pin_radius, 1 * 360 / 12, \"B\"))\n", "pads.append(create_pad(pin_radius, 2 * 360 / 12, \"C\"))\n", "\n", "coils_f[0].append(get_arc_point(0, pin_radius))\n", "coils_f[1].append(get_arc_point(1 * 360 / 12, pin_radius))\n", "coils_f[2].append(get_arc_point(2 * 360 / 12, pin_radius))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# dump out the results to json\n", "json_result = {\n", " \"parameters\": {\n", " \"trackWidth\": TRACK_WIDTH,\n", " \"statorHoleRadius\": STATOR_HOLE_RADIUS,\n", " \"statorRadius\": STATOR_RADIUS,\n", " \"viaDiameter\": VIA_DIAM,\n", " \"viaDrillDiameter\": VIA_DRILL,\n", " },\n", " \"vias\": vias,\n", " \"pads\": pads,\n", " \"silk\": silk,\n", " \"tracks\": {\n", " \"f\": [create_track(points) for points in tracks_f],\n", " \"b\": [create_track(points) for points in tracks_b],\n", " },\n", "}\n", "\n", "import json\n", "\n", "json.dump(json_result, open(\"coil.json\", \"w\"))\n", "\n", "\n", "# df = pd.DataFrame(coil_A_f, columns=[\"x\", \"y\"])\n", "# ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil A\", color=\"blue\")\n", "# ax.axis(\"equal\")\n", "# df = pd.DataFrame(coil_A_b, columns=[\"x\", \"y\"])\n", "# ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil B\", color=\"green\")\n", "# ax.axis(\"equal\")\n", "\n", "\n", "# plot the back tracks\n", "ax = None\n", "for track in json_result[\"tracks\"][\"b\"]:\n", " df = pd.DataFrame(track, columns=[\"x\", \"y\"])\n", " ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\", ax=ax)\n", " ax.axis(\"equal\")\n", "\n", "# plot the front tracks\n", "for track in json_result[\"tracks\"][\"f\"]:\n", " df = pd.DataFrame(track, columns=[\"x\", \"y\"])\n", " ax = df.plot.line(x=\"x\", y=\"y\", color=\"red\", ax=ax)\n", " ax.axis(\"equal\")\n", "\n", "# hide the legend\n", "ax.legend().set_visible(False)\n", "# make the plot bigger\n", "ax.figure.set_size_inches(10, 10)\n", "\n", "# plot the vias\n", "for via in json_result[\"vias\"]:\n", " ax.add_patch(\n", " plt.Circle(\n", " (via[\"x\"], via[\"y\"]),\n", " radius=VIA_DIAM / 2,\n", " fill=True,\n", " color=\"black\",\n", " )\n", " )\n", " ax.add_patch(\n", " plt.Circle(\n", " (via[\"x\"], via[\"y\"]),\n", " radius=VIA_DRILL / 2,\n", " fill=True,\n", " color=\"white\",\n", " )\n", " )\n", "\n", "# plot the edge cuts\n", "ax.add_patch(\n", " plt.Circle(\n", " (0, 0),\n", " radius=STATOR_RADIUS,\n", " fill=False,\n", " color=\"yellow\",\n", " )\n", ")\n", "ax.add_patch(\n", " plt.Circle(\n", " (0, 0),\n", " radius=STATOR_HOLE_RADIUS,\n", " fill=False,\n", " color=\"yellow\",\n", " )\n", ")\n", "\n", "# plot the pads\n", "for pad in json_result[\"pads\"]:\n", " ax.add_patch(\n", " plt.Circle(\n", " (pad[\"x\"], pad[\"y\"]),\n", " radius=1.7 / 2,\n", " fill=True,\n", " color=\"yellow\",\n", " )\n", " )\n", " ax.add_patch(\n", " plt.Circle(\n", " (pad[\"x\"], pad[\"y\"]),\n", " radius=1.0 / 2,\n", " fill=True,\n", " color=\"white\",\n", " )\n", " )\n", "\n", "# plot the silk\n", "for silk in json_result[\"silk\"]:\n", " ax.text(\n", " silk[\"x\"],\n", " silk[\"y\"],\n", " silk[\"text\"],\n", " horizontalalignment=\"center\",\n", " verticalalignment=\"center\",\n", " color=\"black\",\n", " fontsize=50,\n", " )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.7 ('venv': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.7" }, "vscode": { "interpreter": { "hash": "fc384f9db26c31784edfba3761ba3d2c7b2f9b8a63e03a9eb0778fc35334efe1" } } }, "nbformat": 4, "nbformat_minor": 2 }