pcompress/crypto/skein/skein_block_x64.s

1329 lines
44 KiB
ArmAsm
Raw Permalink Normal View History

#
#----------------------------------------------------------------
# 64-bit x86 assembler code (gnu as) for Skein block functions
#
# Author: Doug Whiting, Hifn/Exar
#
# This code is released to the public domain.
#----------------------------------------------------------------
#
.text
.altmacro
.psize 0,128 #list file has no page boundaries
#
_MASK_ALL_ = (256+512+1024) #all three algorithm bits
_MAX_FRAME_ = 240
#
#################
.ifndef SKEIN_USE_ASM
_USE_ASM_ = _MASK_ALL_
.else
_USE_ASM_ = SKEIN_USE_ASM
.endif
#################
.ifndef SKEIN_LOOP #configure loop unrolling
_SKEIN_LOOP = 2 #default is fully unrolled for 256/512, twice for 1024
.else
_SKEIN_LOOP = SKEIN_LOOP
.irp _NN_,%_SKEIN_LOOP #only display loop unrolling if default changed on command line
.print "+++ SKEIN_LOOP = \_NN_"
.endr
.endif
# the unroll counts (0 --> fully unrolled)
SKEIN_UNROLL_256 = (_SKEIN_LOOP / 100) % 10
SKEIN_UNROLL_512 = (_SKEIN_LOOP / 10) % 10
SKEIN_UNROLL_1024 = (_SKEIN_LOOP ) % 10
#
SKEIN_ASM_UNROLL = 0
.irp _NN_,256,512,1024
.if (SKEIN_UNROLL_\_NN_) == 0
SKEIN_ASM_UNROLL = SKEIN_ASM_UNROLL + \_NN_
.endif
.endr
#################
#
.ifndef SKEIN_ROUNDS
ROUNDS_256 = 72
ROUNDS_512 = 72
ROUNDS_1024 = 80
.else
ROUNDS_256 = 8*((((SKEIN_ROUNDS / 100) + 5) % 10) + 5)
ROUNDS_512 = 8*((((SKEIN_ROUNDS / 10) + 5) % 10) + 5)
ROUNDS_1024 = 8*((((SKEIN_ROUNDS ) + 5) % 10) + 5)
# only display rounds if default size is changed on command line
.irp _NN_,256,512,1024
.if _USE_ASM_ && \_NN_
.irp _RR_,%(ROUNDS_\_NN_)
.if _NN_ < 1024
.print "+++ SKEIN_ROUNDS_\_NN_ = \_RR_"
.else
.print "+++ SKEIN_ROUNDS_\_NN_ = \_RR_"
.endif
.endr
.endif
.endr
.endif
#################
#
.ifdef SKEIN_CODE_SIZE
_SKEIN_CODE_SIZE = (1)
.else
.ifdef SKEIN_PERF #use code size if SKEIN_PERF is defined
_SKEIN_CODE_SIZE = (1)
.else
_SKEIN_CODE_SIZE = (0)
.endif
.endif
#
#################
#
.ifndef SKEIN_DEBUG
_SKEIN_DEBUG = 0
.else
_SKEIN_DEBUG = 1
.endif
#################
#
# define offsets of fields in hash context structure
#
HASH_BITS = 0 #bits of hash output
BCNT = 8 + HASH_BITS #number of bytes in BUFFER[]
TWEAK = 8 + BCNT #tweak values[0..1]
X_VARS = 16 + TWEAK #chaining vars
#
#(Note: buffer[] in context structure is NOT needed here :-)
#
KW_PARITY = 0x1BD11BDAA9FC1A22 #overall parity of key schedule words
FIRST_MASK = ~ (1 << 6)
FIRST_MASK64= ~ (1 << 62)
#
# rotation constants for Skein
#
RC_256_0_0 = 14
RC_256_0_1 = 16
RC_256_1_0 = 52
RC_256_1_1 = 57
RC_256_2_0 = 23
RC_256_2_1 = 40
RC_256_3_0 = 5
RC_256_3_1 = 37
RC_256_4_0 = 25
RC_256_4_1 = 33
RC_256_5_0 = 46
RC_256_5_1 = 12
RC_256_6_0 = 58
RC_256_6_1 = 22
RC_256_7_0 = 32
RC_256_7_1 = 32
RC_512_0_0 = 46
RC_512_0_1 = 36
RC_512_0_2 = 19
RC_512_0_3 = 37
RC_512_1_0 = 33
RC_512_1_1 = 27
RC_512_1_2 = 14
RC_512_1_3 = 42
RC_512_2_0 = 17
RC_512_2_1 = 49
RC_512_2_2 = 36
RC_512_2_3 = 39
RC_512_3_0 = 44
RC_512_3_1 = 9
RC_512_3_2 = 54
RC_512_3_3 = 56
RC_512_4_0 = 39
RC_512_4_1 = 30
RC_512_4_2 = 34
RC_512_4_3 = 24
RC_512_5_0 = 13
RC_512_5_1 = 50
RC_512_5_2 = 10
RC_512_5_3 = 17
RC_512_6_0 = 25
RC_512_6_1 = 29
RC_512_6_2 = 39
RC_512_6_3 = 43
RC_512_7_0 = 8
RC_512_7_1 = 35
RC_512_7_2 = 56
RC_512_7_3 = 22
RC_1024_0_0 = 24
RC_1024_0_1 = 13
RC_1024_0_2 = 8
RC_1024_0_3 = 47
RC_1024_0_4 = 8
RC_1024_0_5 = 17
RC_1024_0_6 = 22
RC_1024_0_7 = 37
RC_1024_1_0 = 38
RC_1024_1_1 = 19
RC_1024_1_2 = 10
RC_1024_1_3 = 55
RC_1024_1_4 = 49
RC_1024_1_5 = 18
RC_1024_1_6 = 23
RC_1024_1_7 = 52
RC_1024_2_0 = 33
RC_1024_2_1 = 4
RC_1024_2_2 = 51
RC_1024_2_3 = 13
RC_1024_2_4 = 34
RC_1024_2_5 = 41
RC_1024_2_6 = 59
RC_1024_2_7 = 17
RC_1024_3_0 = 5
RC_1024_3_1 = 20
RC_1024_3_2 = 48
RC_1024_3_3 = 41
RC_1024_3_4 = 47
RC_1024_3_5 = 28
RC_1024_3_6 = 16
RC_1024_3_7 = 25
RC_1024_4_0 = 41
RC_1024_4_1 = 9
RC_1024_4_2 = 37
RC_1024_4_3 = 31
RC_1024_4_4 = 12
RC_1024_4_5 = 47
RC_1024_4_6 = 44
RC_1024_4_7 = 30
RC_1024_5_0 = 16
RC_1024_5_1 = 34
RC_1024_5_2 = 56
RC_1024_5_3 = 51
RC_1024_5_4 = 4
RC_1024_5_5 = 53
RC_1024_5_6 = 42
RC_1024_5_7 = 41
RC_1024_6_0 = 31
RC_1024_6_1 = 44
RC_1024_6_2 = 47
RC_1024_6_3 = 46
RC_1024_6_4 = 19
RC_1024_6_5 = 42
RC_1024_6_6 = 44
RC_1024_6_7 = 25
RC_1024_7_0 = 9
RC_1024_7_1 = 48
RC_1024_7_2 = 35
RC_1024_7_3 = 52
RC_1024_7_4 = 23
RC_1024_7_5 = 31
RC_1024_7_6 = 37
RC_1024_7_7 = 20
#
# Input: reg
# Output: <reg> <<< RC_BlkSize_roundNum_mixNum, BlkSize=256/512/1024
#
.macro RotL64 reg,BLK_SIZE,ROUND_NUM,MIX_NUM
_RCNT_ = RC_\BLK_SIZE&_\ROUND_NUM&_\MIX_NUM
.if _RCNT_ #is there anything to do?
rolq $_RCNT_,%\reg
.endif
.endm
#
#----------------------------------------------------------------
#
# MACROS: define local vars and configure stack
#
#----------------------------------------------------------------
# declare allocated space on the stack
.macro StackVar localName,localSize
\localName = _STK_OFFS_
_STK_OFFS_ = _STK_OFFS_+(\localSize)
.endm #StackVar
#
#----------------------------------------------------------------
#
# MACRO: Configure stack frame, allocate local vars
#
.macro Setup_Stack BLK_BITS,KS_CNT,debugCnt
WCNT = (\BLK_BITS)/64
#
_PushCnt_ = 0 #save nonvolatile regs on stack
.irp _reg_,rbp,rbx,r12,r13,r14,r15
pushq %\_reg_
_PushCnt_ = _PushCnt_ + 1 #track count to keep alignment
.endr
#
_STK_OFFS_ = 0 #starting offset from rsp
#---- local variables #<-- rsp
StackVar X_stk ,8*(WCNT) #local context vars
StackVar ksTwk ,8*3 #key schedule: tweak words
StackVar ksKey ,8*(WCNT)+8 #key schedule: key words
.if (SKEIN_ASM_UNROLL && (\BLK_BITS)) == 0
StackVar ksRot ,16*(\KS_CNT) #leave space for "rotation" to happen
.endif
StackVar Wcopy ,8*(WCNT) #copy of input block
.if _SKEIN_DEBUG
.if \debugCnt + 0 #temp location for debug X[] info
StackVar xDebug_\BLK_BITS ,8*(\debugCnt)
.endif
.endif
.if ((8*_PushCnt_ + _STK_OFFS_) % 8) == 0
StackVar align16,8 #keep 16-byte aligned (adjust for retAddr?)
tmpStk_\BLK_BITS = align16 #use this
.endif
#---- saved caller parameters (from regs rdi, rsi, rdx, rcx)
StackVar ctxPtr ,8 #context ptr
StackVar blkPtr ,8 #pointer to block data
StackVar blkCnt ,8 #number of full blocks to process
StackVar bitAdd ,8 #bit count to add to tweak
LOCAL_SIZE = _STK_OFFS_ #size of "local" vars
#----
StackVar savRegs,8*_PushCnt_ #saved registers
StackVar retAddr,8 #return address
#---- caller's stack frame (aligned mod 16)
#
# set up the stack frame pointer (rbp)
#
FRAME_OFFS = ksTwk + 128 #allow short (negative) offset to ksTwk, kwKey
.if FRAME_OFFS > _STK_OFFS_ #keep rbp in the "locals" range
FRAME_OFFS = _STK_OFFS_
.endif
F_O = -FRAME_OFFS
#
#put some useful defines in the .lst file (for grep)
__STK_LCL_SIZE_\BLK_BITS = LOCAL_SIZE
__STK_TOT_SIZE_\BLK_BITS = _STK_OFFS_
__STK_FRM_OFFS_\BLK_BITS = FRAME_OFFS
#
# Notes on stack frame setup:
# * the most frequently used variable is X_stk[], based at [rsp+0]
# * the next most used is the key schedule arrays, ksKey and ksTwk
# so rbp is "centered" there, allowing short offsets to the key
# schedule even in 1024-bit Skein case
# * the Wcopy variables are infrequently accessed, but they have long
# offsets from both rsp and rbp only in the 1024-bit case.
# * all other local vars and calling parameters can be accessed
# with short offsets, except in the 1024-bit case
#
subq $LOCAL_SIZE,%rsp #make room for the locals
leaq FRAME_OFFS(%rsp),%rbp #maximize use of short offsets
movq %rdi, ctxPtr+F_O(%rbp) #save caller's parameters on the stack
movq %rsi, blkPtr+F_O(%rbp)
movq %rdx, blkCnt+F_O(%rbp)
movq %rcx, bitAdd+F_O(%rbp)
#
.endm #Setup_Stack
#
#----------------------------------------------------------------
#
.macro Reset_Stack
addq $LOCAL_SIZE,%rsp #get rid of locals (wipe??)
.irp _reg_,r15,r14,r13,r12,rbx,rbp
popq %\_reg_ #restore caller's regs
_PushCnt_ = _PushCnt_ - 1
.endr
.if _PushCnt_
.error "Mismatched push/pops?"
.endif
.endm # Reset_Stack
#
#----------------------------------------------------------------
# macros to help debug internals
#
.if _SKEIN_DEBUG
.extern Skein_Show_Block #calls to C routines
.extern Skein_Show_Round
#
SKEIN_RND_SPECIAL = 1000
SKEIN_RND_KEY_INITIAL = SKEIN_RND_SPECIAL+0
SKEIN_RND_KEY_INJECT = SKEIN_RND_SPECIAL+1
SKEIN_RND_FEED_FWD = SKEIN_RND_SPECIAL+2
#
.macro Skein_Debug_Block BLK_BITS
#
#void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,
# const u08b_t *blkPtr, const u64b_t *wPtr,
# const u64b_t *ksPtr,const u64b_t *tsPtr)
#
_NN_ = 0
.irp _reg_,rax,rcx,rdx,rsi,rdi,r8,r9,r10,r11
pushq %\_reg_ #save all volatile regs on tack before the call
_NN_ = _NN_ + 1
.endr
# get and push call parameters
movq $\BLK_BITS ,%rdi #bits
movq ctxPtr+F_O(%rbp),%rsi #h (pointer)
leaq X_VARS (%rsi),%rdx #X (pointer)
movq blkPtr+F_O(%rbp),%rcx #blkPtr
leaq Wcopy +F_O(%rbp),%r8 #wPtr
leaq ksKey +F_O(%rbp),%r9 #key pointer
leaq ksTwk +F_O(%rbp),%rax #tweak pointer
pushq %rax # (pass on the stack)
call Skein_Show_Block #call external debug handler
addq $8*1,%rsp #discard parameters on stack
.if (_NN_ % 2 ) == 0 #check stack alignment
.error "Stack misalignment problem in Skein_Debug_Block_\_BLK_BITS"
.endif
.irp _reg_,r11,r10,r9,r8,rdi,rsi,rdx,rcx,rax
popq %\_reg_ #restore regs
_NN_ = _NN_ - 1
.endr
.if _NN_
.error "Push/pop mismatch problem in Skein_Debug_Block_\_BLK_BITS"
.endif
.endm # Skein_Debug_Block
#
# the macro to "call" to debug a round
#
.macro Skein_Debug_Round BLK_BITS,R,RDI_OFFS,afterOp
# call the appropriate (local) debug "function"
pushq %rdx #save rdx, so we can use it for round "number"
.if (SKEIN_ASM_UNROLL && \BLK_BITS) || (\R >= SKEIN_RND_SPECIAL)
movq $\R,%rdx
.else #compute round number using edi
_rOffs_ = \RDI_OFFS + 0
.if \BLK_BITS == 1024
movq rIdx_offs+8(%rsp),%rdx #get rIdx off the stack (adjust for pushq rdx above)
leaq 1+(((\R)-1) && 3)+_rOffs_(,%rdx,4),%rdx
.else
leaq 1+(((\R)-1) && 3)+_rOffs_(,%rdi,4),%rdx
.endif
.endif
call Skein_Debug_Round_\BLK_BITS
popq %rdx #restore origianl rdx value
#
afterOp
.endm # Skein_Debug_Round
.else #------- _SKEIN_DEBUG (dummy macros if debug not enabled)
.macro Skein_Debug_Block BLK_BITS
.endm
#
.macro Skein_Debug_Round BLK_BITS,R,RDI_OFFS,afterOp
.endm
#
.endif # _SKEIN_DEBUG
#
#----------------------------------------------------------------
#
.macro addReg dstReg,srcReg_A,srcReg_B,useAddOp,immOffs
.if \immOffs + 0
leaq \immOffs(%\srcReg_A\srcReg_B,%\dstReg),%\dstReg
.elseif ((\useAddOp + 0) == 0)
.ifndef ASM_NO_LEA #lea seems to be faster on Core 2 Duo CPUs!
leaq (%\srcReg_A\srcReg_B,%\dstReg),%\dstReg
.else
addq %\srcReg_A\srcReg_B,%\dstReg
.endif
.else
addq %\srcReg_A\srcReg_B,%\dstReg
.endif
.endm
# keep Intel-style ordering here, to match addReg
.macro xorReg dstReg,srcReg_A,srcReg_B
xorq %\srcReg_A\srcReg_B,%\dstReg
.endm
#
#----------------------------------------------------------------
#
.macro C_label lName
\lName: #use both "genders" to work across linkage conventions
_\lName:
.global \lName
.global _\lName
.endm
#
#=================================== Skein_256 =============================================
#
.if _USE_ASM_ & 256
#
# void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)#
#
#################
#
# code
#
C_label Skein_256_Process_Block
Setup_Stack 256,((ROUNDS_256/8)+1)
movq TWEAK+8(%rdi),%r14
jmp Skein_256_block_loop
.p2align 4
# main hash loop for Skein_256
Skein_256_block_loop:
#
# general register usage:
# RAX..RDX = X0..X3
# R08..R12 = ks[0..4]
# R13..R15 = ts[0..2]
# RSP, RBP = stack/frame pointers
# RDI = round counter or context pointer
# RSI = temp
#
movq TWEAK+0(%rdi) ,%r13
addq bitAdd+F_O(%rbp) ,%r13 #computed updated tweak value T0
movq %r14 ,%r15
xorq %r13 ,%r15 #now %r13.%r15 is set as the tweak
movq $KW_PARITY ,%r12
movq X_VARS+ 0(%rdi),%r8
movq X_VARS+ 8(%rdi),%r9
movq X_VARS+16(%rdi),%r10
movq X_VARS+24(%rdi),%r11
movq %r13,TWEAK+0(%rdi) #save updated tweak value ctx->h.T[0]
xorq %r8 ,%r12 #start accumulating overall parity
movq blkPtr +F_O(%rbp) ,%rsi #esi --> input block
xorq %r9 ,%r12
movq 0(%rsi) ,%rax #get X[0..3]
xorq %r10 ,%r12
movq 8(%rsi) ,%rbx
xorq %r11 ,%r12
movq 16(%rsi) ,%rcx
movq 24(%rsi) ,%rdx
movq %rax,Wcopy+ 0+F_O(%rbp) #save copy of input block
movq %rbx,Wcopy+ 8+F_O(%rbp)
movq %rcx,Wcopy+16+F_O(%rbp)
movq %rdx,Wcopy+24+F_O(%rbp)
addq %r8 ,%rax #initial key injection
addq %r9 ,%rbx
addq %r10,%rcx
addq %r11,%rdx
addq %r13,%rbx
addq %r14,%rcx
.if _SKEIN_DEBUG
movq %r14,TWEAK+ 8(%rdi) #save updated tweak T[1] (start bit cleared?)
movq %r8 ,ksKey+ 0+F_O(%rbp) #save key schedule on stack for Skein_Debug_Block
movq %r9 ,ksKey+ 8+F_O(%rbp)
movq %r10,ksKey+16+F_O(%rbp)
movq %r11,ksKey+24+F_O(%rbp)
movq %r12,ksKey+32+F_O(%rbp)
movq %r13,ksTwk+ 0+F_O(%rbp)
movq %r14,ksTwk+ 8+F_O(%rbp)
movq %r15,ksTwk+16+F_O(%rbp)
movq %rax,X_stk + 0(%rsp) #save X[] on stack for Skein_Debug_Block
movq %rbx,X_stk + 8(%rsp)
movq %rcx,X_stk +16(%rsp)
movq %rdx,X_stk +24(%rsp)
Skein_Debug_Block 256 #debug dump
Skein_Debug_Round 256,SKEIN_RND_KEY_INITIAL
.endif
#
.if ((SKEIN_ASM_UNROLL & 256) == 0)
movq %r8 ,ksKey+40+F_O(%rbp) #save key schedule on stack for looping code
movq %r9 ,ksKey+ 8+F_O(%rbp)
movq %r10,ksKey+16+F_O(%rbp)
movq %r11,ksKey+24+F_O(%rbp)
movq %r12,ksKey+32+F_O(%rbp)
movq %r13,ksTwk+24+F_O(%rbp)
movq %r14,ksTwk+ 8+F_O(%rbp)
movq %r15,ksTwk+16+F_O(%rbp)
.endif
addq $WCNT*8,%rsi #skip the block
movq %rsi,blkPtr +F_O(%rbp) #update block pointer
#
# now the key schedule is computed. Start the rounds
#
.if SKEIN_ASM_UNROLL & 256
_UNROLL_CNT = ROUNDS_256/8
.else
_UNROLL_CNT = SKEIN_UNROLL_256
.if ((ROUNDS_256/8) % _UNROLL_CNT)
.error "Invalid SKEIN_UNROLL_256"
.endif
xorq %rdi,%rdi #rdi = iteration count
Skein_256_round_loop:
.endif
_Rbase_ = 0
.rept _UNROLL_CNT*2
# all X and ks vars in regs # (ops to "rotate" ks vars, via mem, if not unrolled)
# round 4*_RBase_ + 0
addReg rax, rbx
RotL64 rbx, 256,%((4*_Rbase_+0) % 8),0
addReg rcx, rdx
.if (SKEIN_ASM_UNROLL & 256) == 0
movq ksKey+8*1+F_O(%rbp,%rdi,8),%r8
.endif
xorReg rbx, rax
RotL64 rdx, 256,%((4*_Rbase_+0) % 8),1
xorReg rdx, rcx
.if SKEIN_ASM_UNROLL & 256
.irp _r0_,%( 8+(_Rbase_+3) % 5)
.irp _r1_,%(13+(_Rbase_+2) % 3)
leaq (%r\_r0_,%r\_r1_),%rdi #precompute key injection value for %rcx
.endr
.endr
.endif
.if (SKEIN_ASM_UNROLL & 256) == 0
movq ksTwk+8*1+F_O(%rbp,%rdi,8),%r13
.endif
Skein_Debug_Round 256,%(4*_Rbase_+1)
# round 4*_Rbase_ + 1
addReg rax, rdx
RotL64 rdx, 256,%((4*_Rbase_+1) % 8),0
xorReg rdx, rax
.if (SKEIN_ASM_UNROLL & 256) == 0
movq ksKey+8*2+F_O(%rbp,%rdi,8),%r9
.endif
addReg rcx, rbx
RotL64 rbx, 256,%((4*_Rbase_+1) % 8),1
xorReg rbx, rcx
.if (SKEIN_ASM_UNROLL & 256) == 0
movq ksKey+8*4+F_O(%rbp,%rdi,8),%r11
.endif
Skein_Debug_Round 256,%(4*_Rbase_+2)
.if SKEIN_ASM_UNROLL & 256
.irp _r0_,%( 8+(_Rbase_+2) % 5)
.irp _r1_,%(13+(_Rbase_+1) % 3)
leaq (%r\_r0_,%r\_r1_),%rsi #precompute key injection value for %rbx
.endr
.endr
.endif
# round 4*_Rbase_ + 2
addReg rax, rbx
RotL64 rbx, 256,%((4*_Rbase_+2) % 8),0
addReg rcx, rdx
.if (SKEIN_ASM_UNROLL & 256) == 0
movq ksKey+8*3+F_O(%rbp,%rdi,8),%r10
.endif
xorReg rbx, rax
RotL64 rdx, 256,%((4*_Rbase_+2) % 8),1
xorReg rdx, rcx
.if (SKEIN_ASM_UNROLL & 256) == 0
movq %r8,ksKey+8*6+F_O(%rbp,%rdi,8) #"rotate" the key
leaq 1(%r11,%rdi),%r11 #precompute key + tweak
.endif
Skein_Debug_Round 256,%(4*_Rbase_+3)
# round 4*_Rbase_ + 3
addReg rax, rdx
RotL64 rdx, 256,%((4*_Rbase_+3) % 8),0
addReg rcx, rbx
.if (SKEIN_ASM_UNROLL & 256) == 0
addq ksTwk+8*2+F_O(%rbp,%rdi,8),%r10 #precompute key + tweak
movq %r13,ksTwk+8*4+F_O(%rbp,%rdi,8) #"rotate" the tweak
.endif
xorReg rdx, rax
RotL64 rbx, 256,%((4*_Rbase_+3) % 8),1
xorReg rbx, rcx
Skein_Debug_Round 256,%(4*_Rbase_+4)
.if (SKEIN_ASM_UNROLL & 256) == 0
addReg r9 ,r13 #precompute key+tweak
.endif
#inject key schedule words
_Rbase_ = _Rbase_+1
.if SKEIN_ASM_UNROLL & 256
addReg rax,r,%(8+((_Rbase_+0) % 5))
addReg rbx,rsi
addReg rcx,rdi
addReg rdx,r,%(8+((_Rbase_+3) % 5)),,_Rbase_
.else
incq %rdi
addReg rax,r8
addReg rcx,r10
addReg rbx,r9
addReg rdx,r11
.endif
Skein_Debug_Round 256,SKEIN_RND_KEY_INJECT
.endr #rept _UNROLL_CNT
#
.if (SKEIN_ASM_UNROLL & 256) == 0
cmpq $2*(ROUNDS_256/8),%rdi
jb Skein_256_round_loop
.endif # (SKEIN_ASM_UNROLL & 256) == 0
movq ctxPtr +F_O(%rbp),%rdi #restore rdi --> context
#----------------------------
# feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..3}
movq $FIRST_MASK64 ,%r14
xorq Wcopy + 0+F_O (%rbp),%rax
xorq Wcopy + 8+F_O (%rbp),%rbx
xorq Wcopy +16+F_O (%rbp),%rcx
xorq Wcopy +24+F_O (%rbp),%rdx
andq TWEAK + 8 (%rdi),%r14
movq %rax,X_VARS+ 0(%rdi) #store final result
movq %rbx,X_VARS+ 8(%rdi)
movq %rcx,X_VARS+16(%rdi)
movq %rdx,X_VARS+24(%rdi)
Skein_Debug_Round 256,SKEIN_RND_FEED_FWD
# go back for more blocks, if needed
decq blkCnt+F_O(%rbp)
jnz Skein_256_block_loop
movq %r14,TWEAK + 8(%rdi)
Reset_Stack
ret
Skein_256_Process_Block_End:
.if _SKEIN_DEBUG
Skein_Debug_Round_256: #here with rdx == round "number" from macro
pushq %rsi #save two regs for BLK_BITS-specific parms
pushq %rdi
movq 24(%rsp),%rdi #get back original rdx (pushed on stack in macro call) to rdi
movq %rax,X_stk+ 0+F_O(%rbp) #save X[] state on stack so debug routines can access it
movq %rbx,X_stk+ 8+F_O(%rbp) #(use FP_ since rsp has changed!)
movq %rcx,X_stk+16+F_O(%rbp)
movq %rdi,X_stk+24+F_O(%rbp)
movq ctxPtr+F_O(%rbp),%rsi #ctx_hdr_ptr
movq $256,%rdi #now <rdi,rsi,rdx> are set for the call
jmp Skein_Debug_Round_Common
.endif
#
.if _SKEIN_CODE_SIZE
C_label Skein_256_Process_Block_CodeSize
movq $(Skein_256_Process_Block_End-Skein_256_Process_Block),%rax
ret
#
C_label Skein_256_Unroll_Cnt
.if _UNROLL_CNT <> ROUNDS_256/8
movq $_UNROLL_CNT,%rax
.else
xorq %rax,%rax
.endif
ret
.endif
#
.endif #_USE_ASM_ & 256
#
#=================================== Skein_512 =============================================
#
.if _USE_ASM_ & 512
#
# void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)
#
# X[i] == %r[8+i] #register assignments for X[] values during rounds (i=0..7)
#
#################
# MACRO: one round for 512-bit blocks
#
.macro R_512_OneRound rn0,rn1,rn2,rn3,rn4,rn5,rn6,rn7,_Rn_,op1,op2,op3,op4
#
addReg r\rn0, r\rn1
RotL64 r\rn1, 512,%((_Rn_) % 8),0
xorReg r\rn1, r\rn0
op1
addReg r\rn2, r\rn3
RotL64 r\rn3, 512,%((_Rn_) % 8),1
xorReg r\rn3, r\rn2
op2
addReg r\rn4, r\rn5
RotL64 r\rn5, 512,%((_Rn_) % 8),2
xorReg r\rn5, r\rn4
op3
addReg r\rn6, r\rn7
RotL64 r\rn7, 512,%((_Rn_) % 8),3
xorReg r\rn7, r\rn6
op4
Skein_Debug_Round 512,%(_Rn_+1),-4
#
.endm #R_512_OneRound
#
#################
# MACRO: eight rounds for 512-bit blocks
#
.macro R_512_FourRounds _RR_ #RR = base round number (0 % 8)
.if (SKEIN_ASM_UNROLL && 512)
# here for fully unrolled case.
_II_ = ((_RR_)/4) + 1 #key injection counter
R_512_OneRound 8, 9,10,11,12,13,14,15,%((_RR_)+0),<movq ksKey+8*(((_II_)+3) % 9)+F_O(%rbp),%rax>,,<movq ksKey+8*(((_II_)+4) % 9)+F_O(%rbp),%rbx>
R_512_OneRound 10, 9,12,15,14,13, 8,11,%((_RR_)+1),<movq ksKey+8*(((_II_)+5) % 9)+F_O(%rbp),%rcx>,,<movq ksKey+8*(((_II_)+6) % 9)+F_O(%rbp),%rdx>
R_512_OneRound 12, 9,14,11, 8,13,10,15,%((_RR_)+2),<movq ksKey+8*(((_II_)+7) % 9)+F_O(%rbp),%rsi>,,<addq ksTwk+8*(((_II_)+0) % 3)+F_O(%rbp),%rcx>
R_512_OneRound 14, 9, 8,15,10,13,12,11,%((_RR_)+3),<addq ksTwk+8*(((_II_)+1) % 3)+F_O(%rbp),%rdx>,
# inject the key schedule
addq ksKey+8*(((_II_)+0)%9)+F_O(%rbp),%r8
addReg r11, rax
addq ksKey+8*(((_II_)+1)%9)+F_O(%rbp),%r9
addReg r12, rbx
addq ksKey+8*(((_II_)+2)%9)+F_O(%rbp),%r10
addReg r13, rcx
addReg r14, rdx
addReg r15, rsi,,,(_II_)
.else
# here for looping case #"rotate" key/tweak schedule (move up on stack)
incq %rdi #bump key injection counter
R_512_OneRound 8, 9,10,11,12,13,14,15,%((_RR_)+0),<movq ksKey+8*6+F_O(%rbp,%rdi,8),%rdx>,<movq ksTwk-8*1+F_O(%rbp,%rdi,8),%rax>,<movq ksKey-8*1+F_O(%rbp,%rdi,8),%rsi>
R_512_OneRound 10, 9,12,15,14,13, 8,11,%((_RR_)+1),<movq ksKey+8*5+F_O(%rbp,%rdi,8),%rcx>,<movq %rax,ksTwk+8*2+F_O(%rbp,%rdi,8) >,<movq %rsi,ksKey+8*8+F_O(%rbp,%rdi,8)>
R_512_OneRound 12, 9,14,11, 8,13,10,15,%((_RR_)+2),<movq ksKey+8*4+F_O(%rbp,%rdi,8),%rbx>,<addq ksTwk+8*1+F_O(%rbp,%rdi,8),%rdx>,<movq ksKey+8*7+F_O(%rbp,%rdi,8),%rsi>
R_512_OneRound 14, 9, 8,15,10,13,12,11,%((_RR_)+3),<movq ksKey+8*3+F_O(%rbp,%rdi,8),%rax>,<addq ksTwk+8*0+F_O(%rbp,%rdi,8),%rcx>
# inject the key schedule
addq ksKey+8*0+F_O(%rbp,%rdi,8),%r8
addReg r11, rax
addReg r12, rbx
addq ksKey+8*1+F_O(%rbp,%rdi,8),%r9
addReg r13, rcx
addReg r14, rdx
addq ksKey+8*2+F_O(%rbp,%rdi,8),%r10
addReg r15, rsi
addReg r15, rdi #inject the round number
.endif
#show the result of the key injection
Skein_Debug_Round 512,SKEIN_RND_KEY_INJECT
.endm #R_512_EightRounds
#
#################
# instantiated code
#
C_label Skein_512_Process_Block
Setup_Stack 512,ROUNDS_512/8
movq TWEAK+ 8(%rdi),%rbx
jmp Skein_512_block_loop
.p2align 4
# main hash loop for Skein_512
Skein_512_block_loop:
# general register usage:
# RAX..RDX = temps for key schedule pre-loads
# R8 ..R15 = X0..X7
# RSP, RBP = stack/frame pointers
# RDI = round counter or context pointer
# RSI = temp
#
movq TWEAK + 0(%rdi),%rax
addq bitAdd+F_O(%rbp),%rax #computed updated tweak value T0
movq %rbx,%rcx
xorq %rax,%rcx #%rax/%rbx/%rcx = tweak schedule
movq %rax,TWEAK+ 0 (%rdi) #save updated tweak value ctx->h.T[0]
movq %rax,ksTwk+ 0+F_O(%rbp)
movq $KW_PARITY,%rdx
movq blkPtr +F_O(%rbp),%rsi #%rsi --> input block
movq %rbx,ksTwk+ 8+F_O(%rbp)
movq %rcx,ksTwk+16+F_O(%rbp)
.irp _Rn_,8,9,10,11,12,13,14,15
movq X_VARS+8*(_Rn_-8)(%rdi),%r\_Rn_
xorq %r\_Rn_,%rdx #compute overall parity
movq %r\_Rn_,ksKey+8*(_Rn_-8)+F_O(%rbp)
.endr #load state into %r8 ..%r15, compute parity
movq %rdx,ksKey+8*(8)+F_O(%rbp)#save key schedule parity
addReg r13,rax #precompute key injection for tweak
addReg r14, rbx
.if _SKEIN_DEBUG
movq %rbx,TWEAK+ 8(%rdi) #save updated tweak value ctx->h.T[1] for Skein_Debug_Block below
.endif
movq 0(%rsi),%rax #load input block
movq 8(%rsi),%rbx
movq 16(%rsi),%rcx
movq 24(%rsi),%rdx
addReg r8 , rax #do initial key injection
addReg r9 , rbx
movq %rax,Wcopy+ 0+F_O(%rbp) #keep local copy for feedforward
movq %rbx,Wcopy+ 8+F_O(%rbp)
addReg r10, rcx
addReg r11, rdx
movq %rcx,Wcopy+16+F_O(%rbp)
movq %rdx,Wcopy+24+F_O(%rbp)
movq 32(%rsi),%rax
movq 40(%rsi),%rbx
movq 48(%rsi),%rcx
movq 56(%rsi),%rdx
addReg r12, rax
addReg r13, rbx
addReg r14, rcx
addReg r15, rdx
movq %rax,Wcopy+32+F_O(%rbp)
movq %rbx,Wcopy+40+F_O(%rbp)
movq %rcx,Wcopy+48+F_O(%rbp)
movq %rdx,Wcopy+56+F_O(%rbp)
.if _SKEIN_DEBUG
.irp _Rn_,8,9,10,11,12,13,14,15 #save values on stack for debug output
movq %r\_Rn_,X_stk+8*(_Rn_-8)(%rsp)
.endr
Skein_Debug_Block 512 #debug dump
Skein_Debug_Round 512,SKEIN_RND_KEY_INITIAL
.endif
addq $8*WCNT,%rsi #skip the block
movq %rsi,blkPtr+F_O(%rbp) #update block pointer
#
#################
# now the key schedule is computed. Start the rounds
#
.if SKEIN_ASM_UNROLL & 512
_UNROLL_CNT = ROUNDS_512/8
.else
_UNROLL_CNT = SKEIN_UNROLL_512
.if ((ROUNDS_512/8) % _UNROLL_CNT)
.err "Invalid SKEIN_UNROLL_512"
.endif
xorq %rdi,%rdi #rdi = round counter
Skein_512_round_loop:
.endif
#
_Rbase_ = 0
.rept _UNROLL_CNT*2
R_512_FourRounds %(4*_Rbase_+00)
_Rbase_ = _Rbase_+1
.endr #rept _UNROLL_CNT
#
.if (SKEIN_ASM_UNROLL & 512) == 0
cmpq $2*(ROUNDS_512/8),%rdi
jb Skein_512_round_loop
movq ctxPtr +F_O(%rbp),%rdi #restore rdi --> context
.endif
# end of rounds
#################
# feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..7}
.irp _Rn_,8,9,10,11,12,13,14,15
.if (_Rn_ == 8)
movq $FIRST_MASK64,%rbx
.endif
xorq Wcopy+8*(_Rn_-8)+F_O(%rbp),%r\_Rn_ #feedforward XOR
movq %r\_Rn_,X_VARS+8*(_Rn_-8)(%rdi) #and store result
.if (_Rn_ == 14)
andq TWEAK+ 8(%rdi),%rbx
.endif
.endr
Skein_Debug_Round 512,SKEIN_RND_FEED_FWD
# go back for more blocks, if needed
decq blkCnt+F_O(%rbp)
jnz Skein_512_block_loop
movq %rbx,TWEAK + 8(%rdi)
Reset_Stack
ret
Skein_512_Process_Block_End:
#
.if _SKEIN_DEBUG
# call here with rdx = "round number"
Skein_Debug_Round_512:
pushq %rsi #save two regs for BLK_BITS-specific parms
pushq %rdi
.irp _Rn_,8,9,10,11,12,13,14,15 #save X[] state on stack so debug routines can access it
movq %r\_Rn_,X_stk+8*(_Rn_-8)+F_O(%rbp)
.endr
movq ctxPtr+F_O(%rbp),%rsi #ctx_hdr_ptr
movq $512,%rdi #now <rdi,rsi,rdx> are set for the call
jmp Skein_Debug_Round_Common
.endif
#
.if _SKEIN_CODE_SIZE
C_label Skein_512_Process_Block_CodeSize
movq $(Skein_512_Process_Block_End-Skein_512_Process_Block),%rax
ret
#
C_label Skein_512_Unroll_Cnt
.if _UNROLL_CNT <> (ROUNDS_512/8)
movq $_UNROLL_CNT,%rax
.else
xorq %rax,%rax
.endif
ret
.endif
#
.endif # _USE_ASM_ & 512
#
#=================================== Skein1024 =============================================
.if _USE_ASM_ & 1024
#
# void Skein1024_Process_Block(Skein_1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)#
#
#################
# use details of permutation to make register assignments
#
o1K_rdi = 0 #offsets in X[] associated with each register
o1K_rsi = 1
o1K_rbp = 2
o1K_rax = 3
o1K_rcx = 4 #rcx is "shared" with X6, since X4/X6 alternate
o1K_rbx = 5
o1K_rdx = 7
o1K_r8 = 8
o1K_r9 = 9
o1K_r10 = 10
o1K_r11 = 11
o1K_r12 = 12
o1K_r13 = 13
o1K_r14 = 14
o1K_r15 = 15
#
rIdx_offs = tmpStk_1024
#
.macro r1024_Mix w0,w1,reg0,reg1,_RN0_,_Rn1_,op1
addReg \reg0 , \reg1 #perform the MIX
RotL64 \reg1 , 1024,%((_RN0_) % 8),_Rn1_
xorReg \reg1 , \reg0
.if ((_RN0_) && 3) == 3 #time to do key injection?
.if _SKEIN_DEBUG
movq %\reg0 , xDebug_1024+8*w0(%rsp) #save intermediate values for Debug_Round
movq %\reg1 , xDebug_1024+8*w1(%rsp) # (before inline key injection)
.endif
_II_ = ((_RN0_)/4)+1 #injection count
.if SKEIN_ASM_UNROLL && 1024 #here to do fully unrolled key injection
addq ksKey+ 8*((_II_+w0) % 17)(%rsp),%\reg0
addq ksKey+ 8*((_II_+w1) % 17)(%rsp),%\reg1
.if w1 == 13 #tweak injection
addq ksTwk+ 8*((_II_+ 0) % 3)(%rsp),%\reg1
.elseif w0 == 14
addq ksTwk+ 8*((_II_+ 1) % 3)(%rsp),%\reg0
.elseif w1 == 15
addq $_II_, %\reg1 #(injection counter)
.endif
.else #here to do looping key injection
.if (w0 == 0)
movq %rdi, X_stk+8*w0(%rsp) #if so, store N0 so we can use reg as index
movq rIdx_offs(%rsp),%rdi #get the injection counter index into rdi
.else
addq ksKey+8+8*w0(%rsp,%rdi,8),%\reg0 #even key injection
.endif
.if w1 == 13 #tweak injection
addq ksTwk+8+8* 0(%rsp,%rdi,8),%\reg1
.elseif w0 == 14
addq ksTwk+8+8* 1(%rsp,%rdi,8),%\reg0
.elseif w1 == 15
addReg \reg1,rdi,,,1 #(injection counter)
.endif
addq ksKey+8+8*w1(%rsp,%rdi,8),%\reg1 #odd key injection
.endif
.endif
# insert the op provided, .if any
op1
.endm
#################
# MACRO: four rounds for 1024-bit blocks
#
.macro r1024_FourRounds _RR_ #RR = base round number (0 mod 4)
# should be here with X4 set properly, X6 stored on stack
_Rn_ = (_RR_) + 0
r1024_Mix 0, 1,rdi,rsi,_Rn_,0
r1024_Mix 2, 3,rbp,rax,_Rn_,1
r1024_Mix 4, 5,rcx,rbx,_Rn_,2,<movq %rcx,X_stk+8*4(%rsp)> #save X4 on stack (x4/x6 alternate)
r1024_Mix 8, 9,r8 ,r9 ,_Rn_,4,<movq X_stk+8*6(%rsp),%rcx> #load X6 from stack
r1024_Mix 10,11,r10,r11,_Rn_,5
r1024_Mix 12,13,r12,r13,_Rn_,6
r1024_Mix 6, 7,rcx,rdx,_Rn_,3
r1024_Mix 14,15,r14,r15,_Rn_,7
.if _SKEIN_DEBUG
Skein_Debug_Round 1024,%(_Rn_+1)
.endif
_Rn_ = (_RR_) + 1
r1024_Mix 0, 9,rdi,r9 ,_Rn_,0
r1024_Mix 2,13,rbp,r13,_Rn_,1
r1024_Mix 6,11,rcx,r11,_Rn_,2,<movq %rcx,X_stk+8*6(%rsp)> #save X6 on stack (x4/x6 alternate)
r1024_Mix 10, 7,r10,rdx,_Rn_,4,<movq X_stk+8*4(%rsp),%rcx> #load X4 from stack
r1024_Mix 12, 3,r12,rax,_Rn_,5
r1024_Mix 14, 5,r14,rbx,_Rn_,6
r1024_Mix 4,15,rcx,r15,_Rn_,3
r1024_Mix 8, 1,r8 ,rsi,_Rn_,7
.if _SKEIN_DEBUG
Skein_Debug_Round 1024,%(_Rn_+1)
.endif
_Rn_ = (_RR_) + 2
r1024_Mix 0, 7,rdi,rdx,_Rn_,0
r1024_Mix 2, 5,rbp,rbx,_Rn_,1
r1024_Mix 4, 3,rcx,rax,_Rn_,2,<movq %rcx,X_stk+8*4(%rsp)> #save X4 on stack (x4/x6 alternate)
r1024_Mix 12,15,r12,r15,_Rn_,4,<movq X_stk+8*6(%rsp),%rcx> #load X6 from stack
r1024_Mix 14,13,r14,r13,_Rn_,5
r1024_Mix 8,11,r8 ,r11,_Rn_,6
r1024_Mix 6, 1,rcx,rsi,_Rn_,3
r1024_Mix 10, 9,r10,r9 ,_Rn_,7
.if _SKEIN_DEBUG
Skein_Debug_Round 1024,%(_Rn_+1)
.endif
_Rn_ = (_RR_) + 3
r1024_Mix 0,15,rdi,r15,_Rn_,0
r1024_Mix 2,11,rbp,r11,_Rn_,1
r1024_Mix 6,13,rcx,r13,_Rn_,2,<movq %rcx,X_stk+8*6(%rsp)> #save X6 on stack (x4/x6 alternate)
r1024_Mix 14, 1,r14,rsi,_Rn_,4,<movq X_stk+8*4(%rsp),%rcx> #load X4 from stack
r1024_Mix 8, 5,r8 ,rbx,_Rn_,5
r1024_Mix 10, 3,r10,rax,_Rn_,6
r1024_Mix 4, 9,rcx,r9 ,_Rn_,3
r1024_Mix 12, 7,r12,rdx,_Rn_,7
.if _SKEIN_DEBUG
Skein_Debug_Round 1024,%(_Rn_+1)
.endif
.if (SKEIN_ASM_UNROLL && 1024) == 0 #here with rdi == rIdx, X0 on stack
#"rotate" the key schedule on the stack
i8 = o1K_r8
i0 = o1K_rdi
movq %r8 , X_stk+8*i8(%rsp) #free up a register (save it on the stack)
movq ksKey+8* 0(%rsp,%rdi,8),%r8 #get key word
movq %r8 , ksKey+8*17(%rsp,%rdi,8) #rotate key (must do key first or tweak clobbers it!)
movq ksTwk+8* 0(%rsp,%rdi,8),%r8 #get tweak word
movq %r8 , ksTwk+8* 3(%rsp,%rdi,8) #rotate tweak (onto the stack)
movq X_stk+8*i8(%rsp) ,%r8 #get the reg back
incq %rdi #bump the index
movq %rdi, rIdx_offs (%rsp) #save rdi again
movq ksKey+8*i0(%rsp,%rdi,8),%rdi #get the key schedule word for X0 back
addq X_stk+8*i0(%rsp) ,%rdi #perform the X0 key injection
.endif
#show the result of the key injection
Skein_Debug_Round 1024,SKEIN_RND_KEY_INJECT
.endm #r1024_FourRounds
#
################
# code
#
C_label Skein1024_Process_Block
#
Setup_Stack 1024,ROUNDS_1024/8,WCNT
movq TWEAK+ 8(%rdi),%r9
jmp Skein1024_block_loop
# main hash loop for Skein1024
.p2align 4
Skein1024_block_loop:
# general register usage:
# RSP = stack pointer
# RAX..RDX,RSI,RDI = X1, X3..X7 (state words)
# R8 ..R15 = X8..X15 (state words)
# RBP = temp (used for X0 and X2)
#
.if (SKEIN_ASM_UNROLL & 1024) == 0
xorq %rax,%rax #init loop index on the stack
movq %rax,rIdx_offs(%rsp)
.endif
movq TWEAK+ 0(%rdi),%r8
addq bitAdd+ F_O(%rbp),%r8 #computed updated tweak value T0
movq %r9 ,%r10
xorq %r8 ,%r10 #%rax/%rbx/%rcx = tweak schedule
movq %r8 ,TWEAK+ 0(%rdi) #save updated tweak value ctx->h.T[0]
movq %r8 ,ksTwk+ 0+F_O(%rbp)
movq %r9 ,ksTwk+ 8+F_O(%rbp) #keep values in %r8 ,%r9 for initial tweak injection below
movq %r10,ksTwk+16+F_O(%rbp)
.if _SKEIN_DEBUG
movq %r9 ,TWEAK+ 8(%rdi) #save updated tweak value ctx->h.T[1] for Skein_Debug_Block
.endif
movq blkPtr +F_O(%rbp),%rsi # rsi --> input block
movq $KW_PARITY ,%rax #overall key schedule parity
# the logic here assumes the set {rdi,rsi,rbp,rax} = X[0,1,2,3]
.irp _rN_,0,1,2,3,4,6 #process the "initial" words, using r14/r15 as temps
movq X_VARS+8*_rN_(%rdi),%r14 #get state word
movq 8*_rN_(%rsi),%r15 #get msg word
xorq %r14,%rax #update key schedule overall parity
movq %r14,ksKey +8*_rN_+F_O(%rbp) #save key schedule word on stack
movq %r15,Wcopy +8*_rN_+F_O(%rbp) #save local msg Wcopy
addq %r15,%r14 #do the initial key injection
movq %r14,X_stk +8*_rN_ (%rsp) #save initial state var on stack
.endr
# now process the rest, using the "real" registers
# (MUST do it in reverse order to inject tweaks r8/r9 first)
.irp _rr_,r15,r14,r13,r12,r11,r10,r9,r8,rdx,rbx
_oo_ = o1K_\_rr_ #offset assocated with the register
movq X_VARS+8*_oo_(%rdi),%\_rr_ #get key schedule word from context
movq 8*_oo_(%rsi),%rcx #get next input msg word
movq %\_rr_, ksKey +8*_oo_(%rsp) #save key schedule on stack
xorq %\_rr_, %rax #accumulate key schedule parity
movq %rcx,Wcopy+8*_oo_+F_O(%rbp) #save copy of msg word for feedforward
addq %rcx,%\_rr_ #do the initial key injection
.if _oo_ == 13 #do the initial tweak injection
addReg _rr_,r8 # (only in words 13/14)
.elseif _oo_ == 14
addReg _rr_,r9
.endif
.endr
movq %rax,ksKey+8*WCNT+F_O(%rbp) #save key schedule parity
.if _SKEIN_DEBUG
Skein_Debug_Block 1024 #initial debug dump
.endif
addq $8*WCNT,%rsi #bump the msg ptr
movq %rsi,blkPtr+F_O(%rbp) #save bumped msg ptr
# re-load words 0..4 from stack, enter the main loop
.irp _rr_,rdi,rsi,rbp,rax,rcx #(no need to re-load x6, already on stack)
movq X_stk+8*o1K_\_rr_(%rsp),%\_rr_ #re-load state and get ready to go!
.endr
.if _SKEIN_DEBUG
Skein_Debug_Round 1024,SKEIN_RND_KEY_INITIAL #show state after initial key injection
.endif
#
#################
# now the key schedule is computed. Start the rounds
#
.if SKEIN_ASM_UNROLL & 1024
_UNROLL_CNT = ROUNDS_1024/8
.else
_UNROLL_CNT = SKEIN_UNROLL_1024
.if ((ROUNDS_1024/8) % _UNROLL_CNT)
.error "Invalid SKEIN_UNROLL_1024"
.endif
Skein1024_round_loop:
.endif
#
_Rbase_ = 0
.rept _UNROLL_CNT*2 #implement the rounds, 4 at a time
r1024_FourRounds %(4*_Rbase_+00)
_Rbase_ = _Rbase_+1
.endr #rept _UNROLL_CNT
#
.if (SKEIN_ASM_UNROLL & 1024) == 0
cmpq $2*(ROUNDS_1024/8),tmpStk_1024(%rsp) #see .if we are done
jb Skein1024_round_loop
.endif
# end of rounds
#################
#
# feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..15}
movq %rdx,X_stk+8*o1K_rdx(%rsp) #we need a register. x6 already on stack
movq ctxPtr(%rsp),%rdx
.irp _rr_,rdi,rsi,rbp,rax,rcx,rbx,r8,r9,r10,r11,r12,r13,r14,r15 #do all but x6,x7
_oo_ = o1K_\_rr_
xorq Wcopy +8*_oo_(%rsp),%\_rr_ #feedforward XOR
movq %\_rr_,X_VARS+8*_oo_(%rdx) #save result into context
.if (_oo_ == 9)
movq $FIRST_MASK64 ,%r9
.endif
.if (_oo_ == 14)
andq TWEAK+ 8(%rdx),%r9
.endif
.endr
#
movq X_stk +8*6(%rsp),%rax #now process x6,x7 (skipped in .irp above)
movq X_stk +8*7(%rsp),%rbx
xorq Wcopy +8*6(%rsp),%rax
xorq Wcopy +8*7(%rsp),%rbx
movq %rax,X_VARS+8*6(%rdx)
decq blkCnt(%rsp) #set zero flag iff done
movq %rbx,X_VARS+8*7(%rdx)
Skein_Debug_Round 1024,SKEIN_RND_FEED_FWD,,<cmpq $0,blkCnt(%rsp)>
# go back for more blocks, if needed
movq ctxPtr(%rsp),%rdi #don't muck with the flags here!
lea FRAME_OFFS(%rsp),%rbp
jnz Skein1024_block_loop
movq %r9 ,TWEAK+ 8(%rdx)
Reset_Stack
ret
#
Skein1024_Process_Block_End:
#
.if _SKEIN_DEBUG
Skein_Debug_Round_1024:
# call here with rdx = "round number",
_SP_OFFS_ = 8*2 #stack "offset" here: rdx, return addr
#
#save rest of X[] state on stack so debug routines can access it
.irp _rr_,rsi,rbp,rax,rbx,r8,r9,r10,r11,r12,r13,r14,r15
movq %\_rr_,X_stk+8*o1K_\_rr_+_SP_OFFS_(%rsp)
.endr
# Figure out what to do with x0 (rdi). When rdx == 0 mod 4, it's already on stack
cmpq $SKEIN_RND_SPECIAL,%rdx #special rounds always save
jae save_x0
testq $3,%rdx #otherwise only if rdx != 0 mod 4
jz save_x0_not
save_x0:
movq %rdi,X_stk+8*o1K_rdi+_SP_OFFS_(%rsp)
save_x0_not:
#figure out the x4/x6 swapping state and save the correct one!
cmpq $SKEIN_RND_SPECIAL,%rdx #special rounds always do x4
jae save_x4
testq $1,%rdx #and even ones have r4 as well
jz save_x4
movq %rcx,X_stk+8*6+_SP_OFFS_(%rsp)
jmp debug_1024_go
save_x4:
movq %rcx,X_stk+8*4+_SP_OFFS_(%rsp)
debug_1024_go:
#now all is saved in Xstk[] except for rdx
push %rsi #save two regs for BLK_BITS-specific parms
push %rdi
_SP_OFFS_ = _SP_OFFS_ + 16 #adjust stack offset accordingly (now 32)
movq _SP_OFFS_-8(%rsp),%rsi #get back original %rdx (pushed on stack in macro call)
movq %rsi,X_stk+8*o1K_rdx+_SP_OFFS_(%rsp) #and save it in its rightful place in X_stk[]
movq ctxPtr+_SP_OFFS_(%rsp),%rsi #rsi = ctx_hdr_ptr
movq $1024,%rdi #rdi = block size
jmp Skein_Debug_Round_Common
.endif
#
.if _SKEIN_CODE_SIZE
C_label Skein1024_Process_Block_CodeSize
movq $(Skein1024_Process_Block_End-Skein1024_Process_Block),%rax
ret
#
C_label Skein1024_Unroll_Cnt
.if _UNROLL_CNT <> (ROUNDS_1024/8)
movq $_UNROLL_CNT,%rax
.else
xorq %rax,%rax
.endif
ret
.endif
#
.endif # _USE_ASM_ and 1024
#
.if _SKEIN_DEBUG
#----------------------------------------------------------------
#local debug routine to set up for calls to:
# void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,int r,const u64b_t *X)
# [ rdi rsi rdx rcx]
#
# here with %rdx = round number
# %rsi = ctx_hdr_ptr
# %rdi = block size (256/512/1024)
# on stack: saved rdi, saved rsi, retAddr, saved rdx
#
Skein_Debug_Round_Common:
_SP_OFFS_ = 32 #account for four words on stack already
.irp _rr_,rax,rbx,rcx,rbp,r8,r9,r10,r11,r12,r13,r14,r15 #save the rest of the regs
pushq %\_rr_
_SP_OFFS_ = _SP_OFFS_+8
.endr
.if (_SP_OFFS_ % 16) # make sure stack is still 16-byte aligned here
.error "Debug_Round_Common: stack alignment"
.endif
# compute %rcx = ptr to the X[] array on the stack (final parameter to call)
leaq X_stk+_SP_OFFS_(%rsp),%rcx #adjust for reg pushes, return address
cmpq $SKEIN_RND_FEED_FWD,%rdx #special handling for feedforward "round"?
jnz _got_rcxA
leaq X_VARS(%rsi),%rcx
_got_rcxA:
.if _USE_ASM_ & 1024
# special handling for 1024-bit case
# (for rounds right before with key injection:
# use xDebug_1024[] instead of X_stk[])
cmpq $SKEIN_RND_SPECIAL,%rdx
jae _got_rcxB #must be a normal round
orq %rdx,%rdx
jz _got_rcxB #just before key injection
test $3,%rdx
jne _got_rcxB
cmp $1024,%rdi #only 1024-bit(s) for now
jne _got_rcxB
leaq xDebug_1024+_SP_OFFS_(%rsp),%rcx
_got_rcxB:
.endif
call Skein_Show_Round #call external debug handler
.irp _rr_,r15,r14,r13,r12,r11,r10,r9,r8,rbp,rcx,rbx,rax #restore regs
popq %\_rr_
_SP_OFFS_ = _SP_OFFS_-8
.endr
.if _SP_OFFS_ - 32
.error "Debug_Round_Common: push/pop misalignment!"
.endif
popq %rdi
popq %rsi
ret
.endif
#----------------------------------------------------------------
.end