pcompress/rabin/rabin_polynomial.c

555 lines
17 KiB
C
Raw Normal View History

/*
* rabin_polynomial.c
*
* Created by Joel Lawrence Tucci on 09-March-2011.
*
* Copyright (c) 2011 Joel Lawrence Tucci
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the project's author nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
2012-06-21 15:10:43 +00:00
/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
2012-07-07 16:48:29 +00:00
* version 3 of the License, or (at your option) any later version.
2012-06-21 15:10:43 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <allocator.h>
#include <utils.h>
// CRC64 pieces from LZMA's implementation -----------------
#include <crc_macros.h>
#ifdef WORDS_BIGENDIAN
# define A1(x) ((x) >> 56)
#else
# define A1 A
#endif
extern const uint64_t lzma_crc64_table[4][256];
// ---------------------------------------------------------
#include "rabin_polynomial.h"
extern int lzma_init(void **data, int *level, ssize_t chunksize);
extern int lzma_compress(void *src, size_t srclen, void *dst,
size_t *destlen, int level, uchar_t chdr, void *data);
extern int lzma_decompress(void *src, size_t srclen, void *dst,
size_t *dstlen, int level, uchar_t chdr, void *data);
extern int lzma_deinit(void **data);
uint32_t rabin_polynomial_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE;
/*
* Initialize the algorithm with the default params.
*/
rabin_context_t *
create_rabin_context(uint64_t chunksize, uint64_t real_chunksize, const char *algo) {
rabin_context_t *ctx;
unsigned char *current_window_data;
uint32_t blknum;
int level = 14;
/*
* For LZMA with chunksize <= LZMA Window size we use 4K minimum Rabin
* block size. For everything else it is 1K based on experimentation.
*/
ctx = (rabin_context_t *)slab_alloc(NULL, sizeof (rabin_context_t));
ctx->rabin_poly_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE;
if (memcmp(algo, "lzma", 4) == 0 && chunksize <= LZMA_WINDOW_MAX) {
ctx->rabin_poly_min_block_size = RAB_POLYNOMIAL_MIN_BLOCK_SIZE;
ctx->rabin_avg_block_mask = RAB_POLYNOMIAL_AVG_BLOCK_MASK;
ctx->rabin_poly_avg_block_size = RAB_POLYNOMIAL_AVG_BLOCK_SIZE;
ctx->rabin_break_patt = RAB_POLYNOMIAL_CONST;
} else {
ctx->rabin_poly_min_block_size = RAB_POLYNOMIAL_MIN_BLOCK_SIZE2;
ctx->rabin_avg_block_mask = RAB_POLYNOMIAL_AVG_BLOCK_MASK2;
ctx->rabin_poly_avg_block_size = RAB_POLYNOMIAL_AVG_BLOCK_SIZE2;
ctx->rabin_break_patt = 0;
}
blknum = chunksize / ctx->rabin_poly_min_block_size;
if (chunksize % ctx->rabin_poly_min_block_size)
blknum++;
if (blknum > RABIN_MAX_BLOCKS) {
fprintf(stderr, "Chunk size too large for dedup.\n");
destroy_rabin_context(ctx);
return (NULL);
}
current_window_data = slab_alloc(NULL, RAB_POLYNOMIAL_WIN_SIZE);
ctx->blocks = NULL;
if (real_chunksize > 0) {
ctx->blocks = (rabin_blockentry_t *)slab_alloc(NULL,
blknum * ctx->rabin_poly_min_block_size);
}
if(ctx == NULL || current_window_data == NULL || (ctx->blocks == NULL && real_chunksize > 0)) {
fprintf(stderr,
"Could not allocate rabin polynomial context, out of memory\n");
destroy_rabin_context(ctx);
return (NULL);
}
ctx->lzma_data = NULL;
if (real_chunksize > 0) {
lzma_init(&(ctx->lzma_data), &(ctx->level), chunksize);
if (!(ctx->lzma_data)) {
fprintf(stderr,
"Could not allocate rabin polynomial context, out of memory\n");
destroy_rabin_context(ctx);
return (NULL);
}
}
/*
* We should compute the power for the window size.
* static uint64_t polynomial_pow;
* polynomial_pow = 1;
* for(index=0; index<RAB_POLYNOMIAL_WIN_SIZE; index++) {
* polynomial_pow *= RAB_POLYNOMIAL_CONST;
* }
* But since RAB_POLYNOMIAL_CONST == 2, any expression of the form
* x * polynomial_pow can we written as x << RAB_POLYNOMIAL_WIN_SIZE
*/
ctx->current_window_data = current_window_data;
ctx->real_chunksize = real_chunksize;
reset_rabin_context(ctx);
return (ctx);
}
void
reset_rabin_context(rabin_context_t *ctx)
{
memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE);
ctx->window_pos = 0;
ctx->cur_roll_checksum = 0;
ctx->cur_checksum = 0;
}
void
destroy_rabin_context(rabin_context_t *ctx)
{
if (ctx) {
if (ctx->current_window_data) slab_free(NULL, ctx->current_window_data);
if (ctx->blocks) slab_free(NULL, ctx->blocks);
if (ctx->lzma_data) lzma_deinit(&(ctx->lzma_data));
slab_free(NULL, ctx);
}
}
/*
* Checksum Comparator for qsort
*/
static int
cmpblks(const void *a, const void *b)
{
rabin_blockentry_t *a1 = (rabin_blockentry_t *)a;
rabin_blockentry_t *b1 = (rabin_blockentry_t *)b;
if (a1->cksum_n_offset < b1->cksum_n_offset)
return (-1);
else if (a1->cksum_n_offset == b1->cksum_n_offset)
return (0);
else if (a1->cksum_n_offset > b1->cksum_n_offset)
return (1);
}
/**
2012-07-04 18:09:03 +00:00
* Perform Deduplication based on Rabin Fingerprinting. A 31-byte window is used for
* the rolling checksum and dedup blocks vary in size from 4K-128K.
*/
uint32_t
rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, ssize_t *rabin_pos)
{
ssize_t i, last_offset,j;
uint32_t blknum;
char *buf1 = (char *)buf;
uint32_t length;
length = offset;
last_offset = 0;
blknum = 0;
ctx->valid = 0;
ctx->cur_checksum = 0;
/*
* If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary
* in the chunk. We start scanning at chunk end - max rabin block size. We avoid doing
* a full chunk scan.
*/
if (rabin_pos) {
offset = *size - RAB_POLYNOMIAL_MAX_BLOCK_SIZE;
}
if (*size < ctx->rabin_poly_avg_block_size) return;
for (i=offset; i<*size; i++) {
char cur_byte = buf1[i];
uint64_t pushed_out = ctx->current_window_data[ctx->window_pos];
ctx->current_window_data[ctx->window_pos] = cur_byte;
/*
* We want to do:
* cur_roll_checksum = cur_roll_checksum * RAB_POLYNOMIAL_CONST + cur_byte;
* cur_roll_checksum -= pushed_out * polynomial_pow;
* cur_checksum = cur_checksum * RAB_POLYNOMIAL_CONST + cur_byte;
*
* However since RAB_POLYNOMIAL_CONST == 2, we use shifts.
*/
ctx->cur_roll_checksum = (ctx->cur_roll_checksum << 1) + cur_byte;
ctx->cur_roll_checksum -= (pushed_out << RAB_POLYNOMIAL_WIN_SIZE);
// CRC64 Calculation swiped from LZMA
ctx->cur_checksum = lzma_crc64_table[0][cur_byte ^ A1(ctx->cur_checksum)] ^ S8(ctx->cur_checksum);
ctx->window_pos++;
length++;
if (ctx->window_pos == RAB_POLYNOMIAL_WIN_SIZE) // Loop back around
ctx->window_pos=0;
if (length < ctx->rabin_poly_min_block_size) continue;
2012-06-21 15:10:43 +00:00
// If we hit our special value or reached the max block size update block offset
if ((ctx->cur_roll_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt ||
length >= rabin_polynomial_max_block_size) {
if (rabin_pos == NULL) {
ctx->blocks[blknum].offset = last_offset;
ctx->blocks[blknum].index = blknum; // Need to store for sorting
ctx->blocks[blknum].cksum_n_offset = ctx->cur_checksum;
ctx->blocks[blknum].length = length;
ctx->blocks[blknum].refcount = 0;
blknum++;
}
ctx->cur_checksum = 0;
last_offset = i+1;
length = 0;
}
}
if (rabin_pos && last_offset < *size) {
*rabin_pos = last_offset;
return (0);
}
// If we found at least a few chunks, perform dedup.
if (blknum > 2) {
uint64_t prev_cksum;
uint32_t blk, prev_length;
ssize_t pos, matchlen, pos1;
int valid = 1;
char *tmp, *prev_offset;
uint32_t *blkarr, *trans, *rabin_index, prev_index, prev_blk;
ssize_t rabin_index_sz;
// Insert the last left-over trailing bytes, if any, into a block.
if (last_offset < *size) {
ctx->blocks[blknum].offset = last_offset;
ctx->blocks[blknum].index = blknum;
ctx->blocks[blknum].cksum_n_offset = ctx->cur_checksum;
ctx->blocks[blknum].length = *size - last_offset;
ctx->blocks[blknum].refcount = 0;
blknum++;
ctx->cur_checksum = 0;
last_offset = *size;
}
rabin_index_sz = (ssize_t)blknum * RABIN_ENTRY_SIZE;
prev_cksum = 0;
prev_length = 0;
prev_offset = 0;
/*
* Now sort the block array based on checksums. This will bring virtually
* all similar block entries together. Effectiveness depends on how strong
* our checksum is. We are using CRC64 here so we should be pretty okay.
* TODO: Test with a heavily optimized MD5 (from OpenSSL?) later.
*/
qsort(ctx->blocks, blknum, sizeof (rabin_blockentry_t), cmpblks);
rabin_index = (uint32_t *)(ctx->cbuf + RABIN_HDR_SIZE);
/*
* We need 2 temporary arrays. We just use available space in the last
* portion of the buffer that will hold the deduped segment.
*/
blkarr = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - (rabin_index_sz * 2 + 1));
trans = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - (rabin_index_sz + 1));
matchlen = 0;
/*
* Now make a pass through the sorted block array making identical blocks
* point to the first identical block entry. A simple Run Length Encoding
* sort of. Checksums, length and contents (memcmp()) must match for blocks
* to be considered identical.
* The block index in the chunk is initialized with pointers into the
* sorted block array.
* A reference count is maintained for blocks that are similar with other
* blocks. This helps in non-duplicate block merging later.
*/
for (blk = 0; blk < blknum; blk++) {
blkarr[ctx->blocks[blk].index] = blk;
if (blk > 0 && ctx->blocks[blk].cksum_n_offset == prev_cksum &&
ctx->blocks[blk].length == prev_length &&
memcmp(prev_offset, buf1 + ctx->blocks[blk].offset, prev_length) == 0) {
ctx->blocks[blk].length = 0;
ctx->blocks[blk].index = prev_index;
(ctx->blocks[prev_blk].refcount)++;
matchlen += prev_length;
continue;
}
prev_offset = buf1 + ctx->blocks[blk].offset;
prev_cksum = ctx->blocks[blk].cksum_n_offset;
prev_length = ctx->blocks[blk].length;
prev_index = ctx->blocks[blk].index;
prev_blk = blk;
}
if (matchlen < rabin_index_sz) {
ctx->valid = 0;
return;
}
/*
* Another pass, this time through the block index in the chunk. We insert
* block length into unique block entries. For block entries that are
* identical with another one we store the index number with msb set.
* This way we can differentiate between a unique block length entry and a
* pointer to another block without needing a separate flag.
*/
prev_index = 0;
prev_length = 0;
pos = 0;
for (blk = 0; blk < blknum; blk++) {
rabin_blockentry_t *be;
be = &(ctx->blocks[blkarr[blk]]);
if (be->length > 0) {
/*
* Update Index entry with the length. Also try to merge runs
* of unique (non-duplicate) blocks into a single block entry
* as long as the total length does not exceed max block size.
*/
if (prev_index == 0) {
if (be->refcount == 0) {
prev_index = pos;
prev_length = be->length;
}
rabin_index[pos] = be->length;
ctx->blocks[pos].cksum_n_offset = be->offset;
trans[blk] = pos;
pos++;
} else {
if (be->refcount > 0) {
prev_index = 0;
prev_length = 0;
rabin_index[pos] = be->length;
ctx->blocks[pos].cksum_n_offset = be->offset;
trans[blk] = pos;
pos++;
} else {
if (prev_length + be->length <= RABIN_MAX_BLOCK_SIZE) {
prev_length += be->length;
rabin_index[prev_index] = prev_length;
} else {
prev_index = 0;
prev_length = 0;
rabin_index[pos] = be->length;
ctx->blocks[pos].cksum_n_offset = be->offset;
trans[blk] = pos;
pos++;
}
}
}
} else {
prev_index = 0;
prev_length = 0;
rabin_index[pos] = be->index | RABIN_INDEX_FLAG;
trans[blk] = pos;
pos++;
}
}
/*
* Final pass, copy the data.
*/
blknum = pos;
rabin_index_sz = (ssize_t)pos * RABIN_ENTRY_SIZE;
pos1 = rabin_index_sz + RABIN_HDR_SIZE;
for (blk = 0; blk < blknum; blk++) {
if (rabin_index[blk] & RABIN_INDEX_FLAG) {
j = rabin_index[blk] & RABIN_INDEX_VALUE;
rabin_index[blk] = htonl(trans[j] | RABIN_INDEX_FLAG);
} else {
/*
* If blocks are overflowing the allowed chunk size then dedup did not
* help at all. We invalidate the dedup operation.
*/
if (pos1 > last_offset) {
valid = 0;
break;
}
memcpy(ctx->cbuf + pos1, buf1 + ctx->blocks[blk].cksum_n_offset, rabin_index[blk]);
pos1 += rabin_index[blk];
rabin_index[blk] = htonl(rabin_index[blk]);
}
}
cont:
if (valid) {
uchar_t *cbuf = ctx->cbuf;
ssize_t *entries;
*((uint32_t *)cbuf) = htonl(blknum);
cbuf += sizeof (uint32_t);
entries = (ssize_t *)cbuf;
entries[0] = htonll(*size);
entries[1] = 0;
entries[2] = htonll(pos1 - rabin_index_sz - RABIN_HDR_SIZE);
*size = pos1;
ctx->valid = 1;
/*
* Remaining header entries: size of compressed index and size of
* compressed data are inserted later via rabin_update_hdr, after actual compression!
*/
return (rabin_index_sz);
}
}
return (0);
}
void
rabin_update_hdr(uchar_t *buf, ssize_t rabin_index_sz_cmp, ssize_t rabin_data_sz_cmp)
{
ssize_t *entries;
buf += sizeof (uint32_t);
entries = (ssize_t *)buf;
entries[1] = htonll(rabin_index_sz_cmp);
entries[3] = htonll(rabin_data_sz_cmp);
}
void
rabin_parse_hdr(uchar_t *buf, uint32_t *blknum, ssize_t *rabin_index_sz,
ssize_t *rabin_data_sz, ssize_t *rabin_index_sz_cmp,
ssize_t *rabin_data_sz_cmp, ssize_t *rabin_deduped_size)
{
ssize_t *entries;
*blknum = ntohl(*((uint32_t *)(buf)));
buf += sizeof (uint32_t);
entries = (ssize_t *)buf;
*rabin_data_sz = ntohll(entries[0]);
*rabin_index_sz = (ssize_t)(*blknum) * RABIN_ENTRY_SIZE;
*rabin_index_sz_cmp = ntohll(entries[1]);
*rabin_deduped_size = ntohll(entries[2]);
*rabin_data_sz_cmp = ntohll(entries[3]);
}
void
rabin_inverse_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size)
{
uint32_t blknum, blk, oblk, len;
uint32_t *rabin_index;
ssize_t data_sz, sz, indx_cmp, data_sz_cmp, deduped_sz;
ssize_t rabin_index_sz, pos1, i;
uchar_t *pos2;
rabin_parse_hdr(buf, &blknum, &rabin_index_sz, &data_sz, &indx_cmp, &data_sz_cmp, &deduped_sz);
rabin_index = (uint32_t *)(buf + RABIN_HDR_SIZE);
pos1 = rabin_index_sz + RABIN_HDR_SIZE;
pos2 = ctx->cbuf;
sz = 0;
ctx->valid = 1;
for (blk = 0; blk < blknum; blk++) {
len = ntohl(rabin_index[blk]);
if (len == 0) {
ctx->blocks[blk].length = 0;
ctx->blocks[blk].index = 0;
} else if (!(len & RABIN_INDEX_FLAG)) {
ctx->blocks[blk].length = len;
ctx->blocks[blk].offset = pos1;
pos1 += len;
} else {
ctx->blocks[blk].length = 0;
ctx->blocks[blk].index = len & RABIN_INDEX_VALUE;
}
}
for (blk = 0; blk < blknum; blk++) {
if (ctx->blocks[blk].length == 0 && ctx->blocks[blk].index == 0) continue;
if (ctx->blocks[blk].length > 0) {
len = ctx->blocks[blk].length;
pos1 = ctx->blocks[blk].offset;
} else {
oblk = ctx->blocks[blk].index;
len = ctx->blocks[oblk].length;
pos1 = ctx->blocks[oblk].offset;
}
memcpy(pos2, buf + pos1, len);
pos2 += len;
sz += len;
if (sz > data_sz) {
ctx->valid = 0;
break;
}
}
if (ctx->valid && sz < data_sz) {
ctx->valid = 0;
}
*size = data_sz;
}
/*
* TODO: Consolidate rabin dedup and compression/decompression in functions here rather than
* messy code in main program.
int
rabin_compress(rabin_context_t *ctx, uchar_t *from, ssize_t fromlen, uchar_t *to, ssize_t *tolen,
int level, char chdr, void *data, compress_func_ptr cmp)
{
}
*/