pcompress/rabin/global/db.c

257 lines
6.4 KiB
C
Raw Permalink Normal View History

/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*/
#include <sys/types.h>
#include <sys/param.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <utils.h>
2013-02-14 17:40:53 +00:00
#include <allocator.h>
#include <pthread.h>
#include <xxhash.h>
2013-02-16 18:03:06 +00:00
#include "db.h"
#define ONE_PB (1125899906842624ULL)
#define ONE_TB (1099511627776ULL)
#define FOUR_MB (4194304ULL)
#define EIGHT_MB (8388608ULL)
2013-02-14 17:40:53 +00:00
/*
* Hashtable structures for in-memory index.
*/
typedef struct _hash_entry {
uint64_t seg_offset;
2013-02-14 17:40:53 +00:00
struct _hash_entry *next;
2013-02-16 18:03:06 +00:00
uchar_t cksum[1];
2013-02-14 17:40:53 +00:00
} hash_entry_t;
typedef struct {
hash_entry_t **tab;
2013-02-14 17:40:53 +00:00
} htab_t;
typedef struct {
2013-02-16 18:03:06 +00:00
htab_t *list;
2013-02-14 17:40:53 +00:00
pthread_mutex_t *mlist;
uint64_t memlimit;
uint64_t memused;
int hash_entry_size, intervals, hash_slots;
} index_t;
archive_config_t *
init_global_db(char *configfile)
{
archive_config_t *cfg;
int rv;
cfg = calloc(1, sizeof (archive_config_t));
if (!cfg) {
fprintf(stderr, "Memory allocation failure\n");
return (NULL);
}
rv = read_config(configfile, cfg);
if (rv != 0)
return (NULL);
return (cfg);
}
void
static cleanup_indx(index_t *indx)
{
int i;
if (indx) {
if (indx->list) {
for (i = 0; i < indx->intervals; i++) {
if (indx->list[i].tab)
free(indx->list[i].tab);
}
free(indx->list);
}
if (indx->mlist)
free(indx->mlist);
free(indx);
}
}
archive_config_t *
init_global_db_s(char *path, char *tmppath, uint32_t chunksize, int pct_interval,
2013-02-16 18:03:06 +00:00
compress_algo_t algo, cksum_t ck, cksum_t ck_sim, size_t file_sz,
size_t memlimit, int nthreads)
{
archive_config_t *cfg;
int rv;
2013-02-14 17:40:53 +00:00
float diff;
cfg = calloc(1, sizeof (archive_config_t));
rv = set_config_s(cfg, algo, ck, ck_sim, chunksize, file_sz, pct_interval);
2013-02-14 17:40:53 +00:00
if (path != NULL) {
printf("Disk based index not yet implemented.\n");
free(cfg);
return (NULL);
} else {
uint32_t hash_slots, intervals, i;
uint64_t memreqd;
2013-02-16 18:03:06 +00:00
int hash_entry_size;
index_t *indx;
2013-02-14 17:40:53 +00:00
// Compute total hashtable entries first
intervals = 100 / pct_interval - 1;
hash_slots = file_sz / cfg->segment_sz_bytes + 1;
hash_slots *= intervals;
2013-02-16 18:03:06 +00:00
hash_entry_size = sizeof (hash_entry_t) + cfg->similarity_cksum_sz - 1;
2013-02-14 17:40:53 +00:00
// Compute memory required to hold all hash entries assuming worst case 50%
// occupancy.
2013-02-16 18:03:06 +00:00
memreqd = hash_slots * (hash_entry_size + sizeof (hash_entry_t *) +
(sizeof (hash_entry_t *)) / 2);
2013-02-14 17:40:53 +00:00
memreqd += hash_slots * sizeof (hash_entry_t **);
diff = (float)pct_interval / 100.0;
// Reduce hash_slots to remain within memlimit
while (memreqd > memlimit) {
hash_slots -= (hash_slots * diff);
2013-02-16 18:03:06 +00:00
memreqd = hash_slots * (hash_entry_size + sizeof (hash_entry_t *) +
2013-02-14 17:40:53 +00:00
(sizeof (hash_entry_t *)) / 2);
memreqd += hash_slots * sizeof (hash_entry_t **);
}
// Now create as many hash tables as there are similarity match intervals
// each having hash_slots / intervals slots.
indx = calloc(1, sizeof (index_t));
if (!indx) {
free(cfg);
return (NULL);
}
indx->memlimit = memlimit;
indx->list = (htab_t *)calloc(intervals, sizeof (htab_t));
indx->mlist = (pthread_mutex_t *)malloc(intervals * sizeof (pthread_mutex_t));
indx->hash_entry_size = hash_entry_size;
indx->intervals = intervals;
indx->hash_slots = hash_slots / intervals;
2013-02-14 17:40:53 +00:00
for (i = 0; i < intervals; i++) {
indx->list[i].tab = (hash_entry_t **)calloc(hash_slots / intervals,
2013-02-14 17:40:53 +00:00
sizeof (hash_entry_t *));
if (!(indx->list[i].tab)) {
cleanup_indx(indx);
free(cfg);
return (NULL);
}
indx->memused += ((hash_slots / intervals) * (sizeof (hash_entry_t *)));
pthread_mutex_init(&(indx->mlist[i]), NULL);
2013-02-14 17:40:53 +00:00
}
strcpy(cfg->rootdir, tmppath);
strcat(cfg->rootdir, "/.segXXXXXX");
cfg->seg_fd_w = mkstemp(cfg->rootdir);
cfg->seg_fd_r = (int *)malloc(sizeof (int) * nthreads);
if (cfg->seg_fd_w == -1 || cfg->seg_fd_r == NULL) {
cleanup_indx(indx);
if (cfg->seg_fd_r)
free(cfg->seg_fd_r);
free(cfg);
return (NULL);
}
for (i = 0; i < nthreads; i++) {
cfg->seg_fd_r[i] = open(cfg->rootdir, O_RDONLY);
}
cfg->dbdata = indx;
2013-02-14 17:40:53 +00:00
}
return (cfg);
}
static inline int
mycmp(uchar_t *a, uchar_t *b, int sz)
{
size_t val1, val2;
uchar_t *v1 = a;
uchar_t *v2 = b;
int len;
len = 0;
do {
val1 = *((size_t *)v1);
val2 = *((size_t *)v1);
if (val1 != val2) {
return (1);
}
v1 += sizeof (size_t);
v2 += sizeof (size_t);
len += sizeof (size_t);
} while (len < sz);
return (0);
}
uint64_t
db_lookup_insert_s(archive_config_t *cfg, uchar_t *sim_cksum, int interval,
uint64_t seg_offset, int do_insert)
2013-02-14 17:40:53 +00:00
{
uint32_t htab_entry;
index_t *indx = (index_t *)(cfg->dbdata);
hash_entry_t **htab, *ent, **pent;
assert(cfg->similarity_cksum_sz && (sizeof (size_t) - 1) == 0);
htab_entry = XXH32(sim_cksum, cfg->similarity_cksum_sz, 0);
htab_entry ^= (htab_entry / cfg->similarity_cksum_sz);
htab_entry = htab_entry % indx->hash_slots;
htab = indx->list[interval].tab;
pent = &(htab[htab_entry]);
pthread_mutex_lock(&(indx->mlist[interval]));
ent = htab[htab_entry];
while (ent) {
if (mycmp(sim_cksum, ent->cksum, cfg->similarity_cksum_sz) == 0) {
uint64_t off;
off = ent->seg_offset;
pthread_mutex_unlock(&(indx->mlist[interval]));
return (off+1);
}
pent = &(ent->next);
ent = ent->next;
}
if (do_insert) {
if (indx->memused + indx->hash_entry_size >= indx->memlimit - (indx->hash_entry_size << 2)) {
ent = htab[htab_entry];
pent = &(htab[htab_entry]);
htab[htab_entry] = htab[htab_entry]->next;
} else {
ent = (hash_entry_t *)malloc(indx->hash_entry_size);
}
ent->seg_offset = seg_offset;
ent->next = 0;
memcpy(ent->cksum, sim_cksum, cfg->similarity_cksum_sz);
*pent = ent;
}
pthread_mutex_unlock(&(indx->mlist[interval]));
return (0);
}