pcompress/utils/utils.c

424 lines
9.2 KiB
C
Raw Permalink Normal View History

2012-05-28 14:49:29 +00:00
/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
2013-03-07 14:56:48 +00:00
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
2012-05-28 14:49:29 +00:00
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
2012-07-07 16:48:29 +00:00
* version 3 of the License, or (at your option) any later version.
2012-05-28 14:49:29 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
2013-03-07 14:56:48 +00:00
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
2012-05-28 14:49:29 +00:00
* moinakg@belenix.org, http://moinakg.wordpress.com/
*
*/
#include <sys/types.h>
#include <sys/stat.h>
2012-05-28 14:49:29 +00:00
#include <sys/param.h>
#include <sys/time.h>
#include <fcntl.h>
#include <time.h>
2012-05-28 14:49:29 +00:00
#include <libgen.h>
#include <termios.h>
2012-05-28 14:49:29 +00:00
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <link.h>
#include <rabin_dedup.h>
#include <cpuid.h>
#include <xxhash.h>
2012-05-28 14:49:29 +00:00
#include <sys/sysinfo.h>
#define _IN_UTILS_
2012-05-28 14:49:29 +00:00
#include "utils.h"
processor_info_t proc_info;
void
init_pcompress() {
cpuid_basic_identify(&proc_info);
XXH32_module_init();
}
2012-05-28 14:49:29 +00:00
void
err_exit(int show_errno, const char *format, ...)
{
int err = errno;
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
if (show_errno)
fprintf(stderr, "\nError: %s\n", strerror(err));
exit(1);
}
/*
* Fetch the command name that started the current process.
* The returned string must be freed by the caller.
*/
const char *
get_execname(const char *argv0)
{
char path[MAXPATHLEN];
char apath[128];
char *tmp1, *tmp2;
pid_t pid;
/* The easiest case: we are in linux */
if (readlink("/proc/self/exe", path, MAXPATHLEN) != -1) {
return (strdup(basename(path)));
}
/* Next easy case: Solaris/Illumos */
pid = getpid();
sprintf(apath, "/proc/%d/path/a.out", pid);
if (readlink(apath, path, MAXPATHLEN) != -1) {
return (strdup(basename(path)));
}
/* Oops... not in linux, not in Solaris no guarantee */
/* check if we have something like execve("foobar", NULL, NULL) */
if (argv0 == NULL) {
/* Give up */
return (strdup("Unknown"));
}
tmp1 = strdup(argv0);
tmp2 = strdup(basename(tmp1));
free(tmp1);
return (tmp2);
}
/*
* Routines to parse a numeric string which can have the following suffixes:
* k - Kilobyte
* m - Megabyte
* g - Gigabyte
*
* The number should fit in an int64_t data type.
2012-05-28 14:49:29 +00:00
* Numeric overflow is also checked. The routine parse_numeric() returns
* 1 if there was a numeric overflow.
*/
static int
raise_by_multiplier(int64_t *val, int mult, int power) {
int64_t result;
2012-05-28 14:49:29 +00:00
while (power-- > 0) {
result = *val * mult;
if (result/mult != *val)
return (1);
*val = result;
}
return (0);
}
int
parse_numeric(int64_t *val, const char *str)
2012-05-28 14:49:29 +00:00
{
int ovr = 0;
2012-05-28 14:49:29 +00:00
char *mult;
*val = strtoll(str, &mult, 0);
if (*mult != '\0') {
switch (*mult) {
case 'k':
case 'K':
ovr = raise_by_multiplier(val, 1024, 1);
break;
case 'm':
case 'M':
ovr = raise_by_multiplier(val, 1024, 2);
break;
case 'g':
case 'G':
ovr = raise_by_multiplier(val, 1024, 3);
break;
default:
ovr = 2;
}
}
return (ovr);
}
/*
* Convert number of bytes into human readable format
*/
char *
bytes_to_size(uint64_t bytes)
{
static char num[20];
uint64_t kilobyte = 1024;
uint64_t megabyte = kilobyte * 1024;
uint64_t gigabyte = megabyte * 1024;
uint64_t terabyte = gigabyte * 1024;
if (bytes < kilobyte) {
sprintf(num, "%" PRIu64 " B", bytes);
} else if (bytes < megabyte) {
sprintf(num, "%" PRIu64 " KB", bytes / kilobyte);
} else if (bytes < gigabyte) {
sprintf(num, "%" PRIu64 " MB", bytes / megabyte);
} else if (bytes < terabyte) {
sprintf(num, "%" PRIu64 " GB", bytes / gigabyte);
} else {
sprintf(num, "%" PRIu64 " B", bytes);
}
return (num);
}
2012-05-28 14:49:29 +00:00
/*
* Read/Write helpers to ensure a full chunk is read or written
* unless there is an error.
* Additionally can be given an offset in the buf where the data
* should be inserted.
2012-05-28 14:49:29 +00:00
*/
int64_t
Read(int fd, void *buf, uint64_t count)
2012-05-28 14:49:29 +00:00
{
int64_t rcount, rem;
2012-05-28 14:49:29 +00:00
uchar_t *cbuf;
rem = count;
cbuf = (uchar_t *)buf;
do {
rcount = read(fd, cbuf, rem);
if (rcount < 0) return (rcount);
if (rcount == 0) break;
rem = rem - rcount;
cbuf += rcount;
} while (rem);
return (count - rem);
}
/*
* Read the requested chunk and return the last rabin boundary in the chunk.
* This helps in splitting chunks at rabin boundaries rather than fixed points.
* The request buffer may have some data at the beginning carried over from
* after the previous rabin boundary.
*/
int64_t
Read_Adjusted(int fd, uchar_t *buf, uint64_t count, int64_t *rabin_count, void *ctx)
{
uchar_t *buf2;
int64_t rcount;
dedupe_context_t *rctx = (dedupe_context_t *)ctx;
if (!ctx) return (Read(fd, buf, count));
buf2 = buf;
if (*rabin_count) {
buf2 = buf + *rabin_count;
count -= *rabin_count;
}
rcount = Read(fd, buf2, count);
if (rcount > 0) {
rcount += *rabin_count;
if (rcount == count) {
uint64_t rc, rbc;
rc = rcount;
rbc = *rabin_count;
/*
* This call does not actually dedupe but finds the last rabin boundary
* in the buf.
*/
dedupe_compress(rctx, buf, &rc, 0, &rbc, 0);
rcount = rc;
*rabin_count = rbc;
} else {
*rabin_count = 0;
}
} else {
if (rcount == 0) rcount = *rabin_count;
*rabin_count = 0;
}
return (rcount);
}
int64_t
Write(int fd, const void *buf, uint64_t count)
2012-05-28 14:49:29 +00:00
{
int64_t wcount, rem;
2012-05-28 14:49:29 +00:00
uchar_t *cbuf;
rem = count;
cbuf = (uchar_t *)buf;
do {
wcount = write(fd, cbuf, rem);
if (wcount < 0) return (wcount);
rem = rem - wcount;
cbuf += wcount;
} while (rem);
return (count - rem);
}
void
init_algo_props(algo_props_t *props)
{
props->buf_extra = 0;
props->compress_mt_capable = 0;
props->decompress_mt_capable = 0;
props->single_chunk_mt_capable = 0;
props->is_single_chunk = 0;
props->nthreads = 1;
props->c_max_threads = 1;
props->d_max_threads = 1;
props->delta2_span = 0;
}
/*
* Thread sizing. We want a balanced combination of chunk threads and compression
* algorithm threads that best fit the available/allowed number of processors.
*/
void
set_threadcounts(algo_props_t *props, int *nthreads, int nprocs, algo_threads_type_t typ) {
int mt_capable;
if (typ == COMPRESS_THREADS)
mt_capable = props->compress_mt_capable;
else
mt_capable = props->decompress_mt_capable;
if (mt_capable) {
int nthreads1, p_max;
if (nprocs == 3) {
props->nthreads = 1;
*nthreads = 3;
return;
}
if (typ == COMPRESS_THREADS)
p_max = props->c_max_threads;
else
p_max = props->d_max_threads;
nthreads1 = 1;
props->nthreads = 1;
while (nthreads1 < *nthreads || props->nthreads < p_max) {
if ((props->nthreads+1) * nthreads1 <= nprocs && props->nthreads < p_max) {
props->nthreads++;
} else if (props->nthreads * (nthreads1+1) <= nprocs && nthreads1 < *nthreads) {
++nthreads1;
} else {
break;
}
}
*nthreads = nthreads1;
} else if (props->single_chunk_mt_capable && props->is_single_chunk) {
*nthreads = 1;
if (typ == COMPRESS_THREADS)
props->nthreads = props->c_max_threads;
else
props->nthreads = props->d_max_threads;
if (props->nthreads > nprocs)
props->nthreads = nprocs;
}
}
uint64_t
get_total_ram()
{
uint64_t phys_pages, page_size;
page_size = sysconf(_SC_PAGESIZE);
phys_pages = sysconf(_SC_PHYS_PAGES);
return (phys_pages * page_size);
}
double
get_wtime_millis(void)
{
struct timespec ts;
int rv;
rv = clock_gettime(CLOCK_MONOTONIC, &ts);
if (rv == 0)
return (ts.tv_sec * 1000 + ((double)ts.tv_nsec) / 1000000L);
return (1);
}
double
get_mb_s(uint64_t bytes, double strt, double en)
{
double bytes_sec;
bytes_sec = ((double)bytes / (en - strt)) * 1000;
return (BYTES_TO_MB(bytes_sec));
}
void
get_sys_limits(my_sysinfo *msys_info)
{
struct sysinfo sys_info;
int rv;
char *val;
rv = sysinfo(&sys_info);
if (rv == -1) {
sys_info.freeram = 100 * 1024 * 1024; // 100M arbitrary
}
msys_info->totalram = sys_info.totalram;
msys_info->freeram = sys_info.freeram;
msys_info->totalswap = sys_info.totalswap;
msys_info->freeswap = sys_info.freeswap;
msys_info->mem_unit = sys_info.mem_unit;
if ((val = getenv("PCOMPRESS_INDEX_MEM")) != NULL) {
uint64_t mem;
/*
* Externally specified index limit in MB.
*/
mem = strtoull(val, NULL, 0);
mem *= (1024 * 1024);
if (mem >= (1024 * 1024) && mem < msys_info->freeram) {
msys_info->freeram = mem;
}
} else {
/*
* Use a maximum of approx 75% of free RAM for the index(if limit was not specified).
*/
msys_info->freeram = (msys_info->freeram >> 1) + (msys_info->freeram >> 2);
}
}
int
chk_dir(char *dir)
{
struct stat st;
if (stat(dir, &st) == -1) {
return (0);
}
if (!S_ISDIR(st.st_mode)) {
return (0);
}
return (1);
}