Add support for Skein512 and Skein256 checksums
Import Skein code from NIST CD submission Make checksum algorithms pluggable Fix handling of huge buffers (>2GB) in LZP Cleanup of some buffer sizing code Speed up CRC64 calculation in dedupe chunking
This commit is contained in:
parent
f03834278a
commit
eda312ce1e
20 changed files with 3115 additions and 81 deletions
14
Makefile.in
14
Makefile.in
|
@ -62,6 +62,13 @@ LZPSRCS = lzp/lzp.c
|
|||
LZPHDRS = lzp/lzp.h
|
||||
LZPOBJS = $(LZPSRCS:.c=.o)
|
||||
|
||||
SKEINSRCS = crypto/skein/SHA3api_ref.c crypto/skein/skein_block.c \
|
||||
crypto/skein/skein.c crypto/skein/skein_debug.c
|
||||
SKEINHDRS = crypto/skein/brg_endian.h crypto/skein/SHA3api_ref.h \
|
||||
crypto/skein/skein.h crypto/skein/skein_port.h crypto/skein/brg_types.h \
|
||||
crypto/skein/skein_debug.h crypto/skein/skein_iv.h
|
||||
SKEINOBJS = $(SKEINSRCS:.c=.o)
|
||||
|
||||
LIBBSCWRAP = libbsc_compress.c
|
||||
LIBBSCWRAPOBJ = libbsc_compress.o
|
||||
LIBBSCDIR = @LIBBSCDIR@
|
||||
|
@ -75,12 +82,12 @@ BAKFILES = *~ lzma/*~ lzfx/*~ lz4/*~ rabin/*~ bsdiff/*~ lzp/*~
|
|||
RM = rm -f
|
||||
COMMON_CPPFLAGS = -I. -I./lzma -I./lzfx -I./lz4 -I./rabin -I./bsdiff -DNODEFAULT_PROPS \
|
||||
-DFILE_OFFSET_BITS=64 -D_REENTRANT -D__USE_SSE_INTRIN__ -D_LZMA_PROB32 \
|
||||
-I./lzp @LIBBSCCPPFLAGS@
|
||||
-I./lzp @LIBBSCCPPFLAGS@ -I./crypto/skein
|
||||
COMMON_VEC_FLAGS = -ftree-vectorize
|
||||
COMMON_LOOP_OPTFLAGS = $(VEC_FLAGS) -floop-interchange -floop-block
|
||||
LDLIBS = -ldl -lbz2 $(ZLIB_DIR) -lz -lm @LIBBSCLFLAGS@
|
||||
OBJS = $(MAINOBJS) $(LZMAOBJS) $(PPMDOBJS) $(LZFXOBJS) $(LZ4OBJS) $(CRCOBJS) \
|
||||
$(RABINOBJS) $(BSDIFFOBJS) $(LZPOBJS) @LIBBSCWRAPOBJ@
|
||||
$(RABINOBJS) $(BSDIFFOBJS) $(LZPOBJS) @LIBBSCWRAPOBJ@ $(SKEINOBJS)
|
||||
|
||||
DEBUG_LINK = g++ -m64 -pthread -msse3 @LIBBSCGEN_OPT@
|
||||
DEBUG_COMPILE = gcc -m64 -g -msse3 -c
|
||||
|
@ -139,6 +146,9 @@ $(LZ4OBJS): $(LZ4SRCS) $(LZ4HDRS)
|
|||
$(LZPOBJS): $(LZPSRCS) $(LZPHDRS)
|
||||
$(COMPILE) $(GEN_OPT) $(VEC_FLAGS) $(CPPFLAGS) $(@:.o=.c) -o $@
|
||||
|
||||
$(SKEINOBJS): $(SKEINSRCS) $(SKEINHDRS)
|
||||
$(COMPILE) $(GEN_OPT) $(VEC_FLAGS) $(CPPFLAGS) $(@:.o=.c) -o $@
|
||||
|
||||
$(LIBBSCLIB):
|
||||
(cd $(LIBBSCDIR); make)
|
||||
|
||||
|
|
115
crypto/skein/SHA3api_ref.c
Normal file
115
crypto/skein/SHA3api_ref.c
Normal file
|
@ -0,0 +1,115 @@
|
|||
/***********************************************************************
|
||||
**
|
||||
** Implementation of the AHS API using the Skein hash function.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
************************************************************************/
|
||||
|
||||
#include <string.h> /* get the memcpy/memset functions */
|
||||
#include "skein.h" /* get the Skein API definitions */
|
||||
#include "SHA3api_ref.h"/* get the AHS API definitions */
|
||||
|
||||
/******************************************************************/
|
||||
/* AHS API code */
|
||||
/******************************************************************/
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* select the context size and init the context */
|
||||
HashReturn Init(hashState *state, int hashbitlen)
|
||||
{
|
||||
#if SKEIN_256_NIST_MAX_HASH_BITS
|
||||
if (hashbitlen <= SKEIN_256_NIST_MAX_HASHBITS)
|
||||
{
|
||||
Skein_Assert(hashbitlen > 0,BAD_HASHLEN);
|
||||
state->statebits = 64*SKEIN_256_STATE_WORDS;
|
||||
return Skein_256_Init(&state->u.ctx_256,(size_t) hashbitlen);
|
||||
}
|
||||
#endif
|
||||
if (hashbitlen <= SKEIN_512_NIST_MAX_HASHBITS)
|
||||
{
|
||||
state->statebits = 64*SKEIN_512_STATE_WORDS;
|
||||
return Skein_512_Init(&state->u.ctx_512,(size_t) hashbitlen);
|
||||
}
|
||||
else
|
||||
{
|
||||
state->statebits = 64*SKEIN1024_STATE_WORDS;
|
||||
return Skein1024_Init(&state->u.ctx1024,(size_t) hashbitlen);
|
||||
}
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* process data to be hashed */
|
||||
HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen)
|
||||
{
|
||||
/* only the final Update() call is allowed do partial bytes, else assert an error */
|
||||
Skein_Assert((state->u.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || databitlen == 0, FAIL);
|
||||
|
||||
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
|
||||
if ((databitlen & 7) == 0) /* partial bytes? */
|
||||
{
|
||||
switch ((state->statebits >> 8) & 3)
|
||||
{
|
||||
case 2: return Skein_512_Update(&state->u.ctx_512,data,databitlen >> 3);
|
||||
case 1: return Skein_256_Update(&state->u.ctx_256,data,databitlen >> 3);
|
||||
case 0: return Skein1024_Update(&state->u.ctx1024,data,databitlen >> 3);
|
||||
default: return FAIL;
|
||||
}
|
||||
}
|
||||
else
|
||||
{ /* handle partial final byte */
|
||||
size_t bCnt = (databitlen >> 3) + 1; /* number of bytes to handle (nonzero here!) */
|
||||
u08b_t b,mask;
|
||||
|
||||
mask = (u08b_t) (1u << (7 - (databitlen & 7))); /* partial byte bit mask */
|
||||
b = (u08b_t) ((data[bCnt-1] & (0-mask)) | mask); /* apply bit padding on final byte */
|
||||
|
||||
switch ((state->statebits >> 8) & 3)
|
||||
{
|
||||
case 2: Skein_512_Update(&state->u.ctx_512,data,bCnt-1); /* process all but the final byte */
|
||||
Skein_512_Update(&state->u.ctx_512,&b , 1 ); /* process the (masked) partial byte */
|
||||
break;
|
||||
case 1: Skein_256_Update(&state->u.ctx_256,data,bCnt-1); /* process all but the final byte */
|
||||
Skein_256_Update(&state->u.ctx_256,&b , 1 ); /* process the (masked) partial byte */
|
||||
break;
|
||||
case 0: Skein1024_Update(&state->u.ctx1024,data,bCnt-1); /* process all but the final byte */
|
||||
Skein1024_Update(&state->u.ctx1024,&b , 1 ); /* process the (masked) partial byte */
|
||||
break;
|
||||
default: return FAIL;
|
||||
}
|
||||
Skein_Set_Bit_Pad_Flag(state->u.h); /* set tweak flag for the final call */
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize hash computation and output the result (hashbitlen bits) */
|
||||
HashReturn Final(hashState *state, BitSequence *hashval)
|
||||
{
|
||||
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
|
||||
switch ((state->statebits >> 8) & 3)
|
||||
{
|
||||
case 2: return Skein_512_Final(&state->u.ctx_512,hashval);
|
||||
case 1: return Skein_256_Final(&state->u.ctx_256,hashval);
|
||||
case 0: return Skein1024_Final(&state->u.ctx1024,hashval);
|
||||
default: return FAIL;
|
||||
}
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* all-in-one hash function */
|
||||
HashReturn Hash(int hashbitlen, const BitSequence *data, /* all-in-one call */
|
||||
DataLength databitlen,BitSequence *hashval)
|
||||
{
|
||||
hashState state;
|
||||
HashReturn r = Init(&state,hashbitlen);
|
||||
if (r == SUCCESS)
|
||||
{ /* these calls do not fail when called properly */
|
||||
r = Update(&state,data,databitlen);
|
||||
Final(&state,hashval);
|
||||
}
|
||||
return r;
|
||||
}
|
66
crypto/skein/SHA3api_ref.h
Normal file
66
crypto/skein/SHA3api_ref.h
Normal file
|
@ -0,0 +1,66 @@
|
|||
#ifndef _AHS_API_H_
|
||||
#define _AHS_API_H_
|
||||
|
||||
/***********************************************************************
|
||||
**
|
||||
** Interface declarations of the AHS API using the Skein hash function.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
************************************************************************/
|
||||
|
||||
#include "skein.h"
|
||||
|
||||
typedef enum
|
||||
{
|
||||
SUCCESS = SKEIN_SUCCESS,
|
||||
FAIL = SKEIN_FAIL,
|
||||
BAD_HASHLEN = SKEIN_BAD_HASHLEN
|
||||
}
|
||||
HashReturn;
|
||||
|
||||
typedef size_t DataLength; /* bit count type */
|
||||
typedef u08b_t BitSequence; /* bit stream type */
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint_t statebits; /* 256, 512, or 1024 */
|
||||
union
|
||||
{
|
||||
Skein_Ctxt_Hdr_t h; /* common header "overlay" */
|
||||
Skein_256_Ctxt_t ctx_256;
|
||||
Skein_512_Ctxt_t ctx_512;
|
||||
Skein1024_Ctxt_t ctx1024;
|
||||
} u;
|
||||
}
|
||||
hashState;
|
||||
|
||||
/* "incremental" hashing API */
|
||||
HashReturn Init (hashState *state, int hashbitlen);
|
||||
HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen);
|
||||
HashReturn Final (hashState *state, BitSequence *hashval);
|
||||
|
||||
/* "all-in-one" call */
|
||||
HashReturn Hash (int hashbitlen, const BitSequence *data,
|
||||
DataLength databitlen, BitSequence *hashval);
|
||||
|
||||
|
||||
/*
|
||||
** Re-define the compile-time constants below to change the selection
|
||||
** of the Skein state size in the Init() function in SHA3api_ref.c.
|
||||
**
|
||||
** That is, the NIST API does not allow for explicit selection of the
|
||||
** Skein block size, so it must be done implicitly in the Init() function.
|
||||
** The selection is controlled by these constants.
|
||||
*/
|
||||
#ifndef SKEIN_256_NIST_MAX_HASHBITS
|
||||
#define SKEIN_256_NIST_MAX_HASHBITS (0)
|
||||
#endif
|
||||
|
||||
#ifndef SKEIN_512_NIST_MAX_HASHBITS
|
||||
#define SKEIN_512_NIST_MAX_HASHBITS (512)
|
||||
#endif
|
||||
|
||||
#endif /* ifdef _AHS_API_H_ */
|
148
crypto/skein/brg_endian.h
Normal file
148
crypto/skein/brg_endian.h
Normal file
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 20/10/2006
|
||||
*/
|
||||
|
||||
#ifndef BRG_ENDIAN_H
|
||||
#define BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined(AVR)
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 ) || defined( AVR )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* special handler for IA64, which may be either endianness (?) */
|
||||
/* here we assume little-endian, but this may need to be changed */
|
||||
#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
|
||||
# define PLATFORM_MUST_ALIGN (1)
|
||||
#ifndef PLATFORM_BYTE_ORDER
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef PLATFORM_MUST_ALIGN
|
||||
# define PLATFORM_MUST_ALIGN (0)
|
||||
#endif
|
||||
|
||||
#endif /* ifndef BRG_ENDIAN_H */
|
188
crypto/skein/brg_types.h
Normal file
188
crypto/skein/brg_types.h
Normal file
|
@ -0,0 +1,188 @@
|
|||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 09/09/2006
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef BRG_TYPES_H
|
||||
#define BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#ifndef BRG_UI8
|
||||
# define BRG_UI8
|
||||
# if UCHAR_MAX == 255u
|
||||
typedef unsigned char uint_8t;
|
||||
# else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI16
|
||||
# define BRG_UI16
|
||||
# if USHRT_MAX == 65535u
|
||||
typedef unsigned short uint_16t;
|
||||
# else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI32
|
||||
# define BRG_UI32
|
||||
# if UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
typedef unsigned int uint_32t;
|
||||
# elif ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
typedef unsigned long uint_32t;
|
||||
# elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
# else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI64
|
||||
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##u
|
||||
typedef unsigned int uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ul
|
||||
typedef unsigned long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined(__GNUC__) /* DLW: avoid mingw problem with -ansi */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 )
|
||||
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8
|
||||
|
||||
dec_unit_type(size,x) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
ptr_cast(x,size) casts a pointer to a pointer to a
|
||||
varaiable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define ui_type(size) uint_##size##t
|
||||
#define dec_unit_type(size,x) typedef ui_type(size) x
|
||||
#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)]
|
||||
#define ptr_cast(x,size) ((ui_type(size)*)(x))
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
753
crypto/skein/skein.c
Normal file
753
crypto/skein/skein.c
Normal file
|
@ -0,0 +1,753 @@
|
|||
/***********************************************************************
|
||||
**
|
||||
** Implementation of the Skein hash function.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
************************************************************************/
|
||||
|
||||
#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
|
||||
|
||||
#include <string.h> /* get the memcpy/memset functions */
|
||||
#include "skein.h" /* get the Skein API definitions */
|
||||
#include "skein_iv.h" /* get precomputed IVs */
|
||||
|
||||
/*****************************************************************/
|
||||
/* External function to process blkCnt (nonzero) full block(s) of data. */
|
||||
void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
|
||||
void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
|
||||
void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
|
||||
|
||||
/*****************************************************************/
|
||||
/* 256-bit Skein */
|
||||
/*****************************************************************/
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a straight hashing operation */
|
||||
int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN_256_STATE_BYTES];
|
||||
u64b_t w[SKEIN_256_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
|
||||
switch (hashBitLen)
|
||||
{ /* use pre-computed values, where available */
|
||||
#ifndef SKEIN_NO_PRECOMP
|
||||
case 256: memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X)); break;
|
||||
case 224: memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X)); break;
|
||||
case 160: memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X)); break;
|
||||
case 128: memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X)); break;
|
||||
#endif
|
||||
default:
|
||||
/* here if there is no precomputed IV value available */
|
||||
/* build/process the config block, type == CONFIG (could be precomputed) */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
|
||||
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||||
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
|
||||
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
break;
|
||||
}
|
||||
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a MAC and/or tree hash operation */
|
||||
/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
|
||||
int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN_256_STATE_BYTES];
|
||||
u64b_t w[SKEIN_256_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
|
||||
|
||||
/* compute the initial chaining values ctx->X[], based on key */
|
||||
if (keyBytes == 0) /* is there a key? */
|
||||
{
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
|
||||
}
|
||||
else /* here to pre-process a key */
|
||||
{
|
||||
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
|
||||
/* do a mini-Init right here */
|
||||
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
|
||||
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
|
||||
Skein_256_Update(ctx,key,keyBytes); /* hash the key */
|
||||
Skein_256_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
|
||||
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
|
||||
#if SKEIN_NEED_SWAP
|
||||
{
|
||||
uint_t i;
|
||||
for (i=0;i<SKEIN_256_STATE_WORDS;i++) /* convert key bytes to context words */
|
||||
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL);
|
||||
|
||||
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||||
|
||||
Skein_Show_Key(256,&ctx->h,key,keyBytes);
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
|
||||
/* The chaining vars ctx->X are now initialized */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||||
Skein_Start_New_Type(ctx,MSG);
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* process the input bytes */
|
||||
int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
|
||||
{
|
||||
size_t n;
|
||||
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* process full blocks, if any */
|
||||
if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
|
||||
{
|
||||
if (ctx->h.bCnt) /* finish up any buffered message data */
|
||||
{
|
||||
n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
|
||||
if (n)
|
||||
{
|
||||
Skein_assert(n < msgByteCnt); /* check on our logic here */
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
|
||||
msgByteCnt -= n;
|
||||
msg += n;
|
||||
ctx->h.bCnt += n;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
|
||||
Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);
|
||||
ctx->h.bCnt = 0;
|
||||
}
|
||||
/* now process any remaining full blocks, directly from input message data */
|
||||
if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
|
||||
{
|
||||
n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES; /* number of full blocks to process */
|
||||
Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);
|
||||
msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
|
||||
msg += n * SKEIN_256_BLOCK_BYTES;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == 0);
|
||||
}
|
||||
|
||||
/* copy any remaining source message data bytes into b[] */
|
||||
if (msgByteCnt)
|
||||
{
|
||||
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
|
||||
ctx->h.bCnt += msgByteCnt;
|
||||
}
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the result */
|
||||
int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN_256_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
|
||||
|
||||
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN_256_BLOCK_BYTES)
|
||||
n = SKEIN_256_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein_256_API_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein_256_API_CodeSize) -
|
||||
((u08b_t *) Skein_256_Init);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*****************************************************************/
|
||||
/* 512-bit Skein */
|
||||
/*****************************************************************/
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a straight hashing operation */
|
||||
int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN_512_STATE_BYTES];
|
||||
u64b_t w[SKEIN_512_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
|
||||
switch (hashBitLen)
|
||||
{ /* use pre-computed values, where available */
|
||||
#ifndef SKEIN_NO_PRECOMP
|
||||
case 512: memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X)); break;
|
||||
case 384: memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X)); break;
|
||||
case 256: memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X)); break;
|
||||
case 224: memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X)); break;
|
||||
#endif
|
||||
default:
|
||||
/* here if there is no precomputed IV value available */
|
||||
/* build/process the config block, type == CONFIG (could be precomputed) */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
|
||||
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||||
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
|
||||
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
break;
|
||||
}
|
||||
|
||||
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a MAC and/or tree hash operation */
|
||||
/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
|
||||
int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN_512_STATE_BYTES];
|
||||
u64b_t w[SKEIN_512_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
|
||||
|
||||
/* compute the initial chaining values ctx->X[], based on key */
|
||||
if (keyBytes == 0) /* is there a key? */
|
||||
{
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
|
||||
}
|
||||
else /* here to pre-process a key */
|
||||
{
|
||||
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
|
||||
/* do a mini-Init right here */
|
||||
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
|
||||
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
|
||||
Skein_512_Update(ctx,key,keyBytes); /* hash the key */
|
||||
Skein_512_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
|
||||
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
|
||||
#if SKEIN_NEED_SWAP
|
||||
{
|
||||
uint_t i;
|
||||
for (i=0;i<SKEIN_512_STATE_WORDS;i++) /* convert key bytes to context words */
|
||||
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL);
|
||||
|
||||
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||||
|
||||
Skein_Show_Key(512,&ctx->h,key,keyBytes);
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
|
||||
/* The chaining vars ctx->X are now initialized */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||||
Skein_Start_New_Type(ctx,MSG);
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* process the input bytes */
|
||||
int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
|
||||
{
|
||||
size_t n;
|
||||
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* process full blocks, if any */
|
||||
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
|
||||
{
|
||||
if (ctx->h.bCnt) /* finish up any buffered message data */
|
||||
{
|
||||
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
|
||||
if (n)
|
||||
{
|
||||
Skein_assert(n < msgByteCnt); /* check on our logic here */
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
|
||||
msgByteCnt -= n;
|
||||
msg += n;
|
||||
ctx->h.bCnt += n;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
|
||||
Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
|
||||
ctx->h.bCnt = 0;
|
||||
}
|
||||
/* now process any remaining full blocks, directly from input message data */
|
||||
if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
|
||||
{
|
||||
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
|
||||
Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
|
||||
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
|
||||
msg += n * SKEIN_512_BLOCK_BYTES;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == 0);
|
||||
}
|
||||
|
||||
/* copy any remaining source message data bytes into b[] */
|
||||
if (msgByteCnt)
|
||||
{
|
||||
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
|
||||
ctx->h.bCnt += msgByteCnt;
|
||||
}
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the result */
|
||||
int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN_512_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
|
||||
|
||||
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN_512_BLOCK_BYTES)
|
||||
n = SKEIN_512_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein_512_API_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein_512_API_CodeSize) -
|
||||
((u08b_t *) Skein_512_Init);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*****************************************************************/
|
||||
/* 1024-bit Skein */
|
||||
/*****************************************************************/
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a straight hashing operation */
|
||||
int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN1024_STATE_BYTES];
|
||||
u64b_t w[SKEIN1024_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
|
||||
switch (hashBitLen)
|
||||
{ /* use pre-computed values, where available */
|
||||
#ifndef SKEIN_NO_PRECOMP
|
||||
case 512: memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X)); break;
|
||||
case 384: memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X)); break;
|
||||
case 1024: memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X)); break;
|
||||
#endif
|
||||
default:
|
||||
/* here if there is no precomputed IV value available */
|
||||
/* build/process the config block, type == CONFIG (could be precomputed) */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
|
||||
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||||
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
|
||||
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
break;
|
||||
}
|
||||
|
||||
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* init the context for a MAC and/or tree hash operation */
|
||||
/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
|
||||
int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
|
||||
{
|
||||
union
|
||||
{
|
||||
u08b_t b[SKEIN1024_STATE_BYTES];
|
||||
u64b_t w[SKEIN1024_STATE_WORDS];
|
||||
} cfg; /* config block */
|
||||
|
||||
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
|
||||
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
|
||||
|
||||
/* compute the initial chaining values ctx->X[], based on key */
|
||||
if (keyBytes == 0) /* is there a key? */
|
||||
{
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
|
||||
}
|
||||
else /* here to pre-process a key */
|
||||
{
|
||||
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
|
||||
/* do a mini-Init right here */
|
||||
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
|
||||
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
|
||||
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
|
||||
Skein1024_Update(ctx,key,keyBytes); /* hash the key */
|
||||
Skein1024_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
|
||||
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
|
||||
#if SKEIN_NEED_SWAP
|
||||
{
|
||||
uint_t i;
|
||||
for (i=0;i<SKEIN1024_STATE_WORDS;i++) /* convert key bytes to context words */
|
||||
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
|
||||
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||||
Skein_Start_New_Type(ctx,CFG_FINAL);
|
||||
|
||||
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||||
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||||
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||||
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||||
|
||||
Skein_Show_Key(1024,&ctx->h,key,keyBytes);
|
||||
|
||||
/* compute the initial chaining values from config block */
|
||||
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
|
||||
|
||||
/* The chaining vars ctx->X are now initialized */
|
||||
/* Set up to process the data message portion of the hash (default) */
|
||||
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||||
Skein_Start_New_Type(ctx,MSG);
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* process the input bytes */
|
||||
int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
|
||||
{
|
||||
size_t n;
|
||||
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* process full blocks, if any */
|
||||
if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
|
||||
{
|
||||
if (ctx->h.bCnt) /* finish up any buffered message data */
|
||||
{
|
||||
n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
|
||||
if (n)
|
||||
{
|
||||
Skein_assert(n < msgByteCnt); /* check on our logic here */
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
|
||||
msgByteCnt -= n;
|
||||
msg += n;
|
||||
ctx->h.bCnt += n;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
|
||||
Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);
|
||||
ctx->h.bCnt = 0;
|
||||
}
|
||||
/* now process any remaining full blocks, directly from input message data */
|
||||
if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
|
||||
{
|
||||
n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES; /* number of full blocks to process */
|
||||
Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);
|
||||
msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
|
||||
msg += n * SKEIN1024_BLOCK_BYTES;
|
||||
}
|
||||
Skein_assert(ctx->h.bCnt == 0);
|
||||
}
|
||||
|
||||
/* copy any remaining source message data bytes into b[] */
|
||||
if (msgByteCnt)
|
||||
{
|
||||
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
|
||||
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
|
||||
ctx->h.bCnt += msgByteCnt;
|
||||
}
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the result */
|
||||
int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN1024_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
|
||||
|
||||
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN1024_BLOCK_BYTES)
|
||||
n = SKEIN1024_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein1024_API_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein1024_API_CodeSize) -
|
||||
((u08b_t *) Skein1024_Init);
|
||||
}
|
||||
#endif
|
||||
|
||||
/**************** Functions to support MAC/tree hashing ***************/
|
||||
/* (this code is identical for Optimized and Reference versions) */
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||||
int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
|
||||
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||||
int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
|
||||
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||||
int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||||
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
|
||||
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
|
||||
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
|
||||
|
||||
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
|
||||
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
#if SKEIN_TREE_HASH
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* just do the OUTPUT stage */
|
||||
int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN_256_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN_256_BLOCK_BYTES)
|
||||
n = SKEIN_256_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* just do the OUTPUT stage */
|
||||
int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN_512_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN_512_BLOCK_BYTES)
|
||||
n = SKEIN_512_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
|
||||
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
|
||||
/* just do the OUTPUT stage */
|
||||
int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
|
||||
{
|
||||
size_t i,n,byteCnt;
|
||||
u64b_t X[SKEIN1024_STATE_WORDS];
|
||||
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
|
||||
|
||||
/* now output the result */
|
||||
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
|
||||
|
||||
/* run Threefish in "counter mode" to generate output */
|
||||
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
|
||||
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
|
||||
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
|
||||
{
|
||||
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
|
||||
Skein_Start_New_Type(ctx,OUT_FINAL);
|
||||
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
|
||||
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
|
||||
if (n >= SKEIN1024_BLOCK_BYTES)
|
||||
n = SKEIN1024_BLOCK_BYTES;
|
||||
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
|
||||
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
|
||||
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
|
||||
}
|
||||
return SKEIN_SUCCESS;
|
||||
}
|
||||
#endif
|
327
crypto/skein/skein.h
Normal file
327
crypto/skein/skein.h
Normal file
|
@ -0,0 +1,327 @@
|
|||
#ifndef _SKEIN_H_
|
||||
#define _SKEIN_H_ 1
|
||||
/**************************************************************************
|
||||
**
|
||||
** Interface declarations and internal definitions for Skein hashing.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
***************************************************************************
|
||||
**
|
||||
** The following compile-time switches may be defined to control some
|
||||
** tradeoffs between speed, code size, error checking, and security.
|
||||
**
|
||||
** The "default" note explains what happens when the switch is not defined.
|
||||
**
|
||||
** SKEIN_DEBUG -- make callouts from inside Skein code
|
||||
** to examine/display intermediate values.
|
||||
** [default: no callouts (no overhead)]
|
||||
**
|
||||
** SKEIN_ERR_CHECK -- how error checking is handled inside Skein
|
||||
** code. If not defined, most error checking
|
||||
** is disabled (for performance). Otherwise,
|
||||
** the switch value is interpreted as:
|
||||
** 0: use assert() to flag errors
|
||||
** 1: return SKEIN_FAIL to flag errors
|
||||
**
|
||||
***************************************************************************/
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#include <stddef.h> /* get size_t definition */
|
||||
#include "skein_port.h" /* get platform-specific definitions */
|
||||
|
||||
enum
|
||||
{
|
||||
SKEIN_SUCCESS = 0, /* return codes from Skein calls */
|
||||
SKEIN_FAIL = 1,
|
||||
SKEIN_BAD_HASHLEN = 2
|
||||
};
|
||||
|
||||
#define SKEIN_MODIFIER_WORDS ( 2) /* number of modifier (tweak) words */
|
||||
|
||||
#define SKEIN_256_STATE_WORDS ( 4)
|
||||
#define SKEIN_512_STATE_WORDS ( 8)
|
||||
#define SKEIN1024_STATE_WORDS (16)
|
||||
#define SKEIN_MAX_STATE_WORDS (16)
|
||||
|
||||
#define SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)
|
||||
#define SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
|
||||
#define SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)
|
||||
|
||||
#define SKEIN_256_STATE_BITS (64*SKEIN_256_STATE_WORDS)
|
||||
#define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS)
|
||||
#define SKEIN1024_STATE_BITS (64*SKEIN1024_STATE_WORDS)
|
||||
|
||||
#define SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
|
||||
#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
|
||||
#define SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
|
||||
|
||||
typedef struct
|
||||
{
|
||||
size_t hashBitLen; /* size of hash result, in bits */
|
||||
size_t bCnt; /* current byte count in buffer b[] */
|
||||
u64b_t T[SKEIN_MODIFIER_WORDS]; /* tweak words: T[0]=byte cnt, T[1]=flags */
|
||||
} Skein_Ctxt_Hdr_t;
|
||||
|
||||
typedef struct /* 256-bit Skein hash context structure */
|
||||
{
|
||||
Skein_Ctxt_Hdr_t h; /* common header context variables */
|
||||
u64b_t X[SKEIN_256_STATE_WORDS]; /* chaining variables */
|
||||
u08b_t b[SKEIN_256_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
|
||||
} Skein_256_Ctxt_t;
|
||||
|
||||
typedef struct /* 512-bit Skein hash context structure */
|
||||
{
|
||||
Skein_Ctxt_Hdr_t h; /* common header context variables */
|
||||
u64b_t X[SKEIN_512_STATE_WORDS]; /* chaining variables */
|
||||
u08b_t b[SKEIN_512_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
|
||||
} Skein_512_Ctxt_t;
|
||||
|
||||
typedef struct /* 1024-bit Skein hash context structure */
|
||||
{
|
||||
Skein_Ctxt_Hdr_t h; /* common header context variables */
|
||||
u64b_t X[SKEIN1024_STATE_WORDS]; /* chaining variables */
|
||||
u08b_t b[SKEIN1024_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
|
||||
} Skein1024_Ctxt_t;
|
||||
|
||||
/* Skein APIs for (incremental) "straight hashing" */
|
||||
int Skein_256_Init (Skein_256_Ctxt_t *ctx, size_t hashBitLen);
|
||||
int Skein_512_Init (Skein_512_Ctxt_t *ctx, size_t hashBitLen);
|
||||
int Skein1024_Init (Skein1024_Ctxt_t *ctx, size_t hashBitLen);
|
||||
|
||||
int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
|
||||
int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
|
||||
int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
|
||||
|
||||
int Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
|
||||
/*
|
||||
** Skein APIs for "extended" initialization: MAC keys, tree hashing.
|
||||
** After an InitExt() call, just use Update/Final calls as with Init().
|
||||
**
|
||||
** Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.
|
||||
** When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL,
|
||||
** the results of InitExt() are identical to calling Init().
|
||||
** The function Init() may be called once to "precompute" the IV for
|
||||
** a given hashBitLen value, then by saving a copy of the context
|
||||
** the IV computation may be avoided in later calls.
|
||||
** Similarly, the function InitExt() may be called once per MAC key
|
||||
** to precompute the MAC IV, then a copy of the context saved and
|
||||
** reused for each new MAC computation.
|
||||
**/
|
||||
int Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
|
||||
int Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
|
||||
int Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
|
||||
|
||||
/*
|
||||
** Skein APIs for MAC and tree hash:
|
||||
** Final_Pad: pad, do final block, but no OUTPUT type
|
||||
** Output: do just the output stage
|
||||
*/
|
||||
int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
|
||||
#ifndef SKEIN_TREE_HASH
|
||||
#define SKEIN_TREE_HASH (1)
|
||||
#endif
|
||||
#if SKEIN_TREE_HASH
|
||||
int Skein_256_Output (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein_512_Output (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
int Skein1024_Output (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
|
||||
#endif
|
||||
|
||||
/*****************************************************************
|
||||
** "Internal" Skein definitions
|
||||
** -- not needed for sequential hashing API, but will be
|
||||
** helpful for other uses of Skein (e.g., tree hash mode).
|
||||
** -- included here so that they can be shared between
|
||||
** reference and optimized code.
|
||||
******************************************************************/
|
||||
|
||||
/* tweak word T[1]: bit field starting positions */
|
||||
#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* offset 64 because it's the second word */
|
||||
|
||||
#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* bits 112..118: level in hash tree */
|
||||
#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* bit 119 : partial final input byte */
|
||||
#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* bits 120..125: type field */
|
||||
#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* bits 126 : first block flag */
|
||||
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
|
||||
|
||||
/* tweak word T[1]: flag bit definition(s) */
|
||||
#define SKEIN_T1_FLAG_FIRST (((u64b_t) 1 ) << SKEIN_T1_POS_FIRST)
|
||||
#define SKEIN_T1_FLAG_FINAL (((u64b_t) 1 ) << SKEIN_T1_POS_FINAL)
|
||||
#define SKEIN_T1_FLAG_BIT_PAD (((u64b_t) 1 ) << SKEIN_T1_POS_BIT_PAD)
|
||||
|
||||
/* tweak word T[1]: tree level bit field mask */
|
||||
#define SKEIN_T1_TREE_LVL_MASK (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
|
||||
#define SKEIN_T1_TREE_LEVEL(n) (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)
|
||||
|
||||
/* tweak word T[1]: block type field */
|
||||
#define SKEIN_BLK_TYPE_KEY ( 0) /* key, for MAC and KDF */
|
||||
#define SKEIN_BLK_TYPE_CFG ( 4) /* configuration block */
|
||||
#define SKEIN_BLK_TYPE_PERS ( 8) /* personalization string */
|
||||
#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
|
||||
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
|
||||
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
|
||||
#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
|
||||
#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
|
||||
#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
|
||||
|
||||
#define SKEIN_T1_BLK_TYPE(T) (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
|
||||
#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* key, for MAC and KDF */
|
||||
#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* configuration block */
|
||||
#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
|
||||
#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* public key (for digital signature hashing) */
|
||||
#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key identifier for KDF */
|
||||
#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
|
||||
#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG) /* message processing */
|
||||
#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT) /* output stage */
|
||||
#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
|
||||
|
||||
#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
|
||||
#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
|
||||
|
||||
#define SKEIN_VERSION (1)
|
||||
|
||||
#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
|
||||
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
|
||||
#endif
|
||||
|
||||
#define SKEIN_MK_64(hi32,lo32) ((lo32) + (((u64b_t) (hi32)) << 32))
|
||||
#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
|
||||
#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)
|
||||
|
||||
#define SKEIN_CFG_STR_LEN (4*8)
|
||||
|
||||
/* bit field definitions in config block treeInfo word */
|
||||
#define SKEIN_CFG_TREE_LEAF_SIZE_POS ( 0)
|
||||
#define SKEIN_CFG_TREE_NODE_SIZE_POS ( 8)
|
||||
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
|
||||
|
||||
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
|
||||
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
|
||||
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
|
||||
|
||||
#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl) \
|
||||
( (((u64b_t)(leaf )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
|
||||
(((u64b_t)(node )) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
|
||||
(((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
|
||||
|
||||
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
|
||||
|
||||
/*
|
||||
** Skein macros for getting/setting tweak words, etc.
|
||||
** These are useful for partial input bytes, hash tree init/update, etc.
|
||||
**/
|
||||
#define Skein_Get_Tweak(ctxPtr,TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
|
||||
#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
|
||||
|
||||
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr,0)
|
||||
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr,1)
|
||||
#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
|
||||
#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
|
||||
|
||||
/* set both tweak words at once */
|
||||
#define Skein_Set_T0_T1(ctxPtr,T0,T1) \
|
||||
{ \
|
||||
Skein_Set_T0(ctxPtr,(T0)); \
|
||||
Skein_Set_T1(ctxPtr,(T1)); \
|
||||
}
|
||||
|
||||
#define Skein_Set_Type(ctxPtr,BLK_TYPE) \
|
||||
Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
|
||||
|
||||
/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
|
||||
#define Skein_Start_New_Type(ctxPtr,BLK_TYPE) \
|
||||
{ Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
|
||||
|
||||
#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
|
||||
#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
|
||||
|
||||
#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
|
||||
|
||||
/*****************************************************************
|
||||
** "Internal" Skein definitions for debugging and error checking
|
||||
******************************************************************/
|
||||
#ifdef SKEIN_DEBUG /* examine/display intermediate values? */
|
||||
#include "skein_debug.h"
|
||||
#else /* default is no callouts */
|
||||
#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
|
||||
#define Skein_Show_Round(bits,ctx,r,X)
|
||||
#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
|
||||
#define Skein_Show_Final(bits,ctx,cnt,outPtr)
|
||||
#define Skein_Show_Key(bits,ctx,key,keyBytes)
|
||||
#endif
|
||||
|
||||
#ifndef SKEIN_ERR_CHECK /* run-time checks (e.g., bad params, uninitialized context)? */
|
||||
#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
|
||||
#define Skein_assert(x)
|
||||
#elif defined(SKEIN_ASSERT)
|
||||
#include <assert.h>
|
||||
#define Skein_Assert(x,retCode) assert(x)
|
||||
#define Skein_assert(x) assert(x)
|
||||
#else
|
||||
#include <assert.h>
|
||||
#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /* caller error */
|
||||
#define Skein_assert(x) assert(x) /* internal error */
|
||||
#endif
|
||||
|
||||
/*****************************************************************
|
||||
** Skein block function constants (shared across Ref and Opt code)
|
||||
******************************************************************/
|
||||
enum
|
||||
{
|
||||
/* Skein_256 round rotation constants */
|
||||
R_256_0_0=14, R_256_0_1=16,
|
||||
R_256_1_0=52, R_256_1_1=57,
|
||||
R_256_2_0=23, R_256_2_1=40,
|
||||
R_256_3_0= 5, R_256_3_1=37,
|
||||
R_256_4_0=25, R_256_4_1=33,
|
||||
R_256_5_0=46, R_256_5_1=12,
|
||||
R_256_6_0=58, R_256_6_1=22,
|
||||
R_256_7_0=32, R_256_7_1=32,
|
||||
|
||||
/* Skein_512 round rotation constants */
|
||||
R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
|
||||
R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
|
||||
R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
|
||||
R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
|
||||
R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
|
||||
R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
|
||||
R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
|
||||
R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
|
||||
|
||||
/* Skein1024 round rotation constants */
|
||||
R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,
|
||||
R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,
|
||||
R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,
|
||||
R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,
|
||||
R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,
|
||||
R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,
|
||||
R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,
|
||||
R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20
|
||||
};
|
||||
|
||||
#ifndef SKEIN_ROUNDS
|
||||
#define SKEIN_256_ROUNDS_TOTAL (72) /* number of rounds for the different block sizes */
|
||||
#define SKEIN_512_ROUNDS_TOTAL (72)
|
||||
#define SKEIN1024_ROUNDS_TOTAL (80)
|
||||
#else /* allow command-line define in range 8*(5..14) */
|
||||
#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
|
||||
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
|
||||
#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS ) + 5) % 10) + 5))
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ifndef _SKEIN_H_ */
|
689
crypto/skein/skein_block.c
Normal file
689
crypto/skein/skein_block.c
Normal file
|
@ -0,0 +1,689 @@
|
|||
/***********************************************************************
|
||||
**
|
||||
** Implementation of the Skein block functions.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
** Compile-time switches:
|
||||
**
|
||||
** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
|
||||
** versions use ASM code for block processing
|
||||
** [default: use C for all block sizes]
|
||||
**
|
||||
************************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
#include "skein.h"
|
||||
|
||||
#ifndef SKEIN_USE_ASM
|
||||
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
|
||||
#endif
|
||||
|
||||
#ifndef SKEIN_LOOP
|
||||
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
|
||||
#endif
|
||||
|
||||
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
|
||||
#define KW_TWK_BASE (0)
|
||||
#define KW_KEY_BASE (3)
|
||||
#define ks (kw + KW_KEY_BASE)
|
||||
#define ts (kw + KW_TWK_BASE)
|
||||
|
||||
#ifdef SKEIN_DEBUG
|
||||
#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
|
||||
#else
|
||||
#define DebugSaveTweak(ctx)
|
||||
#endif
|
||||
|
||||
/***************************** Skein_256 ******************************/
|
||||
#if !(SKEIN_USE_ASM & 256)
|
||||
void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
|
||||
{ /* do it in C */
|
||||
enum
|
||||
{
|
||||
WCNT = SKEIN_256_STATE_WORDS
|
||||
};
|
||||
#undef RCNT
|
||||
#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
|
||||
|
||||
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
|
||||
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
|
||||
#else
|
||||
#define SKEIN_UNROLL_256 (0)
|
||||
#endif
|
||||
|
||||
#if SKEIN_UNROLL_256
|
||||
#if (RCNT % SKEIN_UNROLL_256)
|
||||
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
|
||||
#endif
|
||||
size_t r;
|
||||
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
|
||||
#else
|
||||
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
|
||||
#endif
|
||||
u64b_t X0,X1,X2,X3; /* local copy of context vars, for speed */
|
||||
u64b_t w [WCNT]; /* local copy of input block */
|
||||
#ifdef SKEIN_DEBUG
|
||||
const u64b_t *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
|
||||
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
|
||||
#endif
|
||||
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
|
||||
ts[0] = ctx->h.T[0];
|
||||
ts[1] = ctx->h.T[1];
|
||||
do {
|
||||
/* this implementation only supports 2**64 input bytes (no carry out here) */
|
||||
ts[0] += byteCntAdd; /* update processed length */
|
||||
|
||||
/* precompute the key schedule for this block */
|
||||
ks[0] = ctx->X[0];
|
||||
ks[1] = ctx->X[1];
|
||||
ks[2] = ctx->X[2];
|
||||
ks[3] = ctx->X[3];
|
||||
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
|
||||
|
||||
ts[2] = ts[0] ^ ts[1];
|
||||
|
||||
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
|
||||
DebugSaveTweak(ctx);
|
||||
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
|
||||
|
||||
X0 = w[0] + ks[0]; /* do the first full key injection */
|
||||
X1 = w[1] + ks[1] + ts[0];
|
||||
X2 = w[2] + ks[2] + ts[1];
|
||||
X3 = w[3] + ks[3];
|
||||
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr); /* show starting state values */
|
||||
|
||||
blkPtr += SKEIN_256_BLOCK_BYTES;
|
||||
|
||||
/* run the rounds */
|
||||
|
||||
#define Round256(p0,p1,p2,p3,ROT,rNum) \
|
||||
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
|
||||
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
|
||||
|
||||
#if SKEIN_UNROLL_256 == 0
|
||||
#define R256(p0,p1,p2,p3,ROT,rNum) /* fully unrolled */ \
|
||||
Round256(p0,p1,p2,p3,ROT,rNum) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
|
||||
|
||||
#define I256(R) \
|
||||
X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
|
||||
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
|
||||
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
|
||||
X3 += ks[((R)+4) % 5] + (R)+1; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
#else /* looping version */
|
||||
#define R256(p0,p1,p2,p3,ROT,rNum) \
|
||||
Round256(p0,p1,p2,p3,ROT,rNum) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
|
||||
|
||||
#define I256(R) \
|
||||
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
|
||||
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
|
||||
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
|
||||
X3 += ks[r+(R)+3] + r+(R) ; \
|
||||
ks[r + (R)+4 ] = ks[r+(R)-1]; /* rotate key schedule */\
|
||||
ts[r + (R)+2 ] = ts[r+(R)-1]; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
|
||||
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256) /* loop thru it */
|
||||
#endif
|
||||
{
|
||||
#define R256_8_rounds(R) \
|
||||
R256(0,1,2,3,R_256_0,8*(R) + 1); \
|
||||
R256(0,3,2,1,R_256_1,8*(R) + 2); \
|
||||
R256(0,1,2,3,R_256_2,8*(R) + 3); \
|
||||
R256(0,3,2,1,R_256_3,8*(R) + 4); \
|
||||
I256(2*(R)); \
|
||||
R256(0,1,2,3,R_256_4,8*(R) + 5); \
|
||||
R256(0,3,2,1,R_256_5,8*(R) + 6); \
|
||||
R256(0,1,2,3,R_256_6,8*(R) + 7); \
|
||||
R256(0,3,2,1,R_256_7,8*(R) + 8); \
|
||||
I256(2*(R)+1);
|
||||
|
||||
R256_8_rounds( 0);
|
||||
|
||||
#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
|
||||
|
||||
#if R256_Unroll_R( 1)
|
||||
R256_8_rounds( 1);
|
||||
#endif
|
||||
#if R256_Unroll_R( 2)
|
||||
R256_8_rounds( 2);
|
||||
#endif
|
||||
#if R256_Unroll_R( 3)
|
||||
R256_8_rounds( 3);
|
||||
#endif
|
||||
#if R256_Unroll_R( 4)
|
||||
R256_8_rounds( 4);
|
||||
#endif
|
||||
#if R256_Unroll_R( 5)
|
||||
R256_8_rounds( 5);
|
||||
#endif
|
||||
#if R256_Unroll_R( 6)
|
||||
R256_8_rounds( 6);
|
||||
#endif
|
||||
#if R256_Unroll_R( 7)
|
||||
R256_8_rounds( 7);
|
||||
#endif
|
||||
#if R256_Unroll_R( 8)
|
||||
R256_8_rounds( 8);
|
||||
#endif
|
||||
#if R256_Unroll_R( 9)
|
||||
R256_8_rounds( 9);
|
||||
#endif
|
||||
#if R256_Unroll_R(10)
|
||||
R256_8_rounds(10);
|
||||
#endif
|
||||
#if R256_Unroll_R(11)
|
||||
R256_8_rounds(11);
|
||||
#endif
|
||||
#if R256_Unroll_R(12)
|
||||
R256_8_rounds(12);
|
||||
#endif
|
||||
#if R256_Unroll_R(13)
|
||||
R256_8_rounds(13);
|
||||
#endif
|
||||
#if R256_Unroll_R(14)
|
||||
R256_8_rounds(14);
|
||||
#endif
|
||||
#if (SKEIN_UNROLL_256 > 14)
|
||||
#error "need more unrolling in Skein_256_Process_Block"
|
||||
#endif
|
||||
}
|
||||
/* do the final "feedforward" xor, update context chaining vars */
|
||||
ctx->X[0] = X0 ^ w[0];
|
||||
ctx->X[1] = X1 ^ w[1];
|
||||
ctx->X[2] = X2 ^ w[2];
|
||||
ctx->X[3] = X3 ^ w[3];
|
||||
|
||||
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
|
||||
|
||||
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
|
||||
}
|
||||
while (--blkCnt);
|
||||
ctx->h.T[0] = ts[0];
|
||||
ctx->h.T[1] = ts[1];
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein_256_Process_Block_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein_256_Process_Block_CodeSize) -
|
||||
((u08b_t *) Skein_256_Process_Block);
|
||||
}
|
||||
uint_t Skein_256_Unroll_Cnt(void)
|
||||
{
|
||||
return SKEIN_UNROLL_256;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/***************************** Skein_512 ******************************/
|
||||
#if !(SKEIN_USE_ASM & 512)
|
||||
void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
|
||||
{ /* do it in C */
|
||||
enum
|
||||
{
|
||||
WCNT = SKEIN_512_STATE_WORDS
|
||||
};
|
||||
#undef RCNT
|
||||
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
|
||||
|
||||
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
|
||||
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
|
||||
#else
|
||||
#define SKEIN_UNROLL_512 (0)
|
||||
#endif
|
||||
|
||||
#if SKEIN_UNROLL_512
|
||||
#if (RCNT % SKEIN_UNROLL_512)
|
||||
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
|
||||
#endif
|
||||
size_t r;
|
||||
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
|
||||
#else
|
||||
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
|
||||
#endif
|
||||
u64b_t X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
|
||||
u64b_t w [WCNT]; /* local copy of input block */
|
||||
#ifdef SKEIN_DEBUG
|
||||
const u64b_t *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
|
||||
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
|
||||
Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
|
||||
#endif
|
||||
|
||||
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
|
||||
ts[0] = ctx->h.T[0];
|
||||
ts[1] = ctx->h.T[1];
|
||||
do {
|
||||
/* this implementation only supports 2**64 input bytes (no carry out here) */
|
||||
ts[0] += byteCntAdd; /* update processed length */
|
||||
|
||||
/* precompute the key schedule for this block */
|
||||
ks[0] = ctx->X[0];
|
||||
ks[1] = ctx->X[1];
|
||||
ks[2] = ctx->X[2];
|
||||
ks[3] = ctx->X[3];
|
||||
ks[4] = ctx->X[4];
|
||||
ks[5] = ctx->X[5];
|
||||
ks[6] = ctx->X[6];
|
||||
ks[7] = ctx->X[7];
|
||||
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
|
||||
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
|
||||
|
||||
ts[2] = ts[0] ^ ts[1];
|
||||
|
||||
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
|
||||
DebugSaveTweak(ctx);
|
||||
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
|
||||
|
||||
X0 = w[0] + ks[0]; /* do the first full key injection */
|
||||
X1 = w[1] + ks[1];
|
||||
X2 = w[2] + ks[2];
|
||||
X3 = w[3] + ks[3];
|
||||
X4 = w[4] + ks[4];
|
||||
X5 = w[5] + ks[5] + ts[0];
|
||||
X6 = w[6] + ks[6] + ts[1];
|
||||
X7 = w[7] + ks[7];
|
||||
|
||||
blkPtr += SKEIN_512_BLOCK_BYTES;
|
||||
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
|
||||
/* run the rounds */
|
||||
#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
|
||||
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
|
||||
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
|
||||
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
|
||||
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
|
||||
|
||||
#if SKEIN_UNROLL_512 == 0
|
||||
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
|
||||
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
|
||||
|
||||
#define I512(R) \
|
||||
X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
|
||||
X1 += ks[((R)+2) % 9]; \
|
||||
X2 += ks[((R)+3) % 9]; \
|
||||
X3 += ks[((R)+4) % 9]; \
|
||||
X4 += ks[((R)+5) % 9]; \
|
||||
X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
|
||||
X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
|
||||
X7 += ks[((R)+8) % 9] + (R)+1; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
#else /* looping version */
|
||||
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
|
||||
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
|
||||
|
||||
#define I512(R) \
|
||||
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
|
||||
X1 += ks[r+(R)+1]; \
|
||||
X2 += ks[r+(R)+2]; \
|
||||
X3 += ks[r+(R)+3]; \
|
||||
X4 += ks[r+(R)+4]; \
|
||||
X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
|
||||
X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
|
||||
X7 += ks[r+(R)+7] + r+(R) ; \
|
||||
ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
|
||||
ts[r + (R)+2] = ts[r+(R)-1]; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
|
||||
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
|
||||
#endif /* end of looped code definitions */
|
||||
{
|
||||
#define R512_8_rounds(R) /* do 8 full rounds */ \
|
||||
R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
|
||||
R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
|
||||
R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
|
||||
R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
|
||||
I512(2*(R)); \
|
||||
R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
|
||||
R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
|
||||
R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
|
||||
R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
|
||||
I512(2*(R)+1); /* and key injection */
|
||||
|
||||
R512_8_rounds( 0);
|
||||
|
||||
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
|
||||
|
||||
#if R512_Unroll_R( 1)
|
||||
R512_8_rounds( 1);
|
||||
#endif
|
||||
#if R512_Unroll_R( 2)
|
||||
R512_8_rounds( 2);
|
||||
#endif
|
||||
#if R512_Unroll_R( 3)
|
||||
R512_8_rounds( 3);
|
||||
#endif
|
||||
#if R512_Unroll_R( 4)
|
||||
R512_8_rounds( 4);
|
||||
#endif
|
||||
#if R512_Unroll_R( 5)
|
||||
R512_8_rounds( 5);
|
||||
#endif
|
||||
#if R512_Unroll_R( 6)
|
||||
R512_8_rounds( 6);
|
||||
#endif
|
||||
#if R512_Unroll_R( 7)
|
||||
R512_8_rounds( 7);
|
||||
#endif
|
||||
#if R512_Unroll_R( 8)
|
||||
R512_8_rounds( 8);
|
||||
#endif
|
||||
#if R512_Unroll_R( 9)
|
||||
R512_8_rounds( 9);
|
||||
#endif
|
||||
#if R512_Unroll_R(10)
|
||||
R512_8_rounds(10);
|
||||
#endif
|
||||
#if R512_Unroll_R(11)
|
||||
R512_8_rounds(11);
|
||||
#endif
|
||||
#if R512_Unroll_R(12)
|
||||
R512_8_rounds(12);
|
||||
#endif
|
||||
#if R512_Unroll_R(13)
|
||||
R512_8_rounds(13);
|
||||
#endif
|
||||
#if R512_Unroll_R(14)
|
||||
R512_8_rounds(14);
|
||||
#endif
|
||||
#if (SKEIN_UNROLL_512 > 14)
|
||||
#error "need more unrolling in Skein_512_Process_Block"
|
||||
#endif
|
||||
}
|
||||
|
||||
/* do the final "feedforward" xor, update context chaining vars */
|
||||
ctx->X[0] = X0 ^ w[0];
|
||||
ctx->X[1] = X1 ^ w[1];
|
||||
ctx->X[2] = X2 ^ w[2];
|
||||
ctx->X[3] = X3 ^ w[3];
|
||||
ctx->X[4] = X4 ^ w[4];
|
||||
ctx->X[5] = X5 ^ w[5];
|
||||
ctx->X[6] = X6 ^ w[6];
|
||||
ctx->X[7] = X7 ^ w[7];
|
||||
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
|
||||
|
||||
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
|
||||
}
|
||||
while (--blkCnt);
|
||||
ctx->h.T[0] = ts[0];
|
||||
ctx->h.T[1] = ts[1];
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein_512_Process_Block_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein_512_Process_Block_CodeSize) -
|
||||
((u08b_t *) Skein_512_Process_Block);
|
||||
}
|
||||
uint_t Skein_512_Unroll_Cnt(void)
|
||||
{
|
||||
return SKEIN_UNROLL_512;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/***************************** Skein1024 ******************************/
|
||||
#if !(SKEIN_USE_ASM & 1024)
|
||||
void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
|
||||
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
|
||||
enum
|
||||
{
|
||||
WCNT = SKEIN1024_STATE_WORDS
|
||||
};
|
||||
#undef RCNT
|
||||
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
|
||||
|
||||
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
|
||||
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
|
||||
#else
|
||||
#define SKEIN_UNROLL_1024 (0)
|
||||
#endif
|
||||
|
||||
#if (SKEIN_UNROLL_1024 != 0)
|
||||
#if (RCNT % SKEIN_UNROLL_1024)
|
||||
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
|
||||
#endif
|
||||
size_t r;
|
||||
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
|
||||
#else
|
||||
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
|
||||
#endif
|
||||
|
||||
u64b_t X00,X01,X02,X03,X04,X05,X06,X07, /* local copy of vars, for speed */
|
||||
X08,X09,X10,X11,X12,X13,X14,X15;
|
||||
u64b_t w [WCNT]; /* local copy of input block */
|
||||
#ifdef SKEIN_DEBUG
|
||||
const u64b_t *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
|
||||
Xptr[ 0] = &X00; Xptr[ 1] = &X01; Xptr[ 2] = &X02; Xptr[ 3] = &X03;
|
||||
Xptr[ 4] = &X04; Xptr[ 5] = &X05; Xptr[ 6] = &X06; Xptr[ 7] = &X07;
|
||||
Xptr[ 8] = &X08; Xptr[ 9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
|
||||
Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
|
||||
#endif
|
||||
|
||||
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
|
||||
ts[0] = ctx->h.T[0];
|
||||
ts[1] = ctx->h.T[1];
|
||||
do {
|
||||
/* this implementation only supports 2**64 input bytes (no carry out here) */
|
||||
ts[0] += byteCntAdd; /* update processed length */
|
||||
|
||||
/* precompute the key schedule for this block */
|
||||
ks[ 0] = ctx->X[ 0];
|
||||
ks[ 1] = ctx->X[ 1];
|
||||
ks[ 2] = ctx->X[ 2];
|
||||
ks[ 3] = ctx->X[ 3];
|
||||
ks[ 4] = ctx->X[ 4];
|
||||
ks[ 5] = ctx->X[ 5];
|
||||
ks[ 6] = ctx->X[ 6];
|
||||
ks[ 7] = ctx->X[ 7];
|
||||
ks[ 8] = ctx->X[ 8];
|
||||
ks[ 9] = ctx->X[ 9];
|
||||
ks[10] = ctx->X[10];
|
||||
ks[11] = ctx->X[11];
|
||||
ks[12] = ctx->X[12];
|
||||
ks[13] = ctx->X[13];
|
||||
ks[14] = ctx->X[14];
|
||||
ks[15] = ctx->X[15];
|
||||
ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
|
||||
ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
|
||||
ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
|
||||
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
|
||||
|
||||
ts[2] = ts[0] ^ ts[1];
|
||||
|
||||
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
|
||||
DebugSaveTweak(ctx);
|
||||
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
|
||||
|
||||
X00 = w[ 0] + ks[ 0]; /* do the first full key injection */
|
||||
X01 = w[ 1] + ks[ 1];
|
||||
X02 = w[ 2] + ks[ 2];
|
||||
X03 = w[ 3] + ks[ 3];
|
||||
X04 = w[ 4] + ks[ 4];
|
||||
X05 = w[ 5] + ks[ 5];
|
||||
X06 = w[ 6] + ks[ 6];
|
||||
X07 = w[ 7] + ks[ 7];
|
||||
X08 = w[ 8] + ks[ 8];
|
||||
X09 = w[ 9] + ks[ 9];
|
||||
X10 = w[10] + ks[10];
|
||||
X11 = w[11] + ks[11];
|
||||
X12 = w[12] + ks[12];
|
||||
X13 = w[13] + ks[13] + ts[0];
|
||||
X14 = w[14] + ks[14] + ts[1];
|
||||
X15 = w[15] + ks[15];
|
||||
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
|
||||
|
||||
#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
|
||||
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
|
||||
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
|
||||
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
|
||||
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
|
||||
X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8; \
|
||||
X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA; \
|
||||
X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC; \
|
||||
X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE; \
|
||||
|
||||
#if SKEIN_UNROLL_1024 == 0
|
||||
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
|
||||
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
|
||||
|
||||
#define I1024(R) \
|
||||
X00 += ks[((R)+ 1) % 17]; /* inject the key schedule value */ \
|
||||
X01 += ks[((R)+ 2) % 17]; \
|
||||
X02 += ks[((R)+ 3) % 17]; \
|
||||
X03 += ks[((R)+ 4) % 17]; \
|
||||
X04 += ks[((R)+ 5) % 17]; \
|
||||
X05 += ks[((R)+ 6) % 17]; \
|
||||
X06 += ks[((R)+ 7) % 17]; \
|
||||
X07 += ks[((R)+ 8) % 17]; \
|
||||
X08 += ks[((R)+ 9) % 17]; \
|
||||
X09 += ks[((R)+10) % 17]; \
|
||||
X10 += ks[((R)+11) % 17]; \
|
||||
X11 += ks[((R)+12) % 17]; \
|
||||
X12 += ks[((R)+13) % 17]; \
|
||||
X13 += ks[((R)+14) % 17] + ts[((R)+1) % 3]; \
|
||||
X14 += ks[((R)+15) % 17] + ts[((R)+2) % 3]; \
|
||||
X15 += ks[((R)+16) % 17] + (R)+1; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
#else /* looping version */
|
||||
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
|
||||
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);
|
||||
|
||||
#define I1024(R) \
|
||||
X00 += ks[r+(R)+ 0]; /* inject the key schedule value */ \
|
||||
X01 += ks[r+(R)+ 1]; \
|
||||
X02 += ks[r+(R)+ 2]; \
|
||||
X03 += ks[r+(R)+ 3]; \
|
||||
X04 += ks[r+(R)+ 4]; \
|
||||
X05 += ks[r+(R)+ 5]; \
|
||||
X06 += ks[r+(R)+ 6]; \
|
||||
X07 += ks[r+(R)+ 7]; \
|
||||
X08 += ks[r+(R)+ 8]; \
|
||||
X09 += ks[r+(R)+ 9]; \
|
||||
X10 += ks[r+(R)+10]; \
|
||||
X11 += ks[r+(R)+11]; \
|
||||
X12 += ks[r+(R)+12]; \
|
||||
X13 += ks[r+(R)+13] + ts[r+(R)+0]; \
|
||||
X14 += ks[r+(R)+14] + ts[r+(R)+1]; \
|
||||
X15 += ks[r+(R)+15] + r+(R) ; \
|
||||
ks[r + (R)+16] = ks[r+(R)-1]; /* rotate key schedule */ \
|
||||
ts[r + (R)+ 2] = ts[r+(R)-1]; \
|
||||
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
|
||||
|
||||
for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024) /* loop thru it */
|
||||
#endif
|
||||
{
|
||||
#define R1024_8_rounds(R) /* do 8 full rounds */ \
|
||||
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \
|
||||
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \
|
||||
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \
|
||||
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \
|
||||
I1024(2*(R)); \
|
||||
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \
|
||||
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \
|
||||
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \
|
||||
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \
|
||||
I1024(2*(R)+1);
|
||||
|
||||
R1024_8_rounds( 0);
|
||||
|
||||
#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
|
||||
|
||||
#if R1024_Unroll_R( 1)
|
||||
R1024_8_rounds( 1);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 2)
|
||||
R1024_8_rounds( 2);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 3)
|
||||
R1024_8_rounds( 3);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 4)
|
||||
R1024_8_rounds( 4);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 5)
|
||||
R1024_8_rounds( 5);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 6)
|
||||
R1024_8_rounds( 6);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 7)
|
||||
R1024_8_rounds( 7);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 8)
|
||||
R1024_8_rounds( 8);
|
||||
#endif
|
||||
#if R1024_Unroll_R( 9)
|
||||
R1024_8_rounds( 9);
|
||||
#endif
|
||||
#if R1024_Unroll_R(10)
|
||||
R1024_8_rounds(10);
|
||||
#endif
|
||||
#if R1024_Unroll_R(11)
|
||||
R1024_8_rounds(11);
|
||||
#endif
|
||||
#if R1024_Unroll_R(12)
|
||||
R1024_8_rounds(12);
|
||||
#endif
|
||||
#if R1024_Unroll_R(13)
|
||||
R1024_8_rounds(13);
|
||||
#endif
|
||||
#if R1024_Unroll_R(14)
|
||||
R1024_8_rounds(14);
|
||||
#endif
|
||||
#if (SKEIN_UNROLL_1024 > 14)
|
||||
#error "need more unrolling in Skein_1024_Process_Block"
|
||||
#endif
|
||||
}
|
||||
/* do the final "feedforward" xor, update context chaining vars */
|
||||
|
||||
ctx->X[ 0] = X00 ^ w[ 0];
|
||||
ctx->X[ 1] = X01 ^ w[ 1];
|
||||
ctx->X[ 2] = X02 ^ w[ 2];
|
||||
ctx->X[ 3] = X03 ^ w[ 3];
|
||||
ctx->X[ 4] = X04 ^ w[ 4];
|
||||
ctx->X[ 5] = X05 ^ w[ 5];
|
||||
ctx->X[ 6] = X06 ^ w[ 6];
|
||||
ctx->X[ 7] = X07 ^ w[ 7];
|
||||
ctx->X[ 8] = X08 ^ w[ 8];
|
||||
ctx->X[ 9] = X09 ^ w[ 9];
|
||||
ctx->X[10] = X10 ^ w[10];
|
||||
ctx->X[11] = X11 ^ w[11];
|
||||
ctx->X[12] = X12 ^ w[12];
|
||||
ctx->X[13] = X13 ^ w[13];
|
||||
ctx->X[14] = X14 ^ w[14];
|
||||
ctx->X[15] = X15 ^ w[15];
|
||||
|
||||
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
|
||||
|
||||
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
|
||||
blkPtr += SKEIN1024_BLOCK_BYTES;
|
||||
}
|
||||
while (--blkCnt);
|
||||
ctx->h.T[0] = ts[0];
|
||||
ctx->h.T[1] = ts[1];
|
||||
}
|
||||
|
||||
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
|
||||
size_t Skein1024_Process_Block_CodeSize(void)
|
||||
{
|
||||
return ((u08b_t *) Skein1024_Process_Block_CodeSize) -
|
||||
((u08b_t *) Skein1024_Process_Block);
|
||||
}
|
||||
uint_t Skein1024_Unroll_Cnt(void)
|
||||
{
|
||||
return SKEIN_UNROLL_1024;
|
||||
}
|
||||
#endif
|
||||
#endif
|
247
crypto/skein/skein_debug.c
Normal file
247
crypto/skein/skein_debug.c
Normal file
|
@ -0,0 +1,247 @@
|
|||
/***********************************************************************
|
||||
**
|
||||
** Debug output functions for Skein hashing.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
************************************************************************/
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef SKEIN_DEBUG /* only instantiate this code if SKEIN_DEBUG is on */
|
||||
#include "skein.h"
|
||||
|
||||
static const char INDENT[] = " "; /* how much to indent on new line */
|
||||
|
||||
uint_t skein_DebugFlag = 0; /* off by default. Must be set externally */
|
||||
|
||||
static void Show64_step(size_t cnt,const u64b_t *X,size_t step)
|
||||
{
|
||||
size_t i,j;
|
||||
for (i=j=0;i < cnt;i++,j+=step)
|
||||
{
|
||||
if (i % 4 == 0) printf(INDENT);
|
||||
printf(" %08X.%08X ",(uint_32t)(X[j] >> 32),(uint_32t)X[j]);
|
||||
if (i % 4 == 3 || i==cnt-1) printf("\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
#define Show64(cnt,X) Show64_step(cnt,X,1)
|
||||
|
||||
static void Show64_flag(size_t cnt,const u64b_t *X)
|
||||
{
|
||||
size_t xptr = (size_t) X;
|
||||
size_t step = (xptr & 1) ? 2 : 1;
|
||||
if (step != 1)
|
||||
{
|
||||
X = (const u64b_t *) (xptr & ~1);
|
||||
}
|
||||
Show64_step(cnt,X,step);
|
||||
}
|
||||
|
||||
static void Show08(size_t cnt,const u08b_t *b)
|
||||
{
|
||||
size_t i;
|
||||
for (i=0;i < cnt;i++)
|
||||
{
|
||||
if (i %16 == 0) printf(INDENT);
|
||||
else if (i % 4 == 0) printf(" ");
|
||||
printf(" %02X",b[i]);
|
||||
if (i %16 == 15 || i==cnt-1) printf("\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
static const char *AlgoHeader(uint_t bits)
|
||||
{
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_THREEFISH)
|
||||
switch (bits)
|
||||
{
|
||||
case 256: return ":Threefish-256: ";
|
||||
case 512: return ":Threefish-512: ";
|
||||
case 1024: return ":Threefish-1024:";
|
||||
}
|
||||
else
|
||||
switch (bits)
|
||||
{
|
||||
case 256: return ":Skein-256: ";
|
||||
case 512: return ":Skein-512: ";
|
||||
case 1024: return ":Skein-1024:";
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void Skein_Show_Final(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t cnt,const u08b_t *outPtr)
|
||||
{
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_FINAL)
|
||||
{
|
||||
printf("\n%s Final output=\n",AlgoHeader(bits));
|
||||
Show08(cnt,outPtr);
|
||||
printf(" ++++++++++\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
/* show state after a round (or "pseudo-round") */
|
||||
void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X)
|
||||
{
|
||||
static uint_t injectNum=0; /* not multi-thread safe! */
|
||||
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
|
||||
if (skein_DebugFlag)
|
||||
{
|
||||
if (r >= SKEIN_RND_SPECIAL)
|
||||
{ /* a key injection (or feedforward) point */
|
||||
injectNum = (r == SKEIN_RND_KEY_INITIAL) ? 0 : injectNum+1;
|
||||
if ( skein_DebugFlag & SKEIN_DEBUG_INJECT ||
|
||||
((skein_DebugFlag & SKEIN_DEBUG_FINAL) && r == SKEIN_RND_FEED_FWD))
|
||||
{
|
||||
printf("\n%s",AlgoHeader(bits));
|
||||
switch (r)
|
||||
{
|
||||
case SKEIN_RND_KEY_INITIAL:
|
||||
printf(" [state after initial key injection]");
|
||||
break;
|
||||
case SKEIN_RND_KEY_INJECT:
|
||||
printf(" [state after key injection #%02d]",injectNum);
|
||||
break;
|
||||
case SKEIN_RND_FEED_FWD:
|
||||
printf(" [state after plaintext feedforward]");
|
||||
injectNum = 0;
|
||||
break;
|
||||
}
|
||||
printf("=\n");
|
||||
Show64(bits/64,X);
|
||||
if (r== SKEIN_RND_FEED_FWD)
|
||||
printf(" ----------\n");
|
||||
}
|
||||
}
|
||||
else if (skein_DebugFlag & SKEIN_DEBUG_ROUNDS)
|
||||
{
|
||||
uint_t j;
|
||||
u64b_t p[SKEIN_MAX_STATE_WORDS];
|
||||
const u08b_t *perm;
|
||||
const static u08b_t PERM_256 [4][ 4] = { { 0,1,2,3 }, { 0,3,2,1 }, { 0,1,2,3 }, { 0,3,2,1 } };
|
||||
const static u08b_t PERM_512 [4][ 8] = { { 0,1,2,3,4,5,6,7 },
|
||||
{ 2,1,4,7,6,5,0,3 },
|
||||
{ 4,1,6,3,0,5,2,7 },
|
||||
{ 6,1,0,7,2,5,4,3 }
|
||||
};
|
||||
const static u08b_t PERM_1024[4][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 },
|
||||
{ 0, 9, 2,13, 6,11, 4,15,10, 7,12, 3,14, 5, 8, 1 },
|
||||
{ 0, 7, 2, 5, 4, 3, 6, 1,12,15,14,13, 8,11,10, 9 },
|
||||
{ 0,15, 2,11, 6,13, 4, 9,14, 1, 8, 5,10, 3,12, 7 }
|
||||
};
|
||||
|
||||
if ((skein_DebugFlag & SKEIN_DEBUG_PERMUTE) && (r & 3))
|
||||
{
|
||||
printf("\n%s [state after round %2d (permuted)]=\n",AlgoHeader(bits),(int)r);
|
||||
switch (bits)
|
||||
{
|
||||
case 256: perm = PERM_256 [r&3]; break;
|
||||
case 512: perm = PERM_512 [r&3]; break;
|
||||
default: perm = PERM_1024[r&3]; break;
|
||||
}
|
||||
for (j=0;j<bits/64;j++)
|
||||
p[j] = X[perm[j]];
|
||||
Show64(bits/64,p);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("\n%s [state after round %2d]=\n",AlgoHeader(bits),(int)r);
|
||||
Show64(bits/64,X);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* show state after a round (or "pseudo-round"), given a list of pointers */
|
||||
void Skein_Show_R_Ptr(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X_ptr[])
|
||||
{
|
||||
uint_t i;
|
||||
u64b_t X[SKEIN_MAX_STATE_WORDS];
|
||||
|
||||
for (i=0;i<bits/64;i++) /* copy over the words */
|
||||
X[i] = X_ptr[i][0];
|
||||
Skein_Show_Round(bits,h,r,X);
|
||||
}
|
||||
|
||||
|
||||
/* show the state at the start of a block */
|
||||
void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,const u08b_t *blkPtr,
|
||||
const u64b_t *wPtr, const u64b_t *ksPtr, const u64b_t *tsPtr)
|
||||
{
|
||||
uint_t n;
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
|
||||
if (skein_DebugFlag)
|
||||
{
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_HDR)
|
||||
{
|
||||
printf("\n%s Block: outBits=%4d. T0=%06X.",AlgoHeader(bits),(uint_t) h->hashBitLen,(uint_t)h->T[0]);
|
||||
printf(" Type=");
|
||||
n = (uint_t) ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) >> SKEIN_T1_POS_BLK_TYPE);
|
||||
switch (n)
|
||||
{
|
||||
case SKEIN_BLK_TYPE_KEY: printf("KEY. "); break;
|
||||
case SKEIN_BLK_TYPE_CFG: printf("CFG. "); break;
|
||||
case SKEIN_BLK_TYPE_PERS: printf("PERS."); break;
|
||||
case SKEIN_BLK_TYPE_PK : printf("PK. "); break;
|
||||
case SKEIN_BLK_TYPE_KDF: printf("KDF. "); break;
|
||||
case SKEIN_BLK_TYPE_MSG: printf("MSG. "); break;
|
||||
case SKEIN_BLK_TYPE_OUT: printf("OUT. "); break;
|
||||
default: printf("0x%02X.",n); break;
|
||||
}
|
||||
printf(" Flags=");
|
||||
printf((h->T[1] & SKEIN_T1_FLAG_FIRST) ? " First":" ");
|
||||
printf((h->T[1] & SKEIN_T1_FLAG_FINAL) ? " Final":" ");
|
||||
printf((h->T[1] & SKEIN_T1_FLAG_BIT_PAD) ? " Pad" :" ");
|
||||
n = (uint_t) ((h->T[1] & SKEIN_T1_TREE_LVL_MASK) >> SKEIN_T1_POS_TREE_LVL);
|
||||
if (n)
|
||||
printf(" TreeLevel = %02X",n);
|
||||
printf("\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_TWEAK)
|
||||
{
|
||||
printf(" Tweak:\n");
|
||||
Show64(2,h->T);
|
||||
}
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_STATE)
|
||||
{
|
||||
printf(" %s words:\n",(skein_DebugFlag & SKEIN_DEBUG_THREEFISH)?"Key":"State");
|
||||
Show64(bits/64,X);
|
||||
}
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_KEYSCHED)
|
||||
{
|
||||
printf(" Tweak schedule:\n");
|
||||
Show64_flag(3,tsPtr);
|
||||
printf(" Key schedule:\n");
|
||||
Show64_flag((bits/64)+1,ksPtr);
|
||||
}
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_INPUT_64)
|
||||
{
|
||||
printf(" Input block (words):\n");
|
||||
Show64(bits/64,wPtr);
|
||||
}
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_INPUT_08)
|
||||
{
|
||||
printf(" Input block (bytes):\n");
|
||||
Show08(bits/8,blkPtr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Skein_Show_Key(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u08b_t *key,size_t keyBytes)
|
||||
{
|
||||
if (keyBytes)
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
|
||||
if (skein_DebugFlag & SKEIN_DEBUG_KEY)
|
||||
{
|
||||
printf("\n%s MAC key = %4u bytes\n",AlgoHeader(bits),(unsigned) keyBytes);
|
||||
Show08(keyBytes,key);
|
||||
}
|
||||
}
|
||||
#endif
|
48
crypto/skein/skein_debug.h
Normal file
48
crypto/skein/skein_debug.h
Normal file
|
@ -0,0 +1,48 @@
|
|||
#ifndef _SKEIN_DEBUG_H_
|
||||
#define _SKEIN_DEBUG_H_
|
||||
/***********************************************************************
|
||||
**
|
||||
** Interface definitions for Skein hashing debug output.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
************************************************************************/
|
||||
|
||||
#ifdef SKEIN_DEBUG
|
||||
/* callout functions used inside Skein code */
|
||||
void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,const u08b_t *blkPtr,
|
||||
const u64b_t *wPtr,const u64b_t *ksPtr,const u64b_t *tsPtr);
|
||||
void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X);
|
||||
void Skein_Show_R_Ptr(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X_ptr[]);
|
||||
void Skein_Show_Final(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t cnt,const u08b_t *outPtr);
|
||||
void Skein_Show_Key (uint_t bits,const Skein_Ctxt_Hdr_t *h,const u08b_t *key,size_t keyBytes);
|
||||
|
||||
extern uint_t skein_DebugFlag; /* flags to control debug output (0 --> none) */
|
||||
|
||||
#define SKEIN_RND_SPECIAL (1000u)
|
||||
#define SKEIN_RND_KEY_INITIAL (SKEIN_RND_SPECIAL+0u)
|
||||
#define SKEIN_RND_KEY_INJECT (SKEIN_RND_SPECIAL+1u)
|
||||
#define SKEIN_RND_FEED_FWD (SKEIN_RND_SPECIAL+2u)
|
||||
|
||||
/* flag bits: skein_DebugFlag */
|
||||
#define SKEIN_DEBUG_KEY (1u << 1) /* show MAC key */
|
||||
#define SKEIN_DEBUG_CONFIG (1u << 2) /* show config block processing */
|
||||
#define SKEIN_DEBUG_STATE (1u << 3) /* show input state during Show_Block() */
|
||||
#define SKEIN_DEBUG_TWEAK (1u << 4) /* show input state during Show_Block() */
|
||||
#define SKEIN_DEBUG_KEYSCHED (1u << 5) /* show expanded key schedule */
|
||||
#define SKEIN_DEBUG_INPUT_64 (1u << 6) /* show input block as 64-bit words */
|
||||
#define SKEIN_DEBUG_INPUT_08 (1u << 7) /* show input block as 8-bit bytes */
|
||||
#define SKEIN_DEBUG_INJECT (1u << 8) /* show state after key injection & feedforward points */
|
||||
#define SKEIN_DEBUG_ROUNDS (1u << 9) /* show state after all rounds */
|
||||
#define SKEIN_DEBUG_FINAL (1u <<10) /* show final output of Skein */
|
||||
#define SKEIN_DEBUG_HDR (1u <<11) /* show block header */
|
||||
#define SKEIN_DEBUG_THREEFISH (1u <<12) /* use Threefish name instead of Skein */
|
||||
#define SKEIN_DEBUG_PERMUTE (1u <<13) /* use word permutations */
|
||||
#define SKEIN_DEBUG_ALL ((~0u) & ~(SKEIN_DEBUG_THREEFISH | SKEIN_DEBUG_PERMUTE))
|
||||
#define THREEFISH_DEBUG_ALL (SKEIN_DEBUG_ALL | SKEIN_DEBUG_THREEFISH)
|
||||
|
||||
#endif /* SKEIN_DEBUG */
|
||||
|
||||
#endif /* _SKEIN_DEBUG_H_ */
|
199
crypto/skein/skein_iv.h
Normal file
199
crypto/skein/skein_iv.h
Normal file
|
@ -0,0 +1,199 @@
|
|||
#ifndef _SKEIN_IV_H_
|
||||
#define _SKEIN_IV_H_
|
||||
|
||||
#include "skein.h" /* get Skein macros and types */
|
||||
|
||||
/*
|
||||
***************** Pre-computed Skein IVs *******************
|
||||
**
|
||||
** NOTE: these values are not "magic" constants, but
|
||||
** are generated using the Threefish block function.
|
||||
** They are pre-computed here only for speed; i.e., to
|
||||
** avoid the need for a Threefish call during Init().
|
||||
**
|
||||
** The IV for any fixed hash length may be pre-computed.
|
||||
** Only the most common values are included here.
|
||||
**
|
||||
************************************************************
|
||||
**/
|
||||
|
||||
#define MK_64 SKEIN_MK_64
|
||||
|
||||
/* blkSize = 256 bits. hashSize = 128 bits */
|
||||
const u64b_t SKEIN_256_IV_128[] =
|
||||
{
|
||||
MK_64(0xE1111906,0x964D7260),
|
||||
MK_64(0x883DAAA7,0x7C8D811C),
|
||||
MK_64(0x10080DF4,0x91960F7A),
|
||||
MK_64(0xCCF7DDE5,0xB45BC1C2)
|
||||
};
|
||||
|
||||
/* blkSize = 256 bits. hashSize = 160 bits */
|
||||
const u64b_t SKEIN_256_IV_160[] =
|
||||
{
|
||||
MK_64(0x14202314,0x72825E98),
|
||||
MK_64(0x2AC4E9A2,0x5A77E590),
|
||||
MK_64(0xD47A5856,0x8838D63E),
|
||||
MK_64(0x2DD2E496,0x8586AB7D)
|
||||
};
|
||||
|
||||
/* blkSize = 256 bits. hashSize = 224 bits */
|
||||
const u64b_t SKEIN_256_IV_224[] =
|
||||
{
|
||||
MK_64(0xC6098A8C,0x9AE5EA0B),
|
||||
MK_64(0x876D5686,0x08C5191C),
|
||||
MK_64(0x99CB88D7,0xD7F53884),
|
||||
MK_64(0x384BDDB1,0xAEDDB5DE)
|
||||
};
|
||||
|
||||
/* blkSize = 256 bits. hashSize = 256 bits */
|
||||
const u64b_t SKEIN_256_IV_256[] =
|
||||
{
|
||||
MK_64(0xFC9DA860,0xD048B449),
|
||||
MK_64(0x2FCA6647,0x9FA7D833),
|
||||
MK_64(0xB33BC389,0x6656840F),
|
||||
MK_64(0x6A54E920,0xFDE8DA69)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 128 bits */
|
||||
const u64b_t SKEIN_512_IV_128[] =
|
||||
{
|
||||
MK_64(0xA8BC7BF3,0x6FBF9F52),
|
||||
MK_64(0x1E9872CE,0xBD1AF0AA),
|
||||
MK_64(0x309B1790,0xB32190D3),
|
||||
MK_64(0xBCFBB854,0x3F94805C),
|
||||
MK_64(0x0DA61BCD,0x6E31B11B),
|
||||
MK_64(0x1A18EBEA,0xD46A32E3),
|
||||
MK_64(0xA2CC5B18,0xCE84AA82),
|
||||
MK_64(0x6982AB28,0x9D46982D)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 160 bits */
|
||||
const u64b_t SKEIN_512_IV_160[] =
|
||||
{
|
||||
MK_64(0x28B81A2A,0xE013BD91),
|
||||
MK_64(0xC2F11668,0xB5BDF78F),
|
||||
MK_64(0x1760D8F3,0xF6A56F12),
|
||||
MK_64(0x4FB74758,0x8239904F),
|
||||
MK_64(0x21EDE07F,0x7EAF5056),
|
||||
MK_64(0xD908922E,0x63ED70B8),
|
||||
MK_64(0xB8EC76FF,0xECCB52FA),
|
||||
MK_64(0x01A47BB8,0xA3F27A6E)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 224 bits */
|
||||
const u64b_t SKEIN_512_IV_224[] =
|
||||
{
|
||||
MK_64(0xCCD06162,0x48677224),
|
||||
MK_64(0xCBA65CF3,0xA92339EF),
|
||||
MK_64(0x8CCD69D6,0x52FF4B64),
|
||||
MK_64(0x398AED7B,0x3AB890B4),
|
||||
MK_64(0x0F59D1B1,0x457D2BD0),
|
||||
MK_64(0x6776FE65,0x75D4EB3D),
|
||||
MK_64(0x99FBC70E,0x997413E9),
|
||||
MK_64(0x9E2CFCCF,0xE1C41EF7)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 256 bits */
|
||||
const u64b_t SKEIN_512_IV_256[] =
|
||||
{
|
||||
MK_64(0xCCD044A1,0x2FDB3E13),
|
||||
MK_64(0xE8359030,0x1A79A9EB),
|
||||
MK_64(0x55AEA061,0x4F816E6F),
|
||||
MK_64(0x2A2767A4,0xAE9B94DB),
|
||||
MK_64(0xEC06025E,0x74DD7683),
|
||||
MK_64(0xE7A436CD,0xC4746251),
|
||||
MK_64(0xC36FBAF9,0x393AD185),
|
||||
MK_64(0x3EEDBA18,0x33EDFC13)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 384 bits */
|
||||
const u64b_t SKEIN_512_IV_384[] =
|
||||
{
|
||||
MK_64(0xA3F6C6BF,0x3A75EF5F),
|
||||
MK_64(0xB0FEF9CC,0xFD84FAA4),
|
||||
MK_64(0x9D77DD66,0x3D770CFE),
|
||||
MK_64(0xD798CBF3,0xB468FDDA),
|
||||
MK_64(0x1BC4A666,0x8A0E4465),
|
||||
MK_64(0x7ED7D434,0xE5807407),
|
||||
MK_64(0x548FC1AC,0xD4EC44D6),
|
||||
MK_64(0x266E1754,0x6AA18FF8)
|
||||
};
|
||||
|
||||
/* blkSize = 512 bits. hashSize = 512 bits */
|
||||
const u64b_t SKEIN_512_IV_512[] =
|
||||
{
|
||||
MK_64(0x4903ADFF,0x749C51CE),
|
||||
MK_64(0x0D95DE39,0x9746DF03),
|
||||
MK_64(0x8FD19341,0x27C79BCE),
|
||||
MK_64(0x9A255629,0xFF352CB1),
|
||||
MK_64(0x5DB62599,0xDF6CA7B0),
|
||||
MK_64(0xEABE394C,0xA9D5C3F4),
|
||||
MK_64(0x991112C7,0x1A75B523),
|
||||
MK_64(0xAE18A40B,0x660FCC33)
|
||||
};
|
||||
|
||||
/* blkSize = 1024 bits. hashSize = 384 bits */
|
||||
const u64b_t SKEIN1024_IV_384[] =
|
||||
{
|
||||
MK_64(0x5102B6B8,0xC1894A35),
|
||||
MK_64(0xFEEBC9E3,0xFE8AF11A),
|
||||
MK_64(0x0C807F06,0xE32BED71),
|
||||
MK_64(0x60C13A52,0xB41A91F6),
|
||||
MK_64(0x9716D35D,0xD4917C38),
|
||||
MK_64(0xE780DF12,0x6FD31D3A),
|
||||
MK_64(0x797846B6,0xC898303A),
|
||||
MK_64(0xB172C2A8,0xB3572A3B),
|
||||
MK_64(0xC9BC8203,0xA6104A6C),
|
||||
MK_64(0x65909338,0xD75624F4),
|
||||
MK_64(0x94BCC568,0x4B3F81A0),
|
||||
MK_64(0x3EBBF51E,0x10ECFD46),
|
||||
MK_64(0x2DF50F0B,0xEEB08542),
|
||||
MK_64(0x3B5A6530,0x0DBC6516),
|
||||
MK_64(0x484B9CD2,0x167BBCE1),
|
||||
MK_64(0x2D136947,0xD4CBAFEA)
|
||||
};
|
||||
|
||||
/* blkSize = 1024 bits. hashSize = 512 bits */
|
||||
const u64b_t SKEIN1024_IV_512[] =
|
||||
{
|
||||
MK_64(0xCAEC0E5D,0x7C1B1B18),
|
||||
MK_64(0xA01B0E04,0x5F03E802),
|
||||
MK_64(0x33840451,0xED912885),
|
||||
MK_64(0x374AFB04,0xEAEC2E1C),
|
||||
MK_64(0xDF25A0E2,0x813581F7),
|
||||
MK_64(0xE4004093,0x8B12F9D2),
|
||||
MK_64(0xA662D539,0xC2ED39B6),
|
||||
MK_64(0xFA8B85CF,0x45D8C75A),
|
||||
MK_64(0x8316ED8E,0x29EDE796),
|
||||
MK_64(0x053289C0,0x2E9F91B8),
|
||||
MK_64(0xC3F8EF1D,0x6D518B73),
|
||||
MK_64(0xBDCEC3C4,0xD5EF332E),
|
||||
MK_64(0x549A7E52,0x22974487),
|
||||
MK_64(0x67070872,0x5B749816),
|
||||
MK_64(0xB9CD28FB,0xF0581BD1),
|
||||
MK_64(0x0E2940B8,0x15804974)
|
||||
};
|
||||
|
||||
/* blkSize = 1024 bits. hashSize = 1024 bits */
|
||||
const u64b_t SKEIN1024_IV_1024[] =
|
||||
{
|
||||
MK_64(0xD593DA07,0x41E72355),
|
||||
MK_64(0x15B5E511,0xAC73E00C),
|
||||
MK_64(0x5180E5AE,0xBAF2C4F0),
|
||||
MK_64(0x03BD41D3,0xFCBCAFAF),
|
||||
MK_64(0x1CAEC6FD,0x1983A898),
|
||||
MK_64(0x6E510B8B,0xCDD0589F),
|
||||
MK_64(0x77E2BDFD,0xC6394ADA),
|
||||
MK_64(0xC11E1DB5,0x24DCB0A3),
|
||||
MK_64(0xD6D14AF9,0xC6329AB5),
|
||||
MK_64(0x6A9B0BFC,0x6EB67E0D),
|
||||
MK_64(0x9243C60D,0xCCFF1332),
|
||||
MK_64(0x1A1F1DDE,0x743F02D4),
|
||||
MK_64(0x0996753C,0x10ED0BB8),
|
||||
MK_64(0x6572DD22,0xF2B4969A),
|
||||
MK_64(0x61FD3062,0xD00A579A),
|
||||
MK_64(0x1DE0536E,0x8682E539)
|
||||
};
|
||||
|
||||
#endif /* _SKEIN_IV_H_ */
|
124
crypto/skein/skein_port.h
Normal file
124
crypto/skein/skein_port.h
Normal file
|
@ -0,0 +1,124 @@
|
|||
#ifndef _SKEIN_PORT_H_
|
||||
#define _SKEIN_PORT_H_
|
||||
/*******************************************************************
|
||||
**
|
||||
** Platform-specific definitions for Skein hash function.
|
||||
**
|
||||
** Source code author: Doug Whiting, 2008.
|
||||
**
|
||||
** This algorithm and source code is released to the public domain.
|
||||
**
|
||||
** Many thanks to Brian Gladman for his portable header files.
|
||||
**
|
||||
** To port Skein to an "unsupported" platform, change the definitions
|
||||
** in this file appropriately.
|
||||
**
|
||||
********************************************************************/
|
||||
|
||||
#include "brg_types.h" /* get integer type definitions */
|
||||
|
||||
typedef unsigned int uint_t; /* native unsigned integer */
|
||||
typedef uint_8t u08b_t; /* 8-bit unsigned integer */
|
||||
typedef uint_64t u64b_t; /* 64-bit unsigned integer */
|
||||
|
||||
#ifndef RotL_64
|
||||
#define RotL_64(x,N) (((x) << (N)) | ((x) >> (64-(N))))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Skein is "natively" little-endian (unlike SHA-xxx), for optimal
|
||||
* performance on x86 CPUs. The Skein code requires the following
|
||||
* definitions for dealing with endianness:
|
||||
*
|
||||
* SKEIN_NEED_SWAP: 0 for little-endian, 1 for big-endian
|
||||
* Skein_Put64_LSB_First
|
||||
* Skein_Get64_LSB_First
|
||||
* Skein_Swap64
|
||||
*
|
||||
* If SKEIN_NEED_SWAP is defined at compile time, it is used here
|
||||
* along with the portable versions of Put64/Get64/Swap64, which
|
||||
* are slow in general.
|
||||
*
|
||||
* Otherwise, an "auto-detect" of endianness is attempted below.
|
||||
* If the default handling doesn't work well, the user may insert
|
||||
* platform-specific code instead (e.g., for big-endian CPUs).
|
||||
*
|
||||
*/
|
||||
#ifndef SKEIN_NEED_SWAP /* compile-time "override" for endianness? */
|
||||
|
||||
#include "brg_endian.h" /* get endianness selection */
|
||||
#if PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN
|
||||
/* here for big-endian CPUs */
|
||||
#define SKEIN_NEED_SWAP (1)
|
||||
#elif PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN
|
||||
/* here for x86 and x86-64 CPUs (and other detected little-endian CPUs) */
|
||||
#define SKEIN_NEED_SWAP (0)
|
||||
#if PLATFORM_MUST_ALIGN == 0 /* ok to use "fast" versions? */
|
||||
#define Skein_Put64_LSB_First(dst08,src64,bCnt) memcpy(dst08,src64,bCnt)
|
||||
#define Skein_Get64_LSB_First(dst64,src08,wCnt) memcpy(dst64,src08,8*(wCnt))
|
||||
#endif
|
||||
#else
|
||||
#error "Skein needs endianness setting!"
|
||||
#endif
|
||||
|
||||
#endif /* ifndef SKEIN_NEED_SWAP */
|
||||
|
||||
/*
|
||||
******************************************************************
|
||||
* Provide any definitions still needed.
|
||||
******************************************************************
|
||||
*/
|
||||
#ifndef Skein_Swap64 /* swap for big-endian, nop for little-endian */
|
||||
#if SKEIN_NEED_SWAP
|
||||
#define Skein_Swap64(w64) \
|
||||
( (( ((u64b_t)(w64)) & 0xFF) << 56) | \
|
||||
(((((u64b_t)(w64)) >> 8) & 0xFF) << 48) | \
|
||||
(((((u64b_t)(w64)) >>16) & 0xFF) << 40) | \
|
||||
(((((u64b_t)(w64)) >>24) & 0xFF) << 32) | \
|
||||
(((((u64b_t)(w64)) >>32) & 0xFF) << 24) | \
|
||||
(((((u64b_t)(w64)) >>40) & 0xFF) << 16) | \
|
||||
(((((u64b_t)(w64)) >>48) & 0xFF) << 8) | \
|
||||
(((((u64b_t)(w64)) >>56) & 0xFF) ) )
|
||||
#else
|
||||
#define Skein_Swap64(w64) (w64)
|
||||
#endif
|
||||
#endif /* ifndef Skein_Swap64 */
|
||||
|
||||
|
||||
#ifndef Skein_Put64_LSB_First
|
||||
void Skein_Put64_LSB_First(u08b_t *dst,const u64b_t *src,size_t bCnt)
|
||||
#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
|
||||
{ /* this version is fully portable (big-endian or little-endian), but slow */
|
||||
size_t n;
|
||||
|
||||
for (n=0;n<bCnt;n++)
|
||||
dst[n] = (u08b_t) (src[n>>3] >> (8*(n&7)));
|
||||
}
|
||||
#else
|
||||
; /* output only the function prototype */
|
||||
#endif
|
||||
#endif /* ifndef Skein_Put64_LSB_First */
|
||||
|
||||
|
||||
#ifndef Skein_Get64_LSB_First
|
||||
void Skein_Get64_LSB_First(u64b_t *dst,const u08b_t *src,size_t wCnt)
|
||||
#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
|
||||
{ /* this version is fully portable (big-endian or little-endian), but slow */
|
||||
size_t n;
|
||||
|
||||
for (n=0;n<8*wCnt;n+=8)
|
||||
dst[n/8] = (((u64b_t) src[n ]) ) +
|
||||
(((u64b_t) src[n+1]) << 8) +
|
||||
(((u64b_t) src[n+2]) << 16) +
|
||||
(((u64b_t) src[n+3]) << 24) +
|
||||
(((u64b_t) src[n+4]) << 32) +
|
||||
(((u64b_t) src[n+5]) << 40) +
|
||||
(((u64b_t) src[n+6]) << 48) +
|
||||
(((u64b_t) src[n+7]) << 56) ;
|
||||
}
|
||||
#else
|
||||
; /* output only the function prototype */
|
||||
#endif
|
||||
#endif /* ifndef Skein_Get64_LSB_First */
|
||||
|
||||
#endif /* ifndef _SKEIN_PORT_H_ */
|
37
lzp/lzp.c
37
lzp/lzp.c
|
@ -46,17 +46,21 @@ See also the bsc and libbsc web site:
|
|||
|
||||
#include "lzp.h"
|
||||
|
||||
#define LZP_LZP_MATCH_FLAG 0xf2
|
||||
#define LZP_MATCH_FLAG 0xf2
|
||||
|
||||
static
|
||||
inline int bsc_lzp_num_blocks(ssize_t n)
|
||||
{
|
||||
int nb;
|
||||
|
||||
if (n < 256 * 1024) return 1;
|
||||
if (n < 4 * 1024 * 1024) return 2;
|
||||
if (n < 16 * 1024 * 1024) return 4;
|
||||
if (n < LZP_MAX_BLOCK) return 8;
|
||||
|
||||
return (n / LZP_MAX_BLOCK);
|
||||
nb = n / LZP_MAX_BLOCK;
|
||||
if (n % LZP_MAX_BLOCK) nb++;
|
||||
return (nb);
|
||||
}
|
||||
|
||||
static
|
||||
|
@ -94,7 +98,7 @@ int bsc_lzp_encode_block(const unsigned char * input, const unsigned char * inpu
|
|||
{
|
||||
if ((heuristic > input) && (*(unsigned int *)heuristic != *(unsigned int *)(reference + (heuristic - input))))
|
||||
{
|
||||
goto LZP_LZP_MATCH_NOT_FOUND;
|
||||
goto LZP_MATCH_NOT_FOUND;
|
||||
}
|
||||
|
||||
int len = 4;
|
||||
|
@ -105,7 +109,7 @@ int bsc_lzp_encode_block(const unsigned char * input, const unsigned char * inpu
|
|||
if (len < minLen)
|
||||
{
|
||||
if (heuristic < input + len) heuristic = input + len;
|
||||
goto LZP_LZP_MATCH_NOT_FOUND;
|
||||
goto LZP_MATCH_NOT_FOUND;
|
||||
}
|
||||
|
||||
if (input[len] == reference[len]) len++;
|
||||
|
@ -114,7 +118,7 @@ int bsc_lzp_encode_block(const unsigned char * input, const unsigned char * inpu
|
|||
|
||||
input += len; context = input[-1] | (input[-2] << 8) | (input[-3] << 16) | (input[-4] << 24);
|
||||
|
||||
*output++ = LZP_LZP_MATCH_FLAG;
|
||||
*output++ = LZP_MATCH_FLAG;
|
||||
|
||||
len -= minLen; while (len >= 254) { len -= 254; *output++ = 254; if (output >= outputEOB) break; }
|
||||
|
||||
|
@ -123,9 +127,9 @@ int bsc_lzp_encode_block(const unsigned char * input, const unsigned char * inpu
|
|||
else
|
||||
{
|
||||
unsigned char next;
|
||||
LZP_LZP_MATCH_NOT_FOUND:
|
||||
LZP_MATCH_NOT_FOUND:
|
||||
next = *output++ = *input++; context = (context << 8) | next;
|
||||
if (next == LZP_LZP_MATCH_FLAG) *output++ = 255;
|
||||
if (next == LZP_MATCH_FLAG) *output++ = 255;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -141,7 +145,7 @@ LZP_LZP_MATCH_NOT_FOUND:
|
|||
if (value > 0)
|
||||
{
|
||||
unsigned char next = *output++ = *input++; context = (context << 8) | next;
|
||||
if (next == LZP_LZP_MATCH_FLAG) *output++ = 255;
|
||||
if (next == LZP_MATCH_FLAG) *output++ = 255;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -181,7 +185,7 @@ int bsc_lzp_decode_block(const unsigned char * input, const unsigned char * inpu
|
|||
{
|
||||
unsigned int index = ((context >> 15) ^ context ^ (context >> 3)) & mask;
|
||||
int value = lookup[index]; lookup[index] = (int)(output - outputStart);
|
||||
if (*input == LZP_LZP_MATCH_FLAG && value > 0)
|
||||
if (*input == LZP_MATCH_FLAG && value > 0)
|
||||
{
|
||||
input++;
|
||||
if (*input != 255)
|
||||
|
@ -209,7 +213,7 @@ int bsc_lzp_decode_block(const unsigned char * input, const unsigned char * inpu
|
|||
}
|
||||
else
|
||||
{
|
||||
input++; context = (context << 8) | (*output++ = LZP_LZP_MATCH_FLAG);
|
||||
input++; context = (context << 8) | (*output++ = LZP_MATCH_FLAG);
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -238,14 +242,19 @@ ssize_t bsc_lzp_compress_serial(const unsigned char * input, unsigned char * out
|
|||
}
|
||||
|
||||
int nBlocks = bsc_lzp_num_blocks(n);
|
||||
int chunkSize = n / nBlocks;
|
||||
int chunkSize;
|
||||
int blockId;
|
||||
ssize_t outputPtr = 1 + 8 * nBlocks;
|
||||
|
||||
if (n > LZP_MAX_BLOCK)
|
||||
chunkSize = LZP_MAX_BLOCK;
|
||||
else
|
||||
chunkSize = n / nBlocks;
|
||||
|
||||
output[0] = nBlocks;
|
||||
for (blockId = 0; blockId < nBlocks; ++blockId)
|
||||
{
|
||||
int inputStart = blockId * chunkSize;
|
||||
ssize_t inputStart = blockId * chunkSize;
|
||||
int inputSize = blockId != nBlocks - 1 ? chunkSize : n - inputStart;
|
||||
int outputSize = inputSize; if (outputSize > n - outputPtr) outputSize = n - outputPtr;
|
||||
|
||||
|
@ -407,8 +416,8 @@ ssize_t lzp_decompress(const unsigned char * input, unsigned char * output, ssiz
|
|||
|
||||
for (blockId = 0; blockId < nBlocks; ++blockId)
|
||||
{
|
||||
int inputPtr = 0; for (p = 0; p < blockId; ++p) inputPtr += *(int *)(input + 1 + 8 * p + 4);
|
||||
int outputPtr = 0; for (p = 0; p < blockId; ++p) outputPtr += *(int *)(input + 1 + 8 * p + 0);
|
||||
ssize_t inputPtr = 0; for (p = 0; p < blockId; ++p) inputPtr += *(int *)(input + 1 + 8 * p + 4);
|
||||
ssize_t outputPtr = 0; for (p = 0; p < blockId; ++p) outputPtr += *(int *)(input + 1 + 8 * p + 0);
|
||||
|
||||
inputPtr += 1 + 8 * nBlocks;
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ See also the bsc and libbsc web site:
|
|||
|
||||
#define LZP_DEFAULT_LZPHASHSIZE 16
|
||||
#define LZP_DEFAULT_LZPMINLEN 128
|
||||
#define LZP_MAX_BLOCK (2147483648LL)
|
||||
#define LZP_MAX_BLOCK (2000000000L)
|
||||
#define ALPHABET_SIZE (256)
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
98
main.c
98
main.c
|
@ -86,13 +86,15 @@ static const char *exec_name;
|
|||
static const char *algo = NULL;
|
||||
static int do_compress = 0;
|
||||
static int do_uncompress = 0;
|
||||
static int cksum_bytes;
|
||||
static int cksum = 0;
|
||||
static rabin_context_t *rctx;
|
||||
|
||||
static void
|
||||
usage(void)
|
||||
{
|
||||
fprintf(stderr,
|
||||
"\nPcompress Version %f\n\n"
|
||||
"\nPcompress Version %s\n\n"
|
||||
"Usage:\n"
|
||||
"1) To compress a file:\n"
|
||||
" %s -c <algorithm> [-l <compress level>] [-s <chunk size>] <file>\n"
|
||||
|
@ -138,6 +140,9 @@ usage(void)
|
|||
"7) Other flags:\n"
|
||||
" '-L' - Enable LZP pre-compression. This improves compression ratio of all\n"
|
||||
" algorithms with some extra CPU and very low RAM overhead.\n"
|
||||
" '-S' <cksum>\n"
|
||||
" - Specify chunk checksum to use: CRC64, SKEIN256, SKEIN512\n"
|
||||
" Default one is SKEIN256.\n"
|
||||
" '-M' - Display memory allocator statistics\n"
|
||||
" '-C' - Display compression statistics\n\n",
|
||||
UTILITY_VERSION, exec_name, exec_name, exec_name, exec_name, exec_name, exec_name);
|
||||
|
@ -258,7 +263,7 @@ perform_decompress(void *dat)
|
|||
ssize_t rabin_index_sz, rabin_data_sz, rabin_index_sz_cmp, rabin_data_sz_cmp;
|
||||
int type, rv;
|
||||
unsigned int blknum;
|
||||
typeof (tdat->crc64) crc64;
|
||||
uchar_t checksum[CKSUM_MAX_BYTES];
|
||||
uchar_t HDR;
|
||||
uchar_t *cseg;
|
||||
|
||||
|
@ -275,20 +280,19 @@ redo:
|
|||
*/
|
||||
if (tdat->rbytes == 0) {
|
||||
tdat->len_cmp = 0;
|
||||
tdat->crc64 = 0;
|
||||
goto cont;
|
||||
}
|
||||
|
||||
cseg = tdat->compressed_chunk + sizeof (crc64);
|
||||
cseg = tdat->compressed_chunk + cksum_bytes;
|
||||
_chunksize = tdat->chunksize;
|
||||
tdat->crc64 = htonll(*((typeof (crc64) *)(tdat->compressed_chunk)));
|
||||
deserialize_checksum(tdat->checksum, tdat->compressed_chunk, cksum_bytes);
|
||||
HDR = *cseg;
|
||||
cseg += CHDR_SZ;
|
||||
cseg += CHUNK_FLAG_SZ;
|
||||
if (HDR & CHSIZE_MASK) {
|
||||
uchar_t *rseg;
|
||||
|
||||
tdat->rbytes -= sizeof (ssize_t);
|
||||
tdat->len_cmp -= sizeof (ssize_t);
|
||||
tdat->rbytes -= ORIGINAL_CHUNKSZ;
|
||||
tdat->len_cmp -= ORIGINAL_CHUNKSZ;
|
||||
rseg = tdat->compressed_chunk + tdat->rbytes;
|
||||
_chunksize = ntohll(*((ssize_t *)rseg));
|
||||
}
|
||||
|
@ -383,8 +387,8 @@ redo:
|
|||
* If it does not match we set length of chunk to 0 to indicate
|
||||
* exit to the writer thread.
|
||||
*/
|
||||
crc64 = lzma_crc64(tdat->uncompressed_chunk, _chunksize, 0);
|
||||
if (crc64 != tdat->crc64) {
|
||||
compute_checksum(checksum, cksum, tdat->uncompressed_chunk, _chunksize);
|
||||
if (memcmp(checksum, tdat->checksum, cksum_bytes) != 0) {
|
||||
tdat->len_cmp = 0;
|
||||
fprintf(stderr, "ERROR: Chunk %d, checksums do not match.\n", tdat->id);
|
||||
}
|
||||
|
@ -408,7 +412,7 @@ cont:
|
|||
*
|
||||
* Chunk Header:
|
||||
* Compressed length: 8 bytes.
|
||||
* CRC64 Checksum: 8 bytes.
|
||||
* Checksum: Upto 64 bytes.
|
||||
* Chunk flags: 1 byte.
|
||||
*
|
||||
* Chunk Flags, 8 bits:
|
||||
|
@ -512,8 +516,7 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
goto uncomp_done;
|
||||
}
|
||||
|
||||
compressed_chunksize = chunksize + sizeof (chunksize) +
|
||||
sizeof (uint64_t) + sizeof (chunksize) + zlib_buf_extra(chunksize);
|
||||
compressed_chunksize = chunksize + CHUNK_HDR_SZ + zlib_buf_extra(chunksize);
|
||||
|
||||
if (_props_func) {
|
||||
_props_func(&props, level, chunksize);
|
||||
|
@ -531,6 +534,9 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
props.is_single_chunk = 1;
|
||||
}
|
||||
|
||||
cksum = flags & CKSUM_MASK;
|
||||
get_checksum_props(NULL, &cksum, &cksum_bytes);
|
||||
|
||||
nprocs = sysconf(_SC_NPROCESSORS_ONLN);
|
||||
if (nthreads > 0 && nthreads < nprocs)
|
||||
nprocs = nthreads;
|
||||
|
@ -542,7 +548,7 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
if (nthreads * props.nthreads > 1) fprintf(stderr, "s");
|
||||
fprintf(stderr, "\n");
|
||||
nprocs = nthreads;
|
||||
slab_cache_add(compressed_chunksize + CHDR_SZ);
|
||||
slab_cache_add(compressed_chunksize);
|
||||
slab_cache_add(chunksize);
|
||||
slab_cache_add(sizeof (struct cmp_data));
|
||||
|
||||
|
@ -597,7 +603,7 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
/*
|
||||
* Now read from the compressed file in variable compressed chunk size.
|
||||
* First the size is read from the chunk header and then as many bytes +
|
||||
* CRC64 checksum size are read and passed to decompression thread.
|
||||
* checksum size are read and passed to decompression thread.
|
||||
* Chunk sequencing is ensured.
|
||||
*/
|
||||
chunk_num = 0;
|
||||
|
@ -644,12 +650,13 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
*/
|
||||
if (!tdat->compressed_chunk) {
|
||||
tdat->compressed_chunk = (uchar_t *)slab_alloc(NULL,
|
||||
compressed_chunksize + CHDR_SZ);
|
||||
compressed_chunksize);
|
||||
if (enable_rabin_scan)
|
||||
tdat->uncompressed_chunk = (uchar_t *)slab_alloc(NULL,
|
||||
compressed_chunksize + CHDR_SZ);
|
||||
compressed_chunksize);
|
||||
else
|
||||
tdat->uncompressed_chunk = (uchar_t *)slab_alloc(NULL, chunksize);
|
||||
tdat->uncompressed_chunk = (uchar_t *)slab_alloc(NULL,
|
||||
chunksize);
|
||||
if (!tdat->compressed_chunk || !tdat->uncompressed_chunk) {
|
||||
fprintf(stderr, "Out of memory\n");
|
||||
UNCOMP_BAIL;
|
||||
|
@ -664,12 +671,12 @@ start_decompress(const char *filename, const char *to_filename)
|
|||
avg_chunk += tdat->len_cmp;
|
||||
|
||||
/*
|
||||
* Now read compressed chunk including the crc64 checksum.
|
||||
* Now read compressed chunk including the checksum.
|
||||
*/
|
||||
tdat->rbytes = Read(compfd, tdat->compressed_chunk,
|
||||
tdat->len_cmp + sizeof(tdat->crc64) + CHDR_SZ);
|
||||
tdat->len_cmp + cksum_bytes + CHUNK_FLAG_SZ);
|
||||
if (main_cancel) break;
|
||||
if (tdat->rbytes < tdat->len_cmp + sizeof(tdat->crc64) + CHDR_SZ) {
|
||||
if (tdat->rbytes < tdat->len_cmp + cksum_bytes + CHUNK_FLAG_SZ) {
|
||||
if (tdat->rbytes < 0) {
|
||||
perror("Read: ");
|
||||
UNCOMP_BAIL;
|
||||
|
@ -752,7 +759,7 @@ redo:
|
|||
return (0);
|
||||
}
|
||||
|
||||
compressed_chunk = tdat->compressed_chunk + CHDR_SZ;
|
||||
compressed_chunk = tdat->compressed_chunk + CHUNK_FLAG_SZ;
|
||||
rbytes = tdat->rbytes;
|
||||
/* Perform Dedup if enabled. */
|
||||
if (enable_rabin_scan) {
|
||||
|
@ -764,7 +771,7 @@ redo:
|
|||
* into uncompressed_chunk so that compress transforms uncompressed_chunk
|
||||
* back into cmp_seg. Avoids an extra memcpy().
|
||||
*/
|
||||
tdat->crc64 = lzma_crc64(tdat->cmp_seg, tdat->rbytes, 0);
|
||||
compute_checksum(tdat->checksum, cksum, tdat->cmp_seg, tdat->rbytes);
|
||||
|
||||
rctx = tdat->rctx;
|
||||
reset_rabin_context(tdat->rctx);
|
||||
|
@ -778,7 +785,7 @@ redo:
|
|||
/*
|
||||
* Compute checksum of original uncompressed chunk.
|
||||
*/
|
||||
tdat->crc64 = lzma_crc64(tdat->uncompressed_chunk, tdat->rbytes, 0);
|
||||
compute_checksum(tdat->checksum, cksum, tdat->uncompressed_chunk, tdat->rbytes);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -868,16 +875,16 @@ plain_compress:
|
|||
if (lzp_preprocess) {
|
||||
type |= CHUNK_FLAG_PREPROC;
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert compressed chunk length and CRC64 checksum into
|
||||
* chunk header.
|
||||
* Insert compressed chunk length and checksum into chunk header.
|
||||
*/
|
||||
len_cmp = tdat->len_cmp;
|
||||
*((typeof (len_cmp) *)(tdat->cmp_seg)) = htonll(tdat->len_cmp);
|
||||
*((typeof (tdat->crc64) *)(tdat->cmp_seg + sizeof (tdat->len_cmp))) = htonll(tdat->crc64);
|
||||
tdat->len_cmp += CHDR_SZ;
|
||||
serialize_checksum(tdat->checksum, tdat->cmp_seg + sizeof (tdat->len_cmp), cksum_bytes);
|
||||
tdat->len_cmp += CHUNK_FLAG_SZ;
|
||||
tdat->len_cmp += sizeof (len_cmp);
|
||||
tdat->len_cmp += sizeof (tdat->crc64);
|
||||
tdat->len_cmp += cksum_bytes;
|
||||
|
||||
if (adapt_mode)
|
||||
type |= (rv << 4);
|
||||
|
@ -888,8 +895,8 @@ plain_compress:
|
|||
if (tdat->rbytes < tdat->chunksize) {
|
||||
type |= CHSIZE_MASK;
|
||||
*((typeof (tdat->rbytes) *)(tdat->cmp_seg + tdat->len_cmp)) = htonll(tdat->rbytes);
|
||||
tdat->len_cmp += sizeof (tdat->rbytes);
|
||||
len_cmp += sizeof (tdat->rbytes);
|
||||
tdat->len_cmp += ORIGINAL_CHUNKSZ;
|
||||
len_cmp += ORIGINAL_CHUNKSZ;
|
||||
*((typeof (len_cmp) *)(tdat->cmp_seg)) = htonll(len_cmp);
|
||||
}
|
||||
/*
|
||||
|
@ -924,6 +931,7 @@ repeat:
|
|||
smallest_chunk = tdat->len_cmp;
|
||||
avg_chunk += tdat->len_cmp;
|
||||
}
|
||||
|
||||
wbytes = Write(w->wfd, tdat->cmp_seg, tdat->len_cmp);
|
||||
if (unlikely(wbytes != tdat->len_cmp)) {
|
||||
int i;
|
||||
|
@ -981,8 +989,7 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
* See start_decompress() routine for details of chunk header.
|
||||
* We also keep extra 8-byte space for the last chunk's size.
|
||||
*/
|
||||
compressed_chunksize = chunksize + sizeof (chunksize) +
|
||||
sizeof (uint64_t) + sizeof (chunksize) + zlib_buf_extra(chunksize);
|
||||
compressed_chunksize = chunksize + CHUNK_HDR_SZ + zlib_buf_extra(chunksize);
|
||||
init_algo_props(&props);
|
||||
|
||||
if (_props_func) {
|
||||
|
@ -1005,7 +1012,7 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
thread = 0;
|
||||
single_chunk = 0;
|
||||
slab_cache_add(chunksize);
|
||||
slab_cache_add(compressed_chunksize + CHDR_SZ);
|
||||
slab_cache_add(compressed_chunksize);
|
||||
slab_cache_add(sizeof (struct cmp_data));
|
||||
|
||||
nprocs = sysconf(_SC_NPROCESSORS_ONLN);
|
||||
|
@ -1090,7 +1097,7 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
|
||||
dary = (struct cmp_data **)slab_calloc(NULL, nprocs, sizeof (struct cmp_data *));
|
||||
if (enable_rabin_scan)
|
||||
cread_buf = (uchar_t *)slab_alloc(NULL, compressed_chunksize + CHDR_SZ);
|
||||
cread_buf = (uchar_t *)slab_alloc(NULL, compressed_chunksize);
|
||||
else
|
||||
cread_buf = (uchar_t *)slab_alloc(NULL, chunksize);
|
||||
if (!cread_buf) {
|
||||
|
@ -1149,6 +1156,7 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
* Write out file header. First insert hdr elements into mem buffer
|
||||
* then write out the full hdr in one shot.
|
||||
*/
|
||||
flags |= cksum;
|
||||
memset(cread_buf, 0, ALGO_SZ);
|
||||
strncpy(cread_buf, algo, ALGO_SZ);
|
||||
version = htons(VERSION);
|
||||
|
@ -1216,9 +1224,9 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
tdat->cmp_seg = (uchar_t *)1;
|
||||
else
|
||||
tdat->cmp_seg = (uchar_t *)slab_alloc(NULL,
|
||||
compressed_chunksize + CHDR_SZ);
|
||||
compressed_chunksize);
|
||||
tdat->uncompressed_chunk = (uchar_t *)slab_alloc(NULL,
|
||||
compressed_chunksize + CHDR_SZ);
|
||||
compressed_chunksize);
|
||||
} else {
|
||||
if (single_chunk)
|
||||
tdat->uncompressed_chunk = (uchar_t *)1;
|
||||
|
@ -1226,9 +1234,9 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
tdat->uncompressed_chunk =
|
||||
(uchar_t *)slab_alloc(NULL, chunksize);
|
||||
tdat->cmp_seg = (uchar_t *)slab_alloc(NULL,
|
||||
compressed_chunksize + CHDR_SZ);
|
||||
compressed_chunksize);
|
||||
}
|
||||
tdat->compressed_chunk = tdat->cmp_seg + sizeof (chunksize) + sizeof (uint64_t);
|
||||
tdat->compressed_chunk = tdat->cmp_seg + COMPRESSED_CHUNKSZ + cksum_bytes;
|
||||
if (!tdat->cmp_seg || !tdat->uncompressed_chunk) {
|
||||
fprintf(stderr, "Out of memory\n");
|
||||
COMP_BAIL;
|
||||
|
@ -1250,7 +1258,7 @@ start_compress(const char *filename, uint64_t chunksize, int level)
|
|||
tmp = tdat->cmp_seg;
|
||||
tdat->cmp_seg = cread_buf;
|
||||
cread_buf = tmp;
|
||||
tdat->compressed_chunk = tdat->cmp_seg + sizeof (chunksize) + sizeof (uint64_t);
|
||||
tdat->compressed_chunk = tdat->cmp_seg + COMPRESSED_CHUNKSZ + cksum_bytes;
|
||||
|
||||
/*
|
||||
* If there is data after the last rabin boundary in the chunk, then
|
||||
|
@ -1510,7 +1518,7 @@ main(int argc, char *argv[])
|
|||
level = 6;
|
||||
slab_init();
|
||||
|
||||
while ((opt = getopt(argc, argv, "dc:s:l:pt:MCDErL")) != -1) {
|
||||
while ((opt = getopt(argc, argv, "dc:s:l:pt:MCDErLS:")) != -1) {
|
||||
int ovr;
|
||||
|
||||
switch (opt) {
|
||||
|
@ -1579,6 +1587,12 @@ main(int argc, char *argv[])
|
|||
enable_rabin_split = 0;
|
||||
break;
|
||||
|
||||
case 'S':
|
||||
if (get_checksum_props(optarg, &cksum, &cksum_bytes) == -1) {
|
||||
err_exit(0, "Invalid checksum type %s", optarg);
|
||||
}
|
||||
break;
|
||||
|
||||
case '?':
|
||||
default:
|
||||
usage();
|
||||
|
@ -1653,6 +1667,8 @@ main(int argc, char *argv[])
|
|||
}
|
||||
main_cancel = 0;
|
||||
|
||||
if (cksum == 0)
|
||||
get_checksum_props(DEFAULT_CKSUM, &cksum, &cksum_bytes);
|
||||
/*
|
||||
* Start the main routines.
|
||||
*/
|
||||
|
|
19
pcompress.h
19
pcompress.h
|
@ -34,13 +34,13 @@ extern "C" {
|
|||
|
||||
#include <rabin_polynomial.h>
|
||||
|
||||
#define CHDR_SZ 1
|
||||
#define CHUNK_FLAG_SZ 1
|
||||
#define ALGO_SZ 8
|
||||
#define MIN_CHUNK 2048
|
||||
#define VERSION 3
|
||||
#define FLAG_DEDUP 1
|
||||
#define FLAG_SINGLE_CHUNK 2
|
||||
#define UTILITY_VERSION 0.8
|
||||
#define UTILITY_VERSION "0.8"
|
||||
|
||||
#define COMPRESSED 1
|
||||
#define UNCOMPRESSED 0
|
||||
|
@ -55,16 +55,21 @@ extern "C" {
|
|||
#define PREPROC_COMPRESSED 128
|
||||
|
||||
/*
|
||||
* lower 3 bits in higher nibble indicate compression algorithm.
|
||||
* Sizes of chunk header components.
|
||||
*/
|
||||
#define COMPRESSED_CHUNKSZ (sizeof (uint64_t))
|
||||
#define ORIGINAL_CHUNKSZ (sizeof (uint64_t))
|
||||
#define CHUNK_HDR_SZ (COMPRESSED_CHUNKSZ + cksum_bytes + ORIGINAL_CHUNKSZ + CHUNK_FLAG_SZ)
|
||||
|
||||
/*
|
||||
* lower 3 bits in higher nibble indicate chunk compression algorithm
|
||||
* in adaptive modes.
|
||||
*/
|
||||
#define COMPRESS_LZMA 1
|
||||
#define COMPRESS_BZIP2 2
|
||||
#define COMPRESS_PPMD 3
|
||||
#define CHDR_ALGO_MASK 7
|
||||
|
||||
extern uint64_t lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
extern uint64_t lzma_crc64_8bchk(const uint8_t *buf, size_t size,
|
||||
uint64_t crc, uint64_t *cnt);
|
||||
extern uint32_t zlib_buf_extra(ssize_t buflen);
|
||||
extern int lz4_buf_extra(ssize_t buflen);
|
||||
|
||||
|
@ -155,7 +160,7 @@ struct cmp_data {
|
|||
ssize_t rbytes;
|
||||
ssize_t chunksize;
|
||||
ssize_t len_cmp;
|
||||
uint64_t crc64;
|
||||
uchar_t checksum[CKSUM_MAX_BYTES];
|
||||
int level;
|
||||
unsigned int id;
|
||||
compress_func_ptr compress;
|
||||
|
|
|
@ -65,19 +65,9 @@
|
|||
#include <allocator.h>
|
||||
#include <utils.h>
|
||||
#include <pthread.h>
|
||||
#include <arpa/nameser_compat.h>
|
||||
#include <crc_macros.h>
|
||||
|
||||
#include "rabin_polynomial.h"
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
# define A1(x) ((x) >> 56)
|
||||
#else
|
||||
# define A1 A
|
||||
#endif
|
||||
|
||||
extern const uint64_t lzma_crc64_table[4][256];
|
||||
|
||||
extern int lzma_init(void **data, int *level, ssize_t chunksize);
|
||||
extern int lzma_compress(void *src, size_t srclen, void *dst,
|
||||
size_t *destlen, int level, uchar_t chdr, void *data);
|
||||
|
@ -309,7 +299,6 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
uint64_t *fplist;
|
||||
uint32_t len1, fpos[2], cur_sketch2;
|
||||
uint32_t *charcounts, byts;
|
||||
uint64_t crc;
|
||||
|
||||
if (rabin_pos == NULL) {
|
||||
/*
|
||||
|
@ -332,7 +321,6 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
j = 0;
|
||||
cur_sketch = 0;
|
||||
cur_sketch2 = 0;
|
||||
crc = 0;
|
||||
|
||||
/*
|
||||
* If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary
|
||||
|
@ -386,7 +374,6 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
cur_roll_checksum = (cur_roll_checksum << 1) + cur_byte;
|
||||
cur_roll_checksum -= (pushed_out << RAB_POLYNOMIAL_WIN_SIZE);
|
||||
cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out];
|
||||
crc = lzma_crc64_table[0][cur_byte ^ A1(crc)] ^ S8(crc);
|
||||
|
||||
/*
|
||||
* Compute a super sketch value of the block. We store a sum of relative
|
||||
|
@ -473,7 +460,7 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
ctx->blocks[blknum]->length = length;
|
||||
ctx->blocks[blknum]->ref = 0;
|
||||
ctx->blocks[blknum]->similar = 0;
|
||||
ctx->blocks[blknum]->crc = crc;
|
||||
ctx->blocks[blknum]->crc = lzma_crc64(buf1+last_offset, length, 0);
|
||||
|
||||
// Accumulate the 2 sketch values into a combined similarity checksum
|
||||
ctx->blocks[blknum]->cksum_n_offset = (cur_sketch + cur_sketch2) / 2;
|
||||
|
@ -487,7 +474,6 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
length = 0;
|
||||
j = 0;
|
||||
cur_sketch2 = 0;
|
||||
crc = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -518,7 +504,7 @@ rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, s
|
|||
j = (j > 0 ? j:1);
|
||||
ctx->blocks[blknum]->cksum_n_offset = (cur_sketch + cur_sketch2) / 2;
|
||||
ctx->blocks[blknum]->mean_n_length = cur_sketch / j;
|
||||
ctx->blocks[blknum]->crc = crc;
|
||||
ctx->blocks[blknum]->crc = lzma_crc64(buf1+last_offset, ctx->blocks[blknum]->length, 0);
|
||||
blknum++;
|
||||
last_offset = *size;
|
||||
}
|
||||
|
|
|
@ -168,5 +168,6 @@ extern void rabin_update_hdr(uchar_t *buf, ssize_t rabin_index_sz_cmp,
|
|||
extern void reset_rabin_context(rabin_context_t *ctx);
|
||||
extern uint32_t rabin_buf_extra(uint64_t chunksize, int rab_blk_sz, const char *algo,
|
||||
int delta_flag);
|
||||
extern uint64_t lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
|
||||
#endif /* _RABIN_POLY_H_ */
|
||||
|
|
85
utils.c
85
utils.c
|
@ -32,9 +32,27 @@
|
|||
#include <errno.h>
|
||||
#include <link.h>
|
||||
#include <rabin_polynomial.h>
|
||||
#include <skein.h>
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
/*
|
||||
* Checksum properties
|
||||
*/
|
||||
static struct {
|
||||
char *name;
|
||||
cksum_t cksum_id;
|
||||
int bytes;
|
||||
} cksum_props[] = {
|
||||
{"CRC64", CKSUM_CRC64, 8},
|
||||
{"SKEIN256", CKSUM_SKEIN256, 32},
|
||||
{"SKEIN512", CKSUM_SKEIN512, 64}
|
||||
};
|
||||
|
||||
extern uint64_t lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
extern uint64_t lzma_crc64_8bchk(const uint8_t *buf, size_t size,
|
||||
uint64_t crc, uint64_t *cnt);
|
||||
|
||||
void
|
||||
err_exit(int show_errno, const char *format, ...)
|
||||
{
|
||||
|
@ -295,3 +313,70 @@ set_threadcounts(algo_props_t *props, int *nthreads, int nprocs, algo_threads_ty
|
|||
props->nthreads = nprocs;
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
compute_checksum(uchar_t *cksum_buf, int cksum, uchar_t *buf, ssize_t bytes)
|
||||
{
|
||||
if (cksum == CKSUM_CRC64) {
|
||||
uint64_t *ck = (uint64_t *)cksum_buf;
|
||||
*ck = lzma_crc64(buf, bytes, 0);
|
||||
|
||||
} else if (cksum == CKSUM_SKEIN256) {
|
||||
Skein_512_Ctxt_t ctx;
|
||||
|
||||
Skein_512_Init(&ctx, 256);
|
||||
Skein_512_Update(&ctx, buf, bytes);
|
||||
Skein_512_Final(&ctx, cksum_buf);
|
||||
|
||||
} else if (cksum == CKSUM_SKEIN512) {
|
||||
Skein_512_Ctxt_t ctx;
|
||||
|
||||
Skein_512_Init(&ctx, 512);
|
||||
Skein_512_Update(&ctx, buf, bytes);
|
||||
Skein_512_Final(&ctx, cksum_buf);
|
||||
} else {
|
||||
fprintf(stderr, "Invalid checksum algorithm code: %d\n", cksum);
|
||||
return (-1);
|
||||
}
|
||||
return (0);
|
||||
}
|
||||
|
||||
int
|
||||
get_checksum_props(char *name, int *cksum, int *cksum_bytes)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; i<sizeof (cksum_props); i++) {
|
||||
if ((name != NULL && strcmp(name, cksum_props[i].name) == 0) ||
|
||||
(*cksum != 0 && *cksum == cksum_props[i].cksum_id)) {
|
||||
*cksum = cksum_props[i].cksum_id;
|
||||
*cksum_bytes = cksum_props[i].bytes;
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
return (-1);
|
||||
}
|
||||
|
||||
void
|
||||
serialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
||||
{
|
||||
int i,j;
|
||||
|
||||
j = 0;
|
||||
for (i=cksum_bytes; i>0; i--) {
|
||||
buf[j] = checksum[i-1];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
deserialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
||||
{
|
||||
int i,j;
|
||||
|
||||
j = 0;
|
||||
for (i=cksum_bytes; i>0; i--) {
|
||||
checksum[i-1] = buf[j];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
|
|
18
utils.h
18
utils.h
|
@ -101,6 +101,20 @@ typedef ssize_t bsize_t;
|
|||
#define DEBUG_STAT_EN(...)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Public checksum properties. CKSUM_MAX_BYTES must be updated if a
|
||||
* newer larger checksum is added to the list.
|
||||
*/
|
||||
typedef enum {
|
||||
CKSUM_CRC64 = 0x100,
|
||||
CKSUM_SKEIN256 = 0x200,
|
||||
CKSUM_SKEIN512 = 0x300
|
||||
} cksum_t;
|
||||
|
||||
#define CKSUM_MASK 0x700
|
||||
#define CKSUM_MAX_BYTES 64
|
||||
#define DEFAULT_CKSUM "SKEIN256"
|
||||
|
||||
typedef struct {
|
||||
uint32_t buf_extra;
|
||||
int compress_mt_capable;
|
||||
|
@ -127,6 +141,10 @@ extern ssize_t Read_Adjusted(int fd, uchar_t *buf, size_t count,
|
|||
extern ssize_t Write(int fd, const void *buf, size_t count);
|
||||
extern void set_threadcounts(algo_props_t *props, int *nthreads, int nprocs,
|
||||
algo_threads_type_t typ);
|
||||
extern int compute_checksum(uchar_t *cksum_buf, int cksum, uchar_t *buf, ssize_t bytes);
|
||||
extern int get_checksum_props(char *name, int *cksum, int *cksum_bytes);
|
||||
extern void serialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes);
|
||||
extern void deserialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes);
|
||||
|
||||
/* Pointer type for compress and decompress functions. */
|
||||
typedef int (*compress_func_ptr)(void *src, size_t srclen, void *dst,
|
||||
|
|
Loading…
Reference in a new issue