/* * The rabin polynomial computation is derived from: * http://code.google.com/p/rabin-fingerprint-c/ * * originally created by Joel Lawrence Tucci on 09-March-2011. * * Rabin polynomial portions Copyright (c) 2011 Joel Lawrence Tucci * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the project's author nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * This file is a part of Pcompress, a chunked parallel multi- * algorithm lossless compression and decompression program. * * Copyright (C) 2012 Moinak Ghosh. All rights reserved. * Use is subject to license terms. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * moinakg@belenix.org, http://moinakg.wordpress.com/ * */ #include #include #include #include #include #include #include #include "rabin_dedup.h" #define FORTY_PCNT(x) ((x)/5 << 1) #define FIFTY_PCNT(x) ((x) >> 1) #define SIXTY_PCNT(x) (((x) >> 1) + ((x) >> 3)) extern int lzma_init(void **data, int *level, int nthreads, int64_t chunksize, int file_version, compress_op_t op); extern int lzma_compress(void *src, uint64_t srclen, void *dst, uint64_t *destlen, int level, uchar_t chdr, void *data); extern int lzma_decompress(void *src, uint64_t srclen, void *dst, uint64_t *dstlen, int level, uchar_t chdr, void *data); extern int lzma_deinit(void **data); extern int bsdiff(u_char *old, bsize_t oldsize, u_char *new, bsize_t newsize, u_char *diff, u_char *scratch, bsize_t scratchsize); extern bsize_t get_bsdiff_sz(u_char *pbuf); extern int bspatch(u_char *pbuf, u_char *old, bsize_t oldsize, u_char *new, bsize_t *_newsize); static pthread_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER; uint64_t ir[256], out[256]; static int inited = 0; static uint32_t dedupe_min_blksz(int rab_blk_sz) { uint32_t min_blk; min_blk = (1 << (rab_blk_sz + RAB_BLK_MIN_BITS)) - 1024; return (min_blk); } uint32_t dedupe_buf_extra(uint64_t chunksize, int rab_blk_sz, const char *algo, int delta_flag) { if (rab_blk_sz < 1 || rab_blk_sz > 5) rab_blk_sz = RAB_BLK_DEFAULT; return ((chunksize / dedupe_min_blksz(rab_blk_sz)) * sizeof (uint32_t)); } /* * Initialize the algorithm with the default params. */ dedupe_context_t * create_dedupe_context(uint64_t chunksize, uint64_t real_chunksize, int rab_blk_sz, const char *algo, int delta_flag, int fixed_flag, int file_version, compress_op_t op) { dedupe_context_t *ctx; uint32_t i; if (rab_blk_sz < 1 || rab_blk_sz > 5) rab_blk_sz = RAB_BLK_DEFAULT; if (fixed_flag) { delta_flag = 0; inited = 1; } /* * Pre-compute a table of irreducible polynomial evaluations for each * possible byte value. */ pthread_mutex_lock(&init_lock); if (!inited) { int term, pow, j; uint64_t val, poly_pow; poly_pow = 1; for (j = 0; j < RAB_POLYNOMIAL_WIN_SIZE; j++) { poly_pow = (poly_pow * RAB_POLYNOMIAL_CONST) & POLY_MASK; } for (j = 0; j < 256; j++) { term = 1; pow = 1; val = 1; out[j] = (j * poly_pow) & POLY_MASK; for (i=0; irabin_poly_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE; ctx->current_window_data = NULL; ctx->fixed_flag = fixed_flag; ctx->rabin_break_patt = 0; ctx->rabin_poly_avg_block_size = RAB_BLK_AVG_SZ(rab_blk_sz); ctx->rabin_avg_block_mask = RAB_BLK_MASK; ctx->rabin_poly_min_block_size = dedupe_min_blksz(rab_blk_sz); ctx->delta_flag = 0; /* * Scale down similarity percentage based on avg block size unless user specified * argument '-EE' in which case fixed 40% match is used for Delta compression. */ if (delta_flag == DELTA_NORMAL) { if (ctx->rabin_poly_avg_block_size < (1 << 14)) { ctx->delta_flag = 1; } else if (ctx->rabin_poly_avg_block_size < (1 << 16)) { ctx->delta_flag = 2; } else { ctx->delta_flag = 3; } } else if (delta_flag == DELTA_EXTRA) { ctx->delta_flag = 1; } if (!fixed_flag) ctx->blknum = chunksize / ctx->rabin_poly_min_block_size; else ctx->blknum = chunksize / ctx->rabin_poly_avg_block_size; if (chunksize % ctx->rabin_poly_min_block_size) ctx->blknum++; if (ctx->blknum > RABIN_MAX_BLOCKS) { fprintf(stderr, "Chunk size too large for dedup.\n"); destroy_dedupe_context(ctx); return (NULL); } ctx->current_window_data = slab_alloc(NULL, RAB_POLYNOMIAL_WIN_SIZE); ctx->blocks = NULL; if (real_chunksize > 0) { ctx->blocks = (rabin_blockentry_t **)slab_calloc(NULL, ctx->blknum, sizeof (rabin_blockentry_t *)); } if(ctx == NULL || ctx->current_window_data == NULL || (ctx->blocks == NULL && real_chunksize > 0)) { fprintf(stderr, "Could not allocate rabin polynomial context, out of memory\n"); destroy_dedupe_context(ctx); return (NULL); } ctx->lzma_data = NULL; ctx->level = 14; if (real_chunksize > 0) { lzma_init(&(ctx->lzma_data), &(ctx->level), 1, chunksize, file_version, op); // The lzma_data member is not needed during decompression if (!(ctx->lzma_data) && op == COMPRESS) { fprintf(stderr, "Could not initialize LZMA data for dedupe index, out of memory\n"); destroy_dedupe_context(ctx); return (NULL); } } slab_cache_add(sizeof (rabin_blockentry_t)); ctx->real_chunksize = real_chunksize; reset_dedupe_context(ctx); return (ctx); } void reset_dedupe_context(dedupe_context_t *ctx) { memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE); ctx->window_pos = 0; } void destroy_dedupe_context(dedupe_context_t *ctx) { if (ctx) { uint32_t i; if (ctx->current_window_data) slab_free(NULL, ctx->current_window_data); if (ctx->blocks) { for (i=0; iblknum && ctx->blocks[i] != NULL; i++) { slab_free(NULL, ctx->blocks[i]); } slab_free(NULL, ctx->blocks); } if (ctx->lzma_data) lzma_deinit(&(ctx->lzma_data)); slab_free(NULL, ctx); } } /** * Perform Deduplication. * Both Semi-Rabin fingerprinting based and Fixed Block Deduplication are supported. * A 16-byte window is used for the rolling checksum and dedup blocks can vary in size * from 4K-128K. */ uint32_t dedupe_compress(dedupe_context_t *ctx, uchar_t *buf, int64_t *size, int64_t offset, int64_t *rabin_pos) { int64_t i, last_offset, j, ary_sz; uint32_t blknum; char *buf1 = (char *)buf; uint32_t length; uint64_t cur_roll_checksum, cur_pos_checksum; uint32_t *fplist; rabin_blockentry_t **htab; heap_t heap; DEBUG_STAT_EN(uint32_t max_count); DEBUG_STAT_EN(max_count = 0); DEBUG_STAT_EN(double strt, en); length = offset; last_offset = 0; blknum = 0; ctx->valid = 0; cur_roll_checksum = 0; DEBUG_STAT_EN(strt = get_wtime_millis()); if (ctx->fixed_flag) { blknum = *size / ctx->rabin_poly_avg_block_size; j = *size % ctx->rabin_poly_avg_block_size; if (j) blknum++; else j = ctx->rabin_poly_avg_block_size; last_offset = 0; length = ctx->rabin_poly_avg_block_size; for (i=0; iblocks[i] == 0) { ctx->blocks[i] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); } ctx->blocks[i]->offset = last_offset; ctx->blocks[i]->index = i; // Need to store for sorting ctx->blocks[i]->length = length; ctx->blocks[i]->similar = 0; ctx->blocks[i]->hash = XXH_fast32(buf1+last_offset, length, 0); ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash; last_offset += length; } goto process_blocks; } if (rabin_pos == NULL) { /* * Initialize arrays for sketch computation. We re-use memory allocated * for the compressed chunk temporarily. */ ary_sz = 4 * ctx->rabin_poly_max_block_size; fplist = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - ary_sz); memset(fplist, 0, ary_sz); } memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE); /* * If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary * in the chunk. We start scanning at chunk end - max rabin block size. We avoid doing * a full chunk scan. * * !!!NOTE!!!: Code duplication below for performance. */ if (rabin_pos) { offset = *size - ctx->rabin_poly_max_block_size; length = 0; for (i=offset; i<*size; i++) { uchar_t cur_byte = buf1[i]; uint64_t pushed_out = ctx->current_window_data[ctx->window_pos]; ctx->current_window_data[ctx->window_pos] = cur_byte; cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK; cur_roll_checksum += cur_byte; cur_roll_checksum -= out[pushed_out]; cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out]; ctx->window_pos = (ctx->window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); length++; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value update block offset if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt) { last_offset = i; length = 0; } } if (last_offset < *size) { *rabin_pos = last_offset; } return (0); } if (*size < ctx->rabin_poly_avg_block_size) return; j = 0; for (i=offset; i<*size; i++) { int64_t pc[4]; uchar_t cur_byte = buf1[i]; uint64_t pushed_out = ctx->current_window_data[ctx->window_pos]; ctx->current_window_data[ctx->window_pos] = cur_byte; cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK; cur_roll_checksum += cur_byte; cur_roll_checksum -= out[pushed_out]; cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out]; /* * Retain a list of all fingerprints in the block. We then compute * the K min values sketch from that list and generate a super sketch * by hashing over the K min values sketch. We only store the least * significant 32 bits of the fingerprint. This uses less memory, * requires smaller memset() calls and generates a sufficiently large * number of similarity matches without false positives - determined * by experimentation. * * This is called minhashing and is used widely, for example in various * search engines to detect similar documents. */ fplist[j] = cur_pos_checksum & 0xFFFFFFFFUL; j++; /* * Window pos has to rotate from 0 .. RAB_POLYNOMIAL_WIN_SIZE-1 * We avoid a branch here by masking. This requires RAB_POLYNOMIAL_WIN_SIZE * to be power of 2 */ ctx->window_pos = (ctx->window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); length++; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value or reached the max block size update block offset if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt || length >= ctx->rabin_poly_max_block_size) { if (ctx->blocks[blknum] == 0) ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); ctx->blocks[blknum]->offset = last_offset; ctx->blocks[blknum]->index = blknum; // Need to store for sorting ctx->blocks[blknum]->length = length; DEBUG_STAT_EN(if (length >= ctx->rabin_poly_max_block_size) max_count++); /* * Reset the heap structure and find the K min values if Delta Compression * is enabled. We use a min heap mechanism taken from the heap based priority * queue implementation in Python. * Here K = 60% or 40%. We are aiming to detect either 60% (default) or 40% * similarity on average. */ if (ctx->delta_flag) { pc[1] = SIXTY_PCNT(j); pc[2] = FIFTY_PCNT(j); pc[3] = FORTY_PCNT(j); reset_heap(&heap, pc[ctx->delta_flag]); ksmallest(fplist, j, &heap); ctx->blocks[blknum]->similarity_hash = XXH_fast32((const uchar_t *)fplist, pc[ctx->delta_flag]*4, 0); memset(fplist, 0, ary_sz); } blknum++; last_offset = i+1; length = 0; j = 0; } } // Insert the last left-over trailing bytes, if any, into a block. if (last_offset < *size) { if (ctx->blocks[blknum] == 0) ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); ctx->blocks[blknum]->offset = last_offset; ctx->blocks[blknum]->index = blknum; ctx->blocks[blknum]->length = *size - last_offset; if (ctx->delta_flag) { uint64_t cur_sketch; int64_t pc[3]; if (j > 1) { pc[1] = SIXTY_PCNT(j); pc[2] = FIFTY_PCNT(j); pc[3] = FORTY_PCNT(j); reset_heap(&heap, pc[ctx->delta_flag]); ksmallest(fplist, j, &heap); cur_sketch = XXH_fast32((const uchar_t *)fplist, pc[ctx->delta_flag]*4, 0); } else { if (j == 0) j = 1; cur_sketch = XXH_fast32((const uchar_t *)fplist, (j*4)/2, 0); } ctx->blocks[blknum]->similarity_hash = cur_sketch; } blknum++; last_offset = *size; } process_blocks: // If we found at least a few chunks, perform dedup. DEBUG_STAT_EN(fprintf(stderr, "Original size: %" PRId64 ", blknum: %u\n", *size, blknum)); DEBUG_STAT_EN(fprintf(stderr, "Number of maxlen blocks: %u\n", max_count)); if (blknum > 2) { int64_t pos, matchlen, pos1; int valid = 1; uint32_t *dedupe_index; int64_t dedupe_index_sz; rabin_blockentry_t *be; DEBUG_STAT_EN(uint32_t delta_calls, delta_fails, merge_count, hash_collisions); DEBUG_STAT_EN(delta_calls = 0); DEBUG_STAT_EN(delta_fails = 0); DEBUG_STAT_EN(hash_collisions = 0); ary_sz = blknum * sizeof (rabin_blockentry_t *); htab = (rabin_blockentry_t **)(ctx->cbuf + ctx->real_chunksize - ary_sz); memset(htab, 0, ary_sz); /* * Compute hash signature for each block. We do this in a separate loop to * have a fast linear scan through the buffer. */ if (ctx->delta_flag) { for (i=0; iblocks[i]->hash = XXH_fast32(buf1+ctx->blocks[i]->offset, ctx->blocks[i]->length, 0); } } else { for (i=0; iblocks[i]->hash = XXH_fast32(buf1+ctx->blocks[i]->offset, ctx->blocks[i]->length, 0); ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash; } } /* * Perform hash-matching of blocks and use a bucket-chained hashtable to match * for duplicates and similar blocks. Unique blocks are inserted and duplicates * and similar ones are marked in the block array. * * Hashtable memory is not allocated. We just use available space in the * target buffer. */ matchlen = 0; for (i=0; iblocks[i]->similarity_hash; ck += (ck / ctx->blocks[i]->length); j = ck % blknum; if (htab[j] == 0) { /* * Hash bucket empty. So add block into table. */ htab[j] = ctx->blocks[i]; ctx->blocks[i]->other = 0; ctx->blocks[i]->next = 0; ctx->blocks[i]->similar = 0; } else { be = htab[j]; length = 0; /* * Look for exact duplicates. Same cksum, length and memcmp()\ */ while (1) { if (be->hash == ctx->blocks[i]->hash && be->length == ctx->blocks[i]->length && memcmp(buf1 + be->offset, buf1 + ctx->blocks[i]->offset, be->length) == 0) { ctx->blocks[i]->similar = SIMILAR_EXACT; ctx->blocks[i]->other = be; be->similar = SIMILAR_REF; matchlen += be->length; length = 1; break; } if (be->next) be = be->next; else break; } if (!length && ctx->delta_flag) { /* * Look for similar blocks. */ be = htab[j]; while (1) { if (be->similarity_hash == ctx->blocks[i]->similarity_hash && be->length == ctx->blocks[i]->length) { ctx->blocks[i]->similar = SIMILAR_PARTIAL; ctx->blocks[i]->other = be; be->similar = SIMILAR_REF; matchlen += (be->length>>1); length = 1; break; } if (be->next) be = be->next; else break; } } /* * No duplicate in table for this block. So add it to * the bucket chain. */ if (!length) { ctx->blocks[i]->other = 0; ctx->blocks[i]->next = 0; ctx->blocks[i]->similar = 0; be->next = ctx->blocks[i]; DEBUG_STAT_EN(hash_collisions++); } } } DEBUG_STAT_EN(fprintf(stderr, "Total Hashtable bucket collisions: %u\n", hash_collisions)); dedupe_index_sz = (int64_t)blknum * RABIN_ENTRY_SIZE; if (matchlen < dedupe_index_sz) { DEBUG_STAT_EN(fprintf(stderr, "No Dedupe possible.\n")); ctx->valid = 0; return; } dedupe_index = (uint32_t *)(ctx->cbuf + RABIN_HDR_SIZE); pos = 0; DEBUG_STAT_EN(merge_count = 0); /* * Merge runs of unique blocks into a single block entry to reduce * dedupe index size. */ for (i=0; iblocks[i]->index = pos; pos++; length = 0; j = i; if (ctx->blocks[i]->similar == 0) { while (i< blknum && ctx->blocks[i]->similar == 0 && length < RABIN_MAX_BLOCK_SIZE) { length += ctx->blocks[i]->length; i++; DEBUG_STAT_EN(merge_count++); } ctx->blocks[j]->length = length; } else { i++; } } DEBUG_STAT_EN(fprintf(stderr, "Merge count: %u\n", merge_count)); /* * Final pass update dedupe index and copy data. */ blknum = pos; dedupe_index_sz = (int64_t)blknum * RABIN_ENTRY_SIZE; pos1 = dedupe_index_sz + RABIN_HDR_SIZE; matchlen = ctx->real_chunksize - *size; for (i=0; iblocks[dedupe_index[i]]; if (be->similar == 0 || be->similar == SIMILAR_REF) { /* Just copy. */ dedupe_index[i] = htonl(be->length); memcpy(ctx->cbuf + pos1, buf1 + be->offset, be->length); pos1 += be->length; } else { if (be->similar == SIMILAR_EXACT) { dedupe_index[i] = htonl((be->other->index | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG); } else { uchar_t *old, *new; int32_t bsz; /* * Perform bsdiff. */ old = buf1 + be->other->offset; new = buf1 + be->offset; DEBUG_STAT_EN(delta_calls++); bsz = bsdiff(old, be->other->length, new, be->length, ctx->cbuf + pos1, buf1 + *size, matchlen); if (bsz == 0) { DEBUG_STAT_EN(delta_fails++); memcpy(ctx->cbuf + pos1, new, be->length); dedupe_index[i] = htonl(be->length); pos1 += be->length; } else { dedupe_index[i] = htonl(be->other->index | RABIN_INDEX_FLAG | SET_SIMILARITY_FLAG); pos1 += bsz; } } } } cont: if (valid) { uchar_t *cbuf = ctx->cbuf; int64_t *entries; DEBUG_STAT_EN(int64_t sz); DEBUG_STAT_EN(sz = *size); *((uint32_t *)cbuf) = htonl(blknum); cbuf += sizeof (uint32_t); entries = (int64_t *)cbuf; entries[0] = htonll(*size); entries[1] = 0; entries[2] = htonll(pos1 - dedupe_index_sz - RABIN_HDR_SIZE); *size = pos1; ctx->valid = 1; DEBUG_STAT_EN(en = get_wtime_millis()); DEBUG_STAT_EN(fprintf(stderr, "Deduped size: %" PRId64 ", blknum: %u, delta_calls: %u, delta_fails: %u\n", *size, blknum, delta_calls, delta_fails)); DEBUG_STAT_EN(fprintf(stderr, "Dedupe speed %.3f MB/s\n", get_mb_s(sz, strt, en))); /* * Remaining header entries: size of compressed index and size of * compressed data are inserted later via rabin_update_hdr, after actual compression! */ return (dedupe_index_sz); } } return (0); } void update_dedupe_hdr(uchar_t *buf, int64_t dedupe_index_sz_cmp, int64_t dedupe_data_sz_cmp) { int64_t *entries; buf += sizeof (uint32_t); entries = (int64_t *)buf; entries[1] = htonll(dedupe_index_sz_cmp); entries[3] = htonll(dedupe_data_sz_cmp); } void parse_dedupe_hdr(uchar_t *buf, uint32_t *blknum, int64_t *dedupe_index_sz, int64_t *dedupe_data_sz, int64_t *dedupe_index_sz_cmp, int64_t *dedupe_data_sz_cmp, int64_t *deduped_size) { int64_t *entries; *blknum = ntohl(*((uint32_t *)(buf))); buf += sizeof (uint32_t); entries = (int64_t *)buf; *dedupe_data_sz = ntohll(entries[0]); *dedupe_index_sz = (int64_t)(*blknum) * RABIN_ENTRY_SIZE; *dedupe_index_sz_cmp = ntohll(entries[1]); *deduped_size = ntohll(entries[2]); *dedupe_data_sz_cmp = ntohll(entries[3]); } void dedupe_decompress(dedupe_context_t *ctx, uchar_t *buf, int64_t *size) { uint32_t blknum, blk, oblk, len; uint32_t *dedupe_index; int64_t data_sz, sz, indx_cmp, data_sz_cmp, deduped_sz; int64_t dedupe_index_sz, pos1, i; uchar_t *pos2; parse_dedupe_hdr(buf, &blknum, &dedupe_index_sz, &data_sz, &indx_cmp, &data_sz_cmp, &deduped_sz); dedupe_index = (uint32_t *)(buf + RABIN_HDR_SIZE); pos1 = dedupe_index_sz + RABIN_HDR_SIZE; pos2 = ctx->cbuf; sz = 0; ctx->valid = 1; slab_cache_add(sizeof (rabin_blockentry_t)); for (blk = 0; blk < blknum; blk++) { if (ctx->blocks[blk] == 0) ctx->blocks[blk] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); len = ntohl(dedupe_index[blk]); ctx->blocks[blk]->hash = 0; if (len == 0) { ctx->blocks[blk]->hash = 1; } else if (!(len & RABIN_INDEX_FLAG)) { ctx->blocks[blk]->length = len; ctx->blocks[blk]->offset = pos1; pos1 += len; } else { bsize_t blen; ctx->blocks[blk]->length = 0; if (len & GET_SIMILARITY_FLAG) { ctx->blocks[blk]->offset = pos1; ctx->blocks[blk]->index = (len & RABIN_INDEX_VALUE) | SET_SIMILARITY_FLAG; blen = get_bsdiff_sz(buf + pos1); pos1 += blen; } else { ctx->blocks[blk]->index = len & RABIN_INDEX_VALUE; } } } for (blk = 0; blk < blknum; blk++) { int rv; bsize_t newsz; if (ctx->blocks[blk]->hash == 1) continue; if (ctx->blocks[blk]->length > 0) { len = ctx->blocks[blk]->length; pos1 = ctx->blocks[blk]->offset; } else { oblk = ctx->blocks[blk]->index; if (oblk & GET_SIMILARITY_FLAG) { oblk = oblk & CLEAR_SIMILARITY_FLAG; len = ctx->blocks[oblk]->length; pos1 = ctx->blocks[oblk]->offset; newsz = data_sz - sz; rv = bspatch(buf + ctx->blocks[blk]->offset, buf + pos1, len, pos2, &newsz); if (rv == 0) { fprintf(stderr, "Failed to bspatch block.\n"); ctx->valid = 0; break; } pos2 += newsz; sz += newsz; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } continue; } else { len = ctx->blocks[oblk]->length; pos1 = ctx->blocks[oblk]->offset; } } memcpy(pos2, buf + pos1, len); pos2 += len; sz += len; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } } if (ctx->valid && sz < data_sz) { fprintf(stderr, "Too little dedup data processed.\n"); ctx->valid = 0; } *size = data_sz; } /* * TODO: Consolidate rabin dedup and compression/decompression in functions here rather than * messy code in main program. int rabin_compress(dedupe_context_t *ctx, uchar_t *from, int64_t fromlen, uchar_t *to, int64_t *tolen, int level, char chdr, void *data, compress_func_ptr cmp) { } */