/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see .
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef __APPLE__
#include
#endif
#include
#include
#include
#include
#include
#ifdef __APPLE__
#include
#include
#include
#include
static mach_timebase_info_data_t sTimebaseInfo;
#else
#include
#endif
#define _IN_UTILS_
#include "utils.h"
processor_cap_t proc_info;
pthread_mutex_t f_mutex = PTHREAD_MUTEX_INITIALIZER;
static int cur_log_level = 2;
static log_dest_t ldest = {LOG_OUTPUT, LOG_INFO, NULL};
static char *f_name_list[512];
static int f_count = 512, f_inited = 0;
void
init_pcompress() {
cpuid_basic_identify(&proc_info);
XXH32_module_init();
#ifdef __APPLE__
(void) mach_timebase_info(&sTimebaseInfo);
#endif
}
/*
* Fetch the command name that started the current process.
* The returned string must be freed by the caller.
*/
const char *
get_execname(const char *argv0)
{
char path[MAXPATHLEN];
char apath[128];
char *tmp1, *tmp2;
pid_t pid;
/* The easiest case: we are in linux */
if (readlink("/proc/self/exe", path, MAXPATHLEN) != -1) {
return (strdup(basename(path)));
}
/* Next easy case: Solaris/Illumos */
pid = getpid();
sprintf(apath, "/proc/%d/path/a.out", pid);
if (readlink(apath, path, MAXPATHLEN) != -1) {
return (strdup(basename(path)));
}
/* Oops... not in linux, not in Solaris no guarantee */
/* check if we have something like execve("foobar", NULL, NULL) */
if (argv0 == NULL) {
/* Give up */
return (strdup("Unknown"));
}
tmp1 = strdup(argv0);
tmp2 = strdup(basename(tmp1));
free(tmp1);
return (tmp2);
}
/*
* Routines to parse a numeric string which can have the following suffixes:
* k - Kilobyte
* m - Megabyte
* g - Gigabyte
*
* The number should fit in an int64_t data type.
* Numeric overflow is also checked. The routine parse_numeric() returns
* 1 if there was a numeric overflow.
*/
static int
raise_by_multiplier(int64_t *val, int mult, int power) {
int64_t result;
while (power-- > 0) {
result = *val * mult;
if (result/mult != *val)
return (1);
*val = result;
}
return (0);
}
int
parse_numeric(int64_t *val, const char *str)
{
int ovr = 0;
char *mult;
*val = strtoll(str, &mult, 0);
if (*mult != '\0') {
switch (*mult) {
case 'k':
case 'K':
ovr = raise_by_multiplier(val, 1024, 1);
break;
case 'm':
case 'M':
ovr = raise_by_multiplier(val, 1024, 2);
break;
case 'g':
case 'G':
ovr = raise_by_multiplier(val, 1024, 3);
break;
default:
ovr = 2;
}
}
return (ovr);
}
/*
* Convert number of bytes into human readable format
*/
char *
bytes_to_size(uint64_t bytes)
{
static char num[20];
uint64_t kilobyte = 1024;
uint64_t megabyte = kilobyte * 1024;
uint64_t gigabyte = megabyte * 1024;
uint64_t terabyte = gigabyte * 1024;
if (bytes < kilobyte) {
sprintf(num, "%" PRIu64 " B", bytes);
} else if (bytes < megabyte) {
sprintf(num, "%" PRIu64 " KB", bytes / kilobyte);
} else if (bytes < gigabyte) {
sprintf(num, "%" PRIu64 " MB", bytes / megabyte);
} else if (bytes < terabyte) {
sprintf(num, "%" PRIu64 " GB", bytes / gigabyte);
} else {
sprintf(num, "%" PRIu64 " B", bytes);
}
return (num);
}
/*
* Read/Write helpers to ensure a full chunk is read or written
* unless there is an error.
* Additionally can be given an offset in the buf where the data
* should be inserted.
*/
int64_t
Read(int fd, void *buf, uint64_t count)
{
int64_t rcount, rem;
uchar_t *cbuf;
rem = count;
cbuf = (uchar_t *)buf;
do {
rcount = read(fd, cbuf, rem);
if (rcount < 0) return (rcount);
if (rcount == 0) break;
rem = rem - rcount;
cbuf += rcount;
} while (rem);
return (count - rem);
}
/*
* Read the requested chunk and return the last rabin boundary in the chunk.
* This helps in splitting chunks at rabin boundaries rather than fixed points.
* The request buffer may have some data at the beginning carried over from
* after the previous rabin boundary.
*/
int64_t
Read_Adjusted(int fd, uchar_t *buf, uint64_t count, int64_t *rabin_count, void *ctx, void *pctx)
{
uchar_t *buf2;
int64_t rcount;
dedupe_context_t *rctx = (dedupe_context_t *)ctx;
if (!ctx) {
if (pctx)
return (archiver_read(pctx, buf, count));
else
return (Read(fd, buf, count));
}
buf2 = buf;
if (*rabin_count) {
buf2 = buf + *rabin_count;
count -= *rabin_count;
}
if (pctx)
rcount = archiver_read(pctx, buf2, count);
else
rcount = Read(fd, buf2, count);
if (rcount > 0) {
rcount += *rabin_count;
if (rcount == count) {
uint64_t rc, rbc;
rc = rcount;
rbc = *rabin_count;
/*
* This call does not actually dedupe but finds the last rabin boundary
* in the buf.
*/
dedupe_compress(rctx, buf, &rc, 0, &rbc, 0);
rcount = rc;
*rabin_count = rbc;
} else {
*rabin_count = 0;
}
} else {
if (rcount == 0) rcount = *rabin_count;
*rabin_count = 0;
}
return (rcount);
}
int64_t
Write(int fd, const void *buf, uint64_t count)
{
int64_t wcount, rem;
uchar_t *cbuf;
rem = count;
cbuf = (uchar_t *)buf;
do {
wcount = write(fd, cbuf, rem);
if (wcount < 0) return (wcount);
rem = rem - wcount;
cbuf += wcount;
} while (rem);
return (count - rem);
}
void
init_algo_props(algo_props_t *props)
{
props->buf_extra = 0;
props->compress_mt_capable = 0;
props->decompress_mt_capable = 0;
props->single_chunk_mt_capable = 0;
props->is_single_chunk = 0;
props->nthreads = 1;
props->c_max_threads = 1;
props->d_max_threads = 1;
props->delta2_span = 0;
}
/*
* Thread sizing. We want a balanced combination of chunk threads and compression
* algorithm threads that best fit the available/allowed number of processors.
*/
void
set_threadcounts(algo_props_t *props, int *nthreads, int nprocs, algo_threads_type_t typ) {
int mt_capable;
if (typ == COMPRESS_THREADS)
mt_capable = props->compress_mt_capable;
else
mt_capable = props->decompress_mt_capable;
if (mt_capable) {
int nthreads1, p_max;
if (nprocs == 3) {
props->nthreads = 1;
*nthreads = 3;
return;
}
if (typ == COMPRESS_THREADS)
p_max = props->c_max_threads;
else
p_max = props->d_max_threads;
nthreads1 = 1;
props->nthreads = 1;
while (nthreads1 < *nthreads || props->nthreads < p_max) {
if ((props->nthreads+1) * nthreads1 <= nprocs && props->nthreads < p_max) {
props->nthreads++;
} else if (props->nthreads * (nthreads1+1) <= nprocs && nthreads1 < *nthreads) {
++nthreads1;
} else {
break;
}
}
*nthreads = nthreads1;
} else if (props->single_chunk_mt_capable && props->is_single_chunk) {
*nthreads = 1;
if (typ == COMPRESS_THREADS)
props->nthreads = props->c_max_threads;
else
props->nthreads = props->d_max_threads;
if (props->nthreads > nprocs)
props->nthreads = nprocs;
}
}
uint64_t
get_total_ram()
{
#ifndef __APPLE__
uint64_t phys_pages, page_size;
page_size = sysconf(_SC_PAGESIZE);
phys_pages = sysconf(_SC_PHYS_PAGES);
return (phys_pages * page_size);
#else
int mib[2];
int64_t size;
size_t len;
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
size = 0;
len = sizeof (size);
if (sysctl(mib, 2, &size, &len, NULL, 0) == 0)
return (uint64_t)size;
return (ONE_GB);
#endif
}
#ifdef __APPLE__
int
clock_gettime(int clk_id, struct timespec *ts)
{
if (clk_id == CLOCK_MONOTONIC) {
uint64_t abstime = mach_absolute_time();
return (abstime * sTimebaseInfo.numer / sTimebaseInfo.denom);
}
return (0);
}
#endif
double
get_wtime_millis(void)
{
struct timespec ts;
int rv;
rv = clock_gettime(CLOCK_MONOTONIC, &ts);
if (rv == 0)
return (ts.tv_sec * 1000 + ((double)ts.tv_nsec) / 1000000L);
return (1);
}
double
get_mb_s(uint64_t bytes, double strt, double en)
{
double bytes_sec;
bytes_sec = ((double)bytes / (en - strt)) * 1000;
return (BYTES_TO_MB(bytes_sec));
}
void
get_sys_limits(my_sysinfo *msys_info)
{
unsigned long totram;
int rv;
char *val;
#ifdef __APPLE__
mach_port_t host_port = mach_host_self();
unsigned int host_size = HOST_VM_INFO64_COUNT;
vm_size_t pagesize;
vm_statistics64_data_t vm_stat;
host_page_size(host_port, &pagesize);
rv = host_statistics64(host_port, HOST_VM_INFO64, (host_info64_t)&vm_stat, &host_size);
if (rv != KERN_SUCCESS) {
vm_stat.free_count = (100 * 1024 * 1024) / pagesize; // 100M arbitrary
}
uint64_t mem_used = (vm_stat.active_count + vm_stat.inactive_count + vm_stat.wire_count) * pagesize;
msys_info->freeram = vm_stat.free_count * pagesize;
msys_info->totalram = mem_used + msys_info->freeram;
msys_info->totalswap = 0;
msys_info->freeswap = 0;
msys_info->mem_unit = pagesize;
msys_info->sharedram = vm_stat.wire_count * pagesize;
#else
struct sysinfo sys_info;
rv = sysinfo(&sys_info);
if (rv == -1) {
memset(&sys_info, 0, sizeof (struct sysinfo));
sys_info.freeram = 100 * 1024 * 1024; // 100M arbitrary
sys_info.mem_unit = 1;
}
msys_info->totalram = sys_info.totalram * sys_info.mem_unit;
msys_info->freeram = sys_info.freeram * sys_info.mem_unit + sys_info.bufferram * sys_info.mem_unit;
msys_info->totalswap = sys_info.totalswap * sys_info.mem_unit;
msys_info->freeswap = sys_info.freeswap * sys_info.mem_unit;
msys_info->mem_unit = sys_info.mem_unit;
msys_info->sharedram = sys_info.sharedram * sys_info.mem_unit;
#endif
/*
* If free memory is less than half of total memory (excluding shared allocations),
* and at least 75% of swap is free then adjust free memory value to 75% of
* total memory excluding shared allocations.
*/
totram = msys_info->totalram - msys_info->sharedram;
if (msys_info->freeram <= (totram >> 1) &&
msys_info->freeswap >= ((msys_info->totalswap >> 1) + (msys_info->totalswap >> 2))) {
msys_info->freeram = (totram >> 1) + (totram >> 2);
}
if ((val = getenv("PCOMPRESS_INDEX_MEM")) != NULL) {
uint64_t mem;
/*
* Externally specified index limit in MB.
*/
mem = strtoull(val, NULL, 0);
mem *= (1024 * 1024);
if (mem >= (1024 * 1024) && mem < msys_info->freeram) {
msys_info->freeram = mem;
}
} else {
/*
* Use a maximum of approx 75% of free RAM for the index(if limit was not specified).
*/
msys_info->freeram = (msys_info->freeram >> 1) + (msys_info->freeram >> 2);
}
}
int
chk_dir(char *dir)
{
struct stat st;
if (stat(dir, &st) == -1) {
return (0);
}
if (!S_ISDIR(st.st_mode)) {
return (0);
}
return (1);
}
/*
* Simple logging functions. Used for all error and info messages.
* Default log destination is STDOUT.
*/
void DLL_EXPORT
set_log_dest(log_dest_t *dest)
{
ldest.type = dest->type;
ldest.fd = dest->fd;
ldest.cb = dest->cb;
}
void DLL_EXPORT
set_log_level(int level)
{
if (level >= 0 && level < 10)
cur_log_level = level;
}
void DLL_EXPORT
log_msg(log_level_t log_level, int show_errno, const char *format, ...)
{
int err = errno, written;
va_list args;
char msg[1024];
if (log_level > cur_log_level) return;
va_start(args, format);
written = vsnprintf(msg, 1024, format, args);
va_end(args);
written += snprintf(msg + written, 1024 - written, "\n");
if (written < 1024 && show_errno) {
snprintf(msg + written, 1024 - written, "\nError: %s\n", strerror(err));
}
if (ldest.type == LOG_OUTPUT) {
fputs(msg, stderr);
} else if (ldest.type == LOG_FILE) {
int rv;
rv = write(ldest.fd, msg, strlen(msg));
} else {
ldest.cb(msg);
}
}
char *
get_temp_dir()
{
char *tmp;
char tmpdir[MAXPATHLEN];
tmp = getenv("PCOMPRESS_CACHE_DIR");
if (tmp == NULL || !chk_dir(tmp)) {
tmp = getenv("TMPDIR");
if (tmp == NULL || !chk_dir(tmp)) {
tmp = getenv("HOME");
if (tmp == NULL || !chk_dir(tmp)) {
if (getcwd(tmpdir, MAXPATHLEN) == NULL) {
tmp = "/tmp";
} else {
tmp = tmpdir;
}
}
}
}
return (strdup(tmp));
}
/*
* Temporary file cleanup routines for SIGINT. Maintain a list of
* filenames to be removed in the signal handler.
*/
void
Int_Handler(int signo)
{
int i;
for (i = 0; i < f_count; i++) {
if (f_name_list[i] != NULL) {
unlink(f_name_list[i]);
f_name_list[i] = NULL;
}
}
exit(1);
}
void
handle_signals()
{
pthread_mutex_lock(&f_mutex);
if (!f_inited) {
memset(f_name_list, 0, sizeof (f_name_list));
}
pthread_mutex_unlock(&f_mutex);
signal(SIGINT, Int_Handler);
signal(SIGTERM, Int_Handler);
}
void
add_fname(char *fn)
{
int i;
pthread_mutex_lock(&f_mutex);
for (i = 0; i < f_count; i++) {
if (f_name_list[i] == NULL) {
f_name_list[i] = fn;
break;
}
}
pthread_mutex_unlock(&f_mutex);
}
void
rm_fname(char *fn)
{
int i;
pthread_mutex_lock(&f_mutex);
for (i = 0; i < f_count; i++) {
if (f_name_list[i] != NULL) {
f_name_list[i] = fn;
break;
}
}
pthread_mutex_unlock(&f_mutex);
}
int
is_incompressible(int type)
{
int ic = 0;
int st = PC_SUBTYPE(type);
ic = (st == TYPE_JPEG) | (st == TYPE_PACKJPG) | (st == TYPE_AUDIO_COMPRESSED);
return (ic);
}
#ifndef _MPLV2_LICENSE_
/*
* Given a buffer this will tell whether the buffer represents PNM/PPM/PGM/PBM
* image data. Buffer should be at least 2 bytes.
*/
int
identify_pnm_type(uchar_t *buf, size_t len)
{
int is_pnm;
if (len < 2) return (0);
is_pnm = 0;
switch (buf[0]) {
case 'S':
switch (buf[1]) {
case '4': is_pnm = 2; break;
case '5': is_pnm = 2; break;
case '6': is_pnm = 2; break;
case 'M': is_pnm = 2; break;
}
break;
case 'P':
switch (buf[1]) {
case '4': is_pnm = 1; break;
case '5': is_pnm = 1; break;
case '6': is_pnm = 1; break;
}
break;
case 'B':
if (buf[1] == 'M') {
is_pnm = 1;
}
break;
}
return (is_pnm);
}
#endif
int
file_exists(char *path)
{
FILE *fh = fopen(path, "r");
if (fh != NULL) {
fclose(fh);
return (1);
}
return (0);
}
/************************************************************
* Portability wrappers for synchronization primitives.
***********************************************************/
#ifdef __APPLE__
pthread_mutex_t semctr_mutex = PTHREAD_MUTEX_INITIALIZER;
unsigned int __sem__ctr = 0;
static unsigned int
semctr_next()
{
unsigned int val;
pthread_mutex_lock(&semctr_mutex);
val = __sem__ctr;
__sem__ctr++;
pthread_mutex_unlock(&semctr_mutex);
return val;
}
int
Sem_Init(Sem_t *sem, int pshared, int value)
{
sprintf(sem->name, "%u", semctr_next());
sem->sem1 = sem_open(sem->name, O_CREAT|O_EXCL, S_IRUSR|S_IWUSR, value);
if (sem->sem1 == SEM_FAILED)
return (-1);
if (!pshared)
sem_unlink(sem->name);
return (0);
}
int
Sem_Destroy(Sem_t *sem)
{
if (sem_close(sem->sem1) == -1)
return (-1);
sem_unlink(sem->name);
return (0);
}
int
Sem_Post(Sem_t *sem)
{
return (sem_post(sem->sem1));
}
int
Sem_Wait(Sem_t *sem)
{
return (sem_wait(sem->sem1));
}
#else
int
Sem_Init(Sem_t *sem, int pshared, int value)
{
return(sem_init(&sem->sem, pshared, value));
}
int
Sem_Destroy(Sem_t *sem)
{
return (sem_destroy(&sem->sem));
}
int
Sem_Post(Sem_t *sem)
{
return (sem_post(&sem->sem));
}
int
Sem_Wait(Sem_t *sem)
{
return (sem_wait(&sem->sem));
}
#endif