/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see .
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*/
#include "types.hpp"
#include "dis.hpp"
#include
#include
#include
#include
#include
/* Version history:
*
* 1.00 (Nov 2009) Initial release
* 1.01 (Jan 2011) Don't assert on bytes > MAXINSTR when dealing with jump tables
* 1.02 (Nov 2013) (Moinak Ghosh) Changes to integrate with Pcompress.
* Adapted and modified from:
* http://www.farbrausch.de/~fg/code/disfilter/
*/
/****************************************************************************/
/* This is a filter for x86 binary code, intended to improve its compressibility
* by standard algorithms. The basic ideas are quite old; for example, the LZX
* algorithm used in Microsoft .CAB files uses a special preprocessor that
* converts the target address in CALL opcodes from a relative offset to an
* absolute address. This simple transforms greatly helps both LZ-based and
* statistical coders: the same function being called repeatedly now results
* in the same byte sequence for the call being repeated, instead of having
* a different encoding every time. The preprocessor doesn't really understand
* the instruction stream; it just looks for a 0xE8 byte (the opcode for near
* call) and adds the current position to the 4 bytes that follow it.
*
* Most modern compressors include this filter or variations, to be used on .EXE
* files; newer variants usually try to detect whether the target offset would be
* within the executable image to reduce the number of false positives. Another
* common modification stores the transformed offsets in big endian byte order:
* this clusters the high bits (which are likely to be similar along a stretch of
* code) together with the opcode, again yielding somewhat better compression.
*
* However, all this is based on a very limited understanding of x86 binary code.
* It is possible to do significantly with a more thorough understanding of the
* bytestream and its underlying structure. This algorithm borrows heavily from the
* Split-Stream^2 method described in [1] (or, more precisely, an earlier variant
* published somewhen in 2004; I don't remember the details anymore). It also introduces
* some (to my knowledge) novel ideas, though.
*
* The basic idea behind Split-Stream is to disassemble the target program,
* splitting it into several distinct streams that can be coded separately. Examples
* of such streams are the opcodes themselves, 8 bit immediates, 32 bit immediates,
* jump and call target addresses, and so on - the idea being that the individual
* fields are highly correlated amongst themselves, but largely independent of each
* other. Splitting the streams reduces the context dilution (the inclusion of
* irrelevant values in the context used for prediction) that otherwise harms compression
* in compiled code. Since the actual compressor in kkrunchy is a LZ-based dictionary
* coder and not a context coder, there's no easy way to mix multiple models or use
* alphabets with more than 256 symbols; hence the streams are simply stored sequentially,
* with a small header denoting the size of each. This interface sacrifices some
* compression potential, but has the advantage that the filter inputs and outputs
* simple bytestreams; kkrunchy actually compresses the (several hundred bytes long)
* unfiltering code along with the transformed code, so part of the decompressor is
* stored in compressed form. This results in a somewhat peculiar "bootstrapping"
* decompression process but saved roughly 200 bytes when it was originally written;
* a big enough gain to be worth it when targeting 64k executables.
*
* The actual list of streams that are identified can be found below (the "Streams" enum).
* To categorize which byte belongs where, the code needs to be disassembled. This
* is simpler than it sounds, given the complexity of x86 instruction encoding;
* luckily, there's no need to fully "understand" each instruction. We mainly need to
* be able to identify the opcode, the addressing mode used, and the presence of
* immediate data fields. This is implemented using a mostly table-driven disassembler.
* Since the original decoder was heavily optimized for size and the tables need to be
* included with the decoder, the encoding is very compact: It mainly consists of two
* tables of 256 entries each with 4 bits per entry used - the first table describing
* one-byte opcodes, the second for two-byte opcodes (when this code was written, there
* were no three-byte opcodes yet). There are some simplifications present in the tables
* and the disassembler, where doing so poses no problems. For example, all prefixes
* are treated as one-byte opcodes with no operands; this is incorrect, but as long as
* the encoder and decoder agree on it, there's no problem. There's also no need to
* distinguish between different instructions when they all have the same addressing modes
* and combination of immediate operands. All this gets rid of a lot of special cases.
* There is one significant deviation from the PPMexe paper [1], though: the code
* is very careful never to assume that its parsing of the instruction stream is correct,
* and absolutely no irreversible transforms take place (such as the instruction
* rescheduling in [1]). Unrecognizable and invalid opcodes are preserved. This is done
* by using a very uncommon opcode as escape code, encapsulating otherwise invalid
* sequences within the bytestream. This property is critical in practice: code sections
* often contain jump tables and other data that isn't decodable as x86 instruction
* stream. Corrupting such data during the compression process is unacceptable.
*
* The target adresses of near jumps and calls of course still get converted from
* relative to absolute; additionally, all values larger than 8 bit are stored in big
* endian byte order. Both transforms are trivial to undo on the decoder side and yield
* notable improvements in compression ratio. Additionally, the last 255 call targets
* are kept in an array that's updated using the "move to front" heuristic. If a target
* occurs repeatedly (as is common in practice), the offset doesn't need to be coded at
* all; instead the position in the array is transmitted. (This is the ST_CALL_IDX
* stream). Additionally, the instruction stream is analyzed to identify potential
* call targets (i.e. start addresses of functions) even before they are first
* referenced: if a RET or INT3 opcode is found in the instruction stream, the filter
* assumes that the next instruction is likely to start a new function (MSVC++ uses
* INT3 opcodes to fill the "no man's land" between functions) and adds its address to
* the function table automatically. Typical overall hit rates for the function table
* are between 70 and 80 per cent - so only a quarter of all call target addresses ever
* needs to be stored explicitly.
*
* The most common type of data intermixed with code sections is jump tables and
* virtual function tables. Generally speaking, any data inside the code section is
* bad for the filter; its statistics are very different from the binary code being
* encoded which hurts compression, and it causes the disassembler to lose sync
* temporarily. To work around this problem, the encoder tries to identify jump
* tables, using another escape code to identify them in the output stream. The
* heuristic used here is rather simple, but works very well: When an instruction
* is expected, the encoder looks at the next 12 bytes. If they evaluate to
* addresses within the code section when interpreted as 3 dwords, the encoder assumes
* that it has found a jump table (or vtable). Jump table entries are encoded the
* same way that call targets are.
*
* [1] "PPMexe: Program Compression"
* M. Drinic, D. Kirovski, and H. Vo, MS Research
* ACM Transactions on Programming Languages and Systems, Vol.29, (no.1), 2007.
* http://research.microsoft.com/en-us/um/people/darkok/papers/TOPLAS.pdf
*/
#define DISFILTER_BLOCK (32768)
#define DISFILTERED 1
#define ORIGSIZE 2
#define CLEAR_DISFILTER 0xfe
#define NORMAL_HDR (1 + 2)
#define EXTENDED_HDR (1 + 2 + 2)
// Dispack min reduction should be 8%, otherwise we abort
#define DIS_MIN_REDUCE (2622)
#define MAXINSTR 15 // maximum size of a single instruction in bytes (actually, decodeable ones are shorter)
enum Opcodes
{
// 1-byte opcodes of special interest (for one reason or another)
OP_2BYTE = 0x0f, // start of 2-byte opcode
OP_OSIZE = 0x66, // operand size prefix
OP_CALLF = 0x9a,
OP_RETNI = 0xc2, // ret near+immediate
OP_RETN = 0xc3,
OP_ENTER = 0xc8,
OP_INT3 = 0xcc,
OP_INTO = 0xce,
OP_CALLN = 0xe8,
OP_JMPF = 0xea,
OP_ICEBP = 0xf1,
// escape codes we use (these need to be 1-byte opcodes without an address or immediate operand!)
ESCAPE = OP_ICEBP,
JUMPTAB = OP_INTO
};
// formats
enum InstructionFormat
{
// encoding mode
fNM = 0x0, // no ModRM
fAM = 0x1, // no ModRM, "address mode" (jumps or direct addresses)
fMR = 0x2, // ModRM present
fMEXTRA = 0x3, // ModRM present, includes extra bits for opcode
fMODE = 0x3, // bitmask for mode
// no ModRM: size of immediate operand
fNI = 0x0, // no immediate
fBI = 0x4, // byte immediate
fWI = 0x8, // word immediate
fDI = 0xc, // dword immediate
fTYPE = 0xc, // type mask
// address mode: type of address operand
fAD = 0x0, // absolute address
fDA = 0x4, // dword absolute jump target
fBR = 0x8, // byte relative jump target
fDR = 0xc, // dword relative jump target
// others
fERR = 0xf // denotes invalid opcodes
};
enum Streams
{
ST_OP, // prefixes, first byte of opcode
ST_SIB, // SIB byte
ST_CALL_IDX, // call table index
ST_DISP8_R0, // byte displacement on ModRM, reg no. 0 and following
ST_DISP8_R1, ST_DISP8_R2, ST_DISP8_R3, ST_DISP8_R4, ST_DISP8_R5, ST_DISP8_R6, ST_DISP8_R7,
ST_JUMP8, // short jump
ST_IMM8, // 8-bit immediate
ST_IMM16, // 16-bit immediate
ST_IMM32, // 32-bit immediate
ST_DISP32, // 32-bit displacement
ST_ADDR32, // 32-bit direct address
ST_CALL32, // 32-bit call target
ST_JUMP32, // 32-bit jump target
ST_MAX,
// these components of the instruction stream are also identified
// seperately, but stored together with another stream since there's
// high correlation between them (or just because one streams provides
// good context to predict the other)
ST_MODRM = ST_OP, // ModRM byte
ST_OP2 = ST_OP, // second byte of opcode
ST_AJUMP32 = ST_JUMP32, // absolute jump target
ST_JUMPTBL_COUNT = ST_OP
};
/****************************************************************************/
// These helper functions assume that this code is being compiled on a
// little-endian platform with no alignment restrictions on data accesses.
// If this isn't a safe assumption, change these functions appropriately.
// All byte order dependent operations end up calling them.
//
// I also use the VC++ _byteswap intrinsics to implement big endian stores;
// if your compiler doesn't have them, it should be trivial to get rid of them.
static inline sU8 Load8(const sU8 *s) { return *s; }
static inline sU16 Load16(const sU8 *s) { return *((const sU16 *) s); }
static inline sU16 Load16B(const sU8 *s) { return _byteswap_ushort(Load16(s)); }
static inline sU32 Load32(const sU8 *s) { return *((const sU32 *) s); }
static inline sU32 Load32B(const sU8 *s) { return _byteswap_ulong(Load32(s)); }
static inline void Store8(sU8 *d,sU8 v) { *d = v; }
static inline void Store16(sU8 *d,sU16 v) { *((sU16 *) d) = v; }
static inline void Store16B(sU8 *d,sU16 v) { *((sU16 *) d) = _byteswap_ushort(v); }
static inline void Store32(sU8 *d,sU32 v) { *((sU32 *) d) = v; }
static inline void Store32B(sU8 *d,sU32 v) { *((sU32 *) d) = _byteswap_ulong(v); }
static inline sU8 Fetch8(sU8 *&s) { return *s++; }
static inline sU16 Fetch16(sU8 *&s) { sU16 v = Load16(s); s += 2; return v; }
static inline sU16 Fetch16B(sU8 *&s) { sU16 v = Load16B(s); s += 2; return v; }
static inline sU32 Fetch32(sU8 *&s) { sU32 v = Load32(s); s += 4; return v; }
static inline sU32 Fetch32B(sU8 *&s) { sU32 v = Load32B(s); s += 4; return v; }
static inline sU8 Write8(sU8 *&d,sU8 v) { Store8(d,v); d += 1; return v; }
static inline sU16 Write16(sU8 *&d,sU16 v) { Store16(d,v); d += 2; return v; }
static inline sU32 Write32(sU8 *&d,sU32 v) { Store32(d,v); d += 4; return v; }
/****************************************************************************/
static sU32 MoveToFront(sU32 *table,sInt pos,sU32 val)
{
for(;pos > 0;pos--)
table[pos] = table[pos-1];
table[0] = val;
return val;
}
static inline void AddMTF(sU32 *mtf,sU32 val)
{
MoveToFront(mtf,255,val);
}
static sInt FindMTF(sU32 *mtf,sU32 val)
{
for(sInt i=0;i<255;i++)
{
if(mtf[i] == val)
{
MoveToFront(mtf,i,val);
return i;
}
}
AddMTF(mtf,val);
return -1;
}
/****************************************************************************/
struct DataBuffer
{
sInt Size,Max;
sU8 *Data;
DataBuffer()
{
Max = 256;
Data = (sU8 *) malloc(Max);
ResetBuffer();
}
void ResetBuffer()
{
Size = 0;
}
~DataBuffer()
{
free(Data);
}
sU8 *Add(sInt bytes)
{
if(Size+bytes>Max)
{
Max = (Max*2 < Size+bytes) ? Size+bytes : Max*2;
Data = (sU8 *) realloc(Data,Max);
}
sU8 *ret = Data+Size;
Size += bytes;
return ret;
}
};
/****************************************************************************/
// 1-byte opcodes
sU8 Table1[256] =
{
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI, // 0
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI, // 1
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI, // 2
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI, // 3
fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // 4
fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // 5
fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fDI,fMR|fDI,fNM|fBI,fMR|fBI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // 6
fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR, // 7
fMR|fBI,fMR|fDI,fMR|fBI,fMR|fBI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 8
fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fAM|fDA,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // 9
fAM|fAD,fAM|fAD,fAM|fAD,fAM|fAD,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fBI,fNM|fDI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // a
fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fDI,fNM|fDI,fNM|fDI,fNM|fDI,fNM|fDI,fNM|fDI,fNM|fDI,fNM|fDI, // b
fMR|fBI,fMR|fBI,fNM|fWI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fBI,fMR|fDI,fNM|fBI,fNM|fNI,fNM|fWI,fNM|fNI,fNM|fNI,fNM|fBI,fERR ,fNM|fNI, // c
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fBI,fNM|fBI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // d
fAM|fBR,fAM|fBR,fAM|fBR,fAM|fBR,fNM|fBI,fNM|fBI,fNM|fBI,fNM|fBI,fAM|fDR,fAM|fDR,fAM|fAD,fAM|fBR,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // e
fNM|fNI,fERR ,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fMEXTRA,fMEXTRA,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fMEXTRA,fMEXTRA, // f
};
/****************************************************************************/
// 2-byte opcodes
sU8 Table2[256] =
{
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
fERR ,fERR ,fERR ,fERR ,fERR ,fERR ,fNM|fNI,fERR ,fNM|fNI,fNM|fNI,fERR ,fERR ,fERR ,fERR ,fERR ,fERR , // 0
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fERR ,fERR ,fERR ,fERR ,fERR ,fERR ,fERR , // 1
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fERR ,fERR ,fERR ,fERR ,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 2
fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fERR ,fNM|fNI,fERR ,fERR ,fERR ,fERR ,fERR ,fERR ,fERR ,fERR , // 3
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 4
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 5
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 6
fMR|fBI,fMR|fBI,fMR|fBI,fMR|fBI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fNI,fERR ,fERR ,fERR ,fERR ,fERR ,fERR ,fMR|fNI,fMR|fNI, // 7
fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR,fAM|fDR, // 8
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // 9
fNM|fNI,fNM|fNI,fNM|fNI,fMR|fNI,fMR|fBI,fMR|fNI,fMR|fNI,fMR|fNI,fERR ,fERR ,fERR ,fMR|fNI,fMR|fBI,fMR|fNI,fERR ,fMR|fNI, // a
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fERR ,fERR ,fERR ,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // b
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI,fNM|fNI, // c
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // d
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // e
fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fERR , // f
};
/****************************************************************************/
// escape opcodes using ModRM byte to get more variants
sU8 TableX[32] =
{
// 0 1 2 3 4 5 6 7
fMR|fBI,fERR ,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // escapes for 0xf6
fMR|fDI,fERR ,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI,fMR|fNI, // escapes for 0xf7
fMR|fNI,fMR|fNI,fERR ,fERR ,fERR ,fERR ,fERR ,fERR , // escapes for 0xfe
fMR|fNI,fMR|fNI,fMR|fNI,fERR ,fMR|fNI,fERR ,fMR|fNI,fERR , // escapes for 0xff
};
/****************************************************************************/
/****************************************************************************/
struct DisFilterCtx
{
DataBuffer Buffer[ST_MAX];
sU32 FuncTable[256];
sBool NextIsFunc;
sU32 CodeStart,CodeEnd;
DisFilterCtx(sU32 codeStart,sU32 codeEnd)
{
ResetCtx(codeStart, codeEnd);
}
void ResetCtx(sU32 codeStart,sU32 codeEnd)
{
NextIsFunc = sTRUE;
for(sInt i=0;i<256;i++)
FuncTable[i] = 0;
CodeStart = codeStart;
CodeEnd = codeEnd;
for (sInt i=0; i= CodeStart && codedAddr < CodeEnd)
count++;
else
break;
}
if(count < 3) // if it's less than 3 entries, it's probably not a jump table.
count = 0;
return count;
}
sInt ProcessInstr(sU8 *instr,sU32 memory)
{
if(sInt nJump = DetectJumpTable(instr,memory))
{
// probable jump table with nJump entries
sInt remaining = nJump;
while(remaining)
{
sInt count = (remaining < 256) ? remaining : 256;
Put8(ST_OP,JUMPTAB);
Put8(ST_JUMPTBL_COUNT,count-1);
for(sInt i=0;i> 3) & 7) | ((code & 0x01) << 3) | ((code & 0x08) << 1)];
if(flags != fERR)
{
if(o16)
Put8(ST_OP,OP_OSIZE);
Put8(ST_OP,code);
if(code == OP_2BYTE)
Put8(ST_OP2,code2);
if(code == OP_CALLF || code == OP_JMPF || code == OP_ENTER)
{
// far call/jump have a *48-bit* immediate address. we deal with it here by copying the segment index
// manually and encoding the rest as a normal 32-bit direct address.
// similarly, enter has a word operand and a byte operand. again, we code the word here, and
// deal with the byte later during the normal flow.
Copy16(ST_IMM16,instr);
}
if((flags & fMODE) == fMR)
{
sInt modrm = Copy8(ST_MODRM,instr);
sInt sib = 0;
if((modrm & 0x07) == 4 && modrm < 0xc0)
sib = Copy8(ST_SIB,instr);
if((modrm & 0xc0) == 0x40) // register+byte displacement
Copy8(ST_DISP8_R0 + (modrm & 0x07),instr);
if((modrm & 0xc0) == 0x80 || (modrm & 0xc7) == 0x05 || (modrm < 0x40 && (sib & 0x07) == 5))
{
// register+dword displacement
Copy32((modrm & 0xc7) == 0x05 ? ST_ADDR32 : ST_DISP32,instr);
}
}
if((flags & fMODE) == fAM)
{
switch(flags & fTYPE)
{
case fAD: Copy32(ST_ADDR32,instr); break;
case fDA: Copy32(ST_AJUMP32,instr); break;
case fBR: Copy8(ST_JUMP8,instr); break;
case fDR:
{
sU32 target = Fetch32(instr);
target += (instr - start) + memory;
if(code != OP_CALLN) // not a near call
Put32(ST_JUMP32,target);
else
{
sInt ind = FindMTF(FuncTable,target);
Put8(ST_CALL_IDX,ind+1);
if(ind == -1)
Put32(ST_CALL32,target);
}
}
break;
}
}
else
{
switch(flags & fTYPE)
{
case fBI: Copy8(ST_IMM8,instr); break;
case fWI: Copy16(ST_IMM16,instr); break;
case fDI:
if(!o16)
Copy32(ST_IMM32,instr);
else
Copy16(ST_IMM16,instr);
break;
}
}
return instr - start;
}
else // couldn't decode instruction
{
Put8(ST_OP,ESCAPE); // escape code
Put8(ST_OP,*start); // the unrecognized opcode
return 1;
}
}
sU8 *Flush(sU8 *out, sU32 &sz)
{
sU32 size = 0;
if (sz < ST_MAX * 16)
return (NULL);
size = ST_MAX * 4; // 4 bytes per stream to encode the size
for(sInt i=0;i= sz) return (NULL); // Check for output overflow
}
// Output ptr is supplied by caller
sU8 *outPtr = out;
for(sInt i=0;i streamEnd[strm]) return sFALSE
#define CheckDst(size) if(dest+size > destEnd) return sFALSE
#define CheckSrcDst(strm,size) if(stream[strm]+size > streamEnd[strm] || dest+size > destEnd) return sFALSE
#define Copy8Chk(strm) do { CheckSrcDst(strm,1); Copy8 (dest,stream[strm]); } while(0)
#define Copy16Chk(strm) do { CheckSrcDst(strm,2); Copy16(dest,stream[strm]); } while(0)
#define Copy32Chk(strm) do { CheckSrcDst(strm,4); Copy32(dest,stream[strm]); } while(0)
static sBool
DisUnFilter(sU8 *source,sU32 sourceSize,sU8 *dest,sU32 destSize,sU32 memStart)
{
sU8 *stream[ST_MAX];
sU8 *streamEnd[ST_MAX];
sU32 funcTable[256];
// read header (list of stream sizes)
if(sourceSize < ST_MAX*4)
return sFALSE;
sU8 *hdr = source;
sU8 *cur = source + ST_MAX*4;
for(sInt i=0;i> 3) & 7) | ((code & 0x01) << 3) | ((code & 0x08) << 1)];
if((modrm & 0x07) == 4 && modrm < 0xc0)
{
CheckSrcDst(ST_SIB,1);
sib = Copy8(dest,stream[ST_SIB]);
}
if((modrm & 0xc0) == 0x40) // register+byte displacement
{
sInt st = (modrm & 0x07) + ST_DISP8_R0;
Copy8Chk(st);
}
if((modrm & 0xc0) == 0x80 || (modrm & 0xc7) == 0x05 || (modrm < 0x40 && (sib & 0x07) == 0x05))
{
sInt st = (modrm & 0xc7) == 5 ? ST_ADDR32 : ST_DISP32;
Copy32Chk(st);
}
}
if((flags & fMODE) == fAM)
{
switch(flags & fTYPE)
{
case fAD: Copy32Chk(ST_ADDR32); break;
case fDA: Copy32Chk(ST_AJUMP32); break;
case fBR: Copy8Chk(ST_JUMP8); break;
case fDR:
{
sU32 target;
if(code == OP_CALLN)
{
CheckSrc(ST_CALL_IDX,1);
sInt ind = Fetch8(stream[ST_CALL_IDX]);
if(ind)
target = MoveToFront(funcTable,ind-1,funcTable[ind-1]);
else
{
CheckSrc(ST_CALL32,4);
target = Fetch32B(stream[ST_CALL32]);
AddMTF(funcTable,target);
}
}
else
{
CheckSrc(ST_JUMP32,4);
target = Fetch32B(stream[ST_JUMP32]);
}
target -= (dest - start) + 4 + memory;
CheckDst(4);
Write32(dest,target);
}
break;
}
}
else
{
switch(flags & fTYPE)
{
case fBI: Copy8Chk(ST_IMM8); break;
case fWI: Copy16Chk(ST_IMM16); break;
case fDI:
if(!o16)
Copy32Chk(ST_IMM32);
else
Copy16Chk(ST_IMM16);
break;
}
}
}
}
return sTRUE;
}
/*
* Try to estimate if the given data block contains 32-bit x86 instructions
* especially of the call and jmp variety.
* TODO: This is a very rough estimation and can probably be improved.
*/
static int
is_x86_code(uchar_t *buf, int len)
{
int e8e9 = 0, ff = 0;
uchar_t *pos, *last;
pos = buf;
last = buf + len - 4;
while (pos < last) {
if (*pos == 0xe8 || *pos == 0xe9) {
if (pos[3] == 0xff && pos[4] == 0xff) {
e8e9++;
ff++;
pos += 4;
} else if (pos[3] == 0 && pos[4] == 0) {
e8e9++;
pos += 4;
} else {
pos++;
}
} else {
pos++;
}
}
return ((double)e8e9/len >= 0.003 && (double)ff/e8e9 >= 0.1);
}
#ifdef __cplusplus
extern "C" {
#endif
/*
* 32-bit x86 executable packer top-level routines. Detected x86 executable data
* are passed through these encoding routines. The data chunk is split into 32KB
* blocks and each block is separately Dispack-ed. The code tries to detect if
* a block contains valid x86 code by trying to estimate some instruction metrics.
*/
int
dispack_encode(uchar_t *from, uint64_t fromlen, uchar_t *to, uint64_t *dstlen)
{
uchar_t *pos, *hdr, type, *pos_to, *to_last;
uint64_t len;
if (fromlen < DISFILTER_BLOCK)
return (-1);
pos = from;
len = fromlen;
pos_to = to;
to_last = to + *dstlen;
while (len > 0) {
DisFilterCtx ctx(0, DISFILTER_BLOCK);
sU32 sz;
sU16 origsize;
sU32 out;
sU8 *rv;
if (len > DISFILTER_BLOCK)
sz = DISFILTER_BLOCK;
else
sz = len;
hdr = pos_to;
type = 0;
origsize = sz;
if (sz < DISFILTER_BLOCK) {
type |= ORIGSIZE;
pos_to += EXTENDED_HDR;
U16_P(hdr + NORMAL_HDR) = LE16(origsize);
} else {
pos_to += NORMAL_HDR;
}
out = sz;
if (is_x86_code(pos, sz)) {
ctx.ResetCtx(0, sz);
rv = DisFilter(ctx, pos, sz, 0, pos_to, out);
} else {
rv = NULL;
}
if (rv != pos_to || sz == out) {
if (pos_to + origsize >= to_last) {
return (-1);
}
type &= CLEAR_DISFILTER;
*hdr = type;
hdr++;
U16_P(hdr) = LE16(origsize);
memcpy(pos_to, pos, origsize);
pos_to += origsize;
} else {
sU16 csize;
if (pos_to + out >= to_last) {
return (-1);
}
type |= DISFILTERED;
*hdr = type;
hdr++;
csize = out;
U16_P(hdr) = LE16(csize);
pos_to += csize;
}
pos += sz;
len -= sz;
}
*dstlen = pos_to - to;
if ((fromlen - *dstlen) < DIS_MIN_REDUCE) {
return (-1);
}
return (0);
}
int
dispack_decode(uchar_t *from, uint64_t fromlen, uchar_t *to, uint64_t *dstlen)
{
uchar_t *pos, type, *pos_to, *to_last;
uint64_t len;
pos = from;
len = fromlen;
pos_to = to;
to_last = to + *dstlen;
while (len > 0) {
sU32 sz, cmpsz;
type = *pos++;
len--;
sz = DISFILTER_BLOCK;
cmpsz = LE16(U16_P(pos));
pos += 2;
len -= 2;
if (type & ORIGSIZE) {
sz = LE16(U16_P(pos));
pos += 2;
len -= 2;
}
if (type & DISFILTERED) {
if (pos_to + sz > to_last) {
return (-1);
}
if (DisUnFilter(pos, cmpsz, pos_to, sz, 0) != sTRUE) {
return (-1);
}
pos += cmpsz;
pos_to += sz;
len -= cmpsz;
} else {
if (pos_to + cmpsz > to_last) {
return (-1);
}
memcpy(pos_to, pos, cmpsz);
pos += cmpsz;
pos_to += cmpsz;
len -= cmpsz;
}
}
*dstlen = pos_to - to;
return (0);
}
#ifdef __cplusplus
}
#endif